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We observe an energy-dependent polarization of the £+ produced in the reaction w*n - K°Z+ at
incident beam momenta between 1.1 and 2.4 GeV/c. These data form a significant source of information
on the 2~ polarization in the charge-symmetric reaction m~p > K 3.

Previous authors have discussed two reasons
for interest in the T~ polarization in r~p-K*Z".
First, knowledge of the polarization might be use-
ful for a study of the g decay of the =~.! Also,
the reactions

Tp~K*'T", (1)
T p-K*T*, (2)
T p~K°5° (3)

are related by charge independence; the two iso-
spin amplitudes can be extracted from the cross
sections and polarizations.?~5

The available data on reaction (2) (Refs. 6 and
7) and reaction (3) (Refs. 8~10) include informa-
tion on the polarization of the ¥ through observa-
tion of the = decay asymmetry. However, in stud-
ies of reaction (1) with unpolarized protons,® %!
polarization information is unavailable because
of the very small asymmetry parameter in the
decay T~ -n1" (a=-0.07+0.01).}2 Some limited
use has been made of polarized targets™? the =~
polarization has been measured at 1.74 GeV.2

If charge symmetry (which is weaker than charge
independence) holds, the reaction

mn-K°Z* (4)

has properties identical to reaction (1). Then a
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FIG. 1. Distribution of c.m. energy (excluding the
spectator proton) for our sample of the reaction n*d
— (K2, =t —pn® (135 events).

=3

measurement of the T* polarization in reaction
(4) is equivalent to a measurement of the £~ polar-
ization in reaction (1).

The data presented here come from a 250 000-
picture experiment done at the LBL Bevatron.*®
The deuterium-filled 72-in. bubble chamber was
exposed to 7* beams of eight different momenta
from 1.1to 2.4 GeV/c. The film was subsequent-
ly scanned twice for events with a charged-mode
decay of a neutral particle (vee) and measured on
the Group-A Franckenstein measuring machines.
The measured events were then processed through
the standard geometrical reconstruction and kine-
matic fitting program SIOUX. Events indicated by
the scanner as having a decaying positive particle,
as well as a vee, were fitted to all final states
possible for that topology, including

md ~pK°z*,
KO ~r*7-, (5)
Tt —=pn.

Events which had acceptable fits to two or more
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FIG. 2. Production distribution of the =* for c.m.
energies (a) 1.7-1.8, (b) 1.8-1.9, (c) 1.9~2.0, (d)
2.0-2.1, (e) 2.1-2.2, (f) 2.2-2.4 GeV. cos6,, =K
(302 events).
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FIG. 3. Decay cosine (p+#) of Z*—pn® vs production
cosine (#-K) for the six c.m. energy intervals of Fig. 2.

reactions were examined on the scanning table;
the ambiguity was resolved, if possible, by com-
paring the predicted track ionization for the vari-
ous hypotheses with the observed bubble density.
The end result was 164 events with a “best” fit
to reaction (5), only 3 of which remained ambigu-
ous. (See Ref. 13 for the definition of the “best”
fit.)

To select those events in which the proton is a
“spectator” to the reaction, we require the final-
state proton to have a momentum compatible with
the internal momentum of the deuteron. All com-
monly used deuteron wave functions show little
probability that the nucleons would have more than
300-MeV/c momentum; therefore events with pro-
ton laboratory-frame momentum greater than
300 MeV/c have been omitted from the rest of the
analysis.’® The remaining 135 events were divided
into six intervals in the center-of-mass energy
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FIG. 4. Polarization integrated over production angle
as a function of c.m. energy.
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FIG. 5. Polarization as a function of production angle
for c.m. energy (a) 1.7-2.0 GeV and (b) 2.0-2.4 GeV.

M(K°z*). See Fig. 1 for the c.m. energy distribu-
tion.

Figure 2 shows the production cosine distribu-
tion for the six c.m. energy intervals. Here
167 events from the =* - n7* decay mode have
been included to increase the statistics of the
production cosine distribution, although no polar-
ization information can be extracted from these
events because of the small decay asymmetry
parameter. The distributions of Fig. 2 are con-
sistent with, but not as precise as, the production
cosine distributions for the charge-symmetric
reaction 17p-K*>".°

Any =* polarization must lie along the normal
to the production plane. Figure 3 shows the co-
sine distribution of the decay protons in the =+
rest frame plotted against production cosine.
Here

coseplod =7 K,
ﬁu:ﬁx[f,
cosf,=p-n,

where 7 and K are the directions of the beam 7*
and the K° in the c.m. system, # is the production

TABLE I. Polarization integrated over production
angle.

c.m, energy (GeV) Polarization
1.7-1.8 0.90*3-82
1.8-1.9 0.90+8-2
1.9-2.0 0.40:9-%3
2.0-2.1 -0.03%)-28
2.1-2.2 -0.6413-41
2.2-2.4 0.3579-38
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normal, and p is the direction of the proton in the
rest frame of the =*.

The decay distribution of a spin-3 particle must
be of the form

dN

d(TSed)'m 1+aPCOSQ¢,

where a is the asymmetry parameter for the de-
cay and P is the polarization. A maximum-likeli-
hood fit was done to the function

f(A, cos8,;)=1+Acosb,.

The value so obtained for A is then our best es-
timate of the product of the asymmetry parameter
and the polarization. The scanning biases are ex-
pected to be even in cosf, and therefore not to
affect the maximum-likelihood estimate.*

Taking each of the six energy intervals sepa-
rately, and integrating over production angle, we
get the polarization given in Table I and Fig. 4.
(We have used a=-1.0.'?) There is clear indica-
tion of a large net polarization in the lower-energy
intervals. Noting a difference in the definitions
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TABLE II. Polarization as a function of production
angle,

c.m. energy (GeV) €086 prog Polarization
1.7-2.0 -1.00 to —0.33 0.53*3:%3
~0.33 to 0.33 0.72:5:3
0.33 to 1.00 0.2740:33
2.0-2.4 -1.00 to —0.33 0.4438:%
~0.33 to0 0.33 —0.52+3+3)
0.33 to 1.00 —0.58+0-41

of the normal, we see that our lowest-energy re-
sult has the same sign as that of Edgington ef al.
at 1.74GeV.2

Because of poor statistics, we cannot divide
each of the six energy intervals into bins in pro-
duction cosine; instead, we have combined the
three lower-energy intervals and the three upper
ones, and calculated the polarization for three
bins in production cosine. The results are given
in Table IT and Fig. 5.
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