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Chiral-symmetry-breaking effects are studied in the kaon-nucleon system, and discussed and compared
with various symmetry-breaking schemes. We first derive a relation between low-energy parameters of
the kaon-nucleon scattering amplitude and s- and p-wave scattering lengths, where contributions from

EN unphysical regions and nearby singularities are calculated from field theory. This sum rule is

nearly saturated. Together with consistency conditions of the isospin-even amplitude, the nucleon

expectation value of the cr commutator is expressed in terms of s- and p-wave scattering lengths and

a rather well-known integral over K~N cross sections. Although definitely not compatible with the
recent estimate of Cheng and Dashen, our result for the magnitude of the cr term is in agreement with

most of the calculations for the n.N system and favors the (conventional) (3,3) + (3,3) breaking scheme
of SU(3) X SU(3) of Gell-Mann, Oakes, and Renner. The same conclusion has been reached by using a
dispersive approach. Since these cT terms turn out to be slightly larger {by about a factor of 2) than
conventional (3,3) estimates, mechanisms and models are discussed in order to explain this (possible)
enhancement. Nonsmooth higher-order effects due to the A' (1520) are found to be small, suggesting
that even in the kaon-nucleon system second-order effects in chiral symmetry breaking, i.e., o(m&4) can
be neglected. Finally, PCAC (partial conservation of axial-vector current) for kaons has been directly
compared with experiment using most recent phase-shift analyses, and its compatibility with the data
has been confirmed, as suggested by generalized Goldberger-Treiman relations, contrary to previous
calculations.

I. INTRODUCTION

For some time it has been apparent' that strong
interactions are approximately SU(3)-symmetric.
More recently, Gell-Mann suggested' that strong
interactions are nearly symmetrical under the
bigger group SU(3) x SU(3), generated by the alge-
bra of the vector and axial-vector currents of the
hadrons. This larger symmetry does not, how-
ever, manifest itself only in multiplets of parti-
cles as does SU(3), but also through the appear-
ance'4 of eight nearly zero-mass pseudoscalar
mesons (Goldstone bosons in the exact symmetry
limit). The idea that strong interactions are al-
most SU(3) xSU(3)-symmetrical appears to be the
only rational way in which one can understand the
joint successes of current algebra and partially
conserved axial-vector current (PCAC). ' In ad-
dition, there is good evidence that the weak and
electromagnetic currents of the hadrons generate
the algebra. of SU(3) xSU(3); the hypothesis that the
strong interactions are nearly invariant under this
algebra clearly provides a beautiful connection be-
tween the symmetry of hadrons and their weak and
electromagnetic interactions.

The combination of current algebra and PCAC
leads to a large number of low-energy theorems'
for processes involving soft pions and kaons.
(Chiral symmetry does, in fact, have implications'
other than soft-meson theorems. ) These low-en-

ergy theorems, which relate the symmetry-break-
ing part of the total Hamiltonian to the scattering
amplitude of zero-mass particles, are only ap-
proximate in the real world and would become ex-
act in a limit where the pseudoscalar-meson mass-
es vanish and the axial-vector currents are con-
served. Thus, the soft-meson theorems may be
thought of as consequences of approximate sym-
metry, which has been especially stressed by
Weinberg. Most important tests of theories of
chiral symmetry breaking come therefore from
low-energy theorems of, especially, meson-bar-
yon scattering. (Whereas accepted current alge-
bra predicts the low-energy values of the crossing-
odd amplitudes, chiral symmetry breaking pre-
dicts the low-energy values of the crossing-even
ones. ) A detailed study of these low-energy the-
orems, namely the calculation of the meson-
baryon cr terms, i.e., the nucleon expectation val-
ue of the equal-time commutator of the axial-vec-
tor current with its divergence, provides us cru-
cial information about the chiral-symmetry-break-
ing mechanism, to what extent chiral symmetry
must be broken and what symmetry-breaking mod-
els should be used. In addition, a reliable evalua-
tion of the 0 terms takes on further importance, as
it may be useful in providing an understanding of
the mechanism by which scale invariance is brok-
en. '

Since low-energy theorems are valid outside the
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physical energy region and for zero-mass mesons,
it is certainly not a trivial problem how to extrap-
olate off the mass shell and then to physical situ-
ations. In the case of pion-nucleon scattering,
various techniques have been used in order to cal-
culate the mN o term, like off-mass-shell disper-
sion relations, ' broad-area subtracted dispersion
relations, ' and threshold subtracted fixed-t dis-
persion relations" by making use of Adler zeros
in the context of a systematic expansion in orders
of chiral symmetry breaking, linear expansions"
of mN amplitudes, sum rules" based on scattering
lengths and Weinberg's smoothness hypothesis, and

speculations originating in light-cone expansions. "
In addition, the magnitude of the mN cr term has
been extracted" from a study of w-nuclei interac-
tions in n-mesonic atoms. Most of these calcula-
tions approximately agree with the (3, 3) + (3, 3)
chiral-symmetry-breaking scheme of Gell-Mann,
Oakes, and Renner" (GMOR), and therefore give
support to the notion that chiral SU(2) x SU(2) is in

fact a better symmetry than SU(3). However,
Cheng and Dashen, ' and also the rather strongly
model-dependent light-cone approach, "obtained a
value for the pion-nucleon 0 term roughly five
times larger, indicating that the (3, 3)+(3, 3) mod-
el might not be correct (at least with its conven-
tional interpretation). Thus, the whole question
appears to be still open.

However, very recently, several attempts have
been made to calculate the a term for the exceed-
ingly more complicated reaction of kaon-nucleon
scattering. Various independent methods have
been used, like fixed-t dispersion relations using
a first-order expansion in chiral symmetry break-
ing, "off-shell finite-energy sum rules, "and sum
rules based on s- and p-wave scattering lengths;"
all these estimates yield compatible results and
strongly favor the GMOR model for chiral SU(3)
&&SU(3) breaking. However, they are definitely in-
consistent with the rather large values obtained in
Refs. 9 and 13.

In a previous paper" we have considered the
problem of how to extrapolate the kaon-nucleon
scattering amplitude to the low-energy point by
making full use of the smoothness hypothesis.
Having calculated the discontinuities in the KN
channel from field theory, we constructed an am-
plitude which can be expected to be a smooth func-
tion of all its energy and momentum variables.
We assumed an expansion of this amplitude up to
second order in kaon momenta; this expansion
contains four unknown parameters. Together with
the dispersive calculation of Ref. 16, one has then
five independent conditions on these parameters, the
others being (i) the Adler consistency condition
(PCAC), (ii) the value of the amplitude at physical

threshold, (iii) the value of the subtraction constant
in forward dispersion relations, and (iv) a combina-
tion of s- and p-wave scattering lengths. Indeed,
the resulting constraint for the low-energy expan-
sion parameters is in remarkable agreement with
experiment. Independently of Ref. 16 we also re-
lated the kaon-nucleon g term to s- and p-wave
scattering lengths and to a rather well-known inte-
gral over total K'N cross sections by keeping only
second-order terms in kaon momenta, i.e., first-
order terms in chiral symmetry breaking. These
considerations are the starting point of the present
paper.

Here, we pursue the idea of studying low-energy
kaon-nucleon scattering and of determining the 0

term by making full use of the smoothness hypoth-
esis for the scattering amplitude. This possibility
was already contained in our previous paper. How-

ever, in order to obtain an accurate determination
of the v term, it might be necessary to go beyond
the simple second-order expansion for the scatter-
ing amplitude and to take into account possible
sources of nonsmoothness arising from the pres-
ence of nearby singularities. In addition, these
higher-order corrections could be particularly im-
portant in the kaon-nucleon system, contrary to
the mN case, because of the rather large kaon
mass. A reliable estimate of these effects can be
given, and the only non-negligible contribution is
due to the A (1520). Since this contribution is rath-
er small in magnitude, about 5%, our results sug-
gest that extrapolation techniques neglecting" "
terms proportional to m~4 are accurate enough to
obtain reliable results —an approach which works
very well for zV scattering ' ' where contribu-
tions proportional to m„' might be safely neglected
a Priori.

A basic assumption of all such calculations, for
pion-nucleon as well as kaon-nucleon scattering,
is the PCAC hypothesis. Some time ago the valid-
ity of PCAC for kaons was questioned" on the
basis of rather incomplete experimental informa-
tion. We recalculated Adler's consistency rela-
tion for kaons, using a subtracted fixed-t dis-
persion relation and most recent results of prac-
tically all existing kaon-nucleon phase-shift anal-
yses as input, and found that kaon PCAC is cer-
tainly compatible with experiment —a result one
might expect on the basis of generalized Gold-
ber ger -Treiman relations. "

For the sake of clarity we briefly summarize
in Sec. II all relevant notations, partial-wave de-
compositions, and dispersion relations we use. In
Sec. III, we discuss the low-energy theorem for
kaon-nucleon scattering and give a brief outline of
the (3, 5) + (3, 3) chiral-symmetry-breaking model
and the magnitudes for the various o terms ex-
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pected on purely theoretical grounds. In the first
part of Sec. IV we describe the dispersive ap-
proach of how to calculate the kaon-nucleon v

term, whereas in the second part we study low-
energy K'N scattering and calculate the 0 term
using the smoothness hypothesis; discontinuities
in the KN channel are calculated from field theory
and higher-order corrections from nearby singu-
larities are studied. In the last part of Sec. IV our
results are compared with other calculations and
we discuss the implications for chiral-symmetry
and scale breaking. Finally, in Sec. V, the PCAC
hypothesis for kaons, which constitutes a basic
assumption of our paper, is compared with experi-
ment, and our conclusions are summarized in
Sec. VI.

II. KINEMATICS, PARTIAL- WAVE DECOMPOSITIONS,
AND DISPERSION RELATIONS

Consider the process K'(q)+N(p) -K'(q')+N(p')
with four-momenta of the particles indicated in
parentheses. The T matrix can be conventionally
decomposed into

T~(=A+ oy (q+q')B,

where the two invariant amplitudes A and B are
chosen to be scalar functions of the kinematic in-
variants

v=(P+P') (q+q')/4 mw

=~+t/4m„,
t=(q- q')

and & denotes the total laboratory energy of the
incoming kaon. To specify the various charge
states, the amplitudes A and B are decomposed in-
to

A(v, t) =A'(v, t)+(7„7w)A (v& t).
and similarly for B(v, t), where 7„and vw are the
isospin matrices for the nucleon and kaon, re-
spectively With r.espect to crossing (v- -v, t
fixed), A' and B are even functions, whereas
A and B' are odd. In the s channel, these am-
plitudes are related to the amplitudes for a defi-

nite isospin state I =0, 1 by

A' = +(A +3A'),

A = —(A' —A),
(4)

and similarly for B'. Therefore the amplitudes
for K'N' scattering are given by

A, =A'+A

B~ =B++B

The T-matrix normalization is chosen such that
the differential cross section in the c.m. system
is given by

Q p Ty~Q p (6}

where W= &ts, s =(p+q)', and+ denotes sum and/
or average over nucleon spins, according to which
differential cross section is being measured.

The invariant amplitudes may be decomposed in-
to partial-wave amplitudes by

A(v, t) W+ mw W —mw

4w E+m„' E —m„

B(v t) 1 1
4,

' =E, „f'E
where E is the total c.m. energy of the nucleon
and

(8)

(g)

The subtracted fixed-t dispersion relations for
K'N scattering may now be written" in the form:

with P, '=dP, /dx, w=cose, and k and 8 being the
c.m. momentum and scattering angle, respective-
ly. The partial waves and phase shifts correspond-
ing to total angular momentum j = l + & are denoted
by f» and 5„, respectively, where

ReT, (v, t) =ReT, (v„ t) v (v —v, )
(vs + +y+ vo (vs + +» k v)

(v —vo) o ImT (v', t) (v —vo)
" ImT (v' t)

w —, (v's vo}(v's v} w „(v'+ vo)(v'+ v)

(v —v,), ImT, (v', t)w, , (v'+ v, )(v' v v)
' (10)

where we have defined the following combination of (on-shell) K'N scattering amplitudes:
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T (v, t) = A, + vft, ,

with vs =-q ~ q'/2m„, vo= m»+t/4m„, and

g 2

(vs + l) „+m„—m„),
mpf

v = vs + [(mA+ m„) —m„]/2m„,
(12)

mg
T,(,0)=4 (( ~

mN
(13)

ag', =lim f,', /k" +'
k 0

(14)

where a,', is the scattering length of the lth K'N
partial wave f,'„defined by

where b, = (m„' —m„')/2m„and g„ is the rational-
ized pseudoscalar coupling constant for the KyN
vertex. The imaginary parts of the amplitudes in

the dispersion relations of Eq. (10) are then
uniquely determined by Eqs. (7), (8), and (9),
once the phase shifts 5„are known.

From Eqs. (V) and (8) the amplitudes T, (v, t) can
now be easily calculated at various energy points;
at physical threshold we have

l(2l)!
) (x} 2)(i )2

we obtain, using Eq. (15} in Eqs. ('l} and (8),

(15)

In addition we will need the value of T, at v = m~
+ m»'/4m„. Now for t = 2m»',

cos 8 = (m»'+ k')/k',

and since at threshold

(16)

m»' ~, (l+1)[2(l+1)]!
T, (m +m»'/4™„,2™) =4» 1+ +

4 2 ~ a" 2"ir'1 1))]2mN mN + 0

, ~ (. .. l(2l)! 2((,)+4»m (a, -a, ',
, m

1=1

In practice, only s- and p-wave scattering lengths will be included: the only ones that are experimentally
rather well known and that are the dominant contributions to Eq. (16).

III. LOW-ENERGY THEOREM AND CHIRAL SYMMETRY BREAKING

Before going into the details of the (3, 3) +(3, 3) chiral-symmetry-breaking model, we briefly discuss the
low-energy theorem for kaon-nucleon scattering.

A. Low-Energy Theorem

The basic relation for deriving low-energy theorems is given by

x(p' [!(q'„q„TtA g+(x)A»- (y) )+ i q'„6(x' —y') [A g+ (x),A»gy)]

—6(x' —y') [A'+(x), S,A"-(y)]) I P),

where standard techniques' have been used to pull
the derivatives through the time-ordered product;
A,"(x) is the axial-vector current, and the PCAC
choice for the kaon field is

m»'F»y» ~ (x) = S„AP~ (x), (18)

with the semileptonic kaon decay constant F~
given by F»/F„=1.26, corresponding to a Cabibbo
angle 8~ =0.26, and F, =96 MeV. The first term
on the right-hand side of Eq. (1V) contributes both
to the symmetric and to the antisymmetric part of
the amplitude with respect to isospin indices,
whereas the second term, the equal-time commu-

tator known from current algebra, is antisym-
metric in isospin indices and of first order in the
kaon momentum. The last term corresponds to the
so-called a term. It is not a commutator which is
given by current algebra, and derives its name
from the a model, where it simply reduces to the
canonical a field. In the soft-meson limit q„-0,
q„'-0, the right-hand side of Eq. (17) reduces to

i(2»)'6'(q+ P —q'- P') &P'l[F'„[F,'-, «') ] I P)

= i (2») 6 (q+ p —q' —p')cr)(()((,

(19)
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where the axial-vector charges are given by F,'
= f d'»Ao(0, x}and X ' is that part of the total
Hamiltonian density which breaks chiral symme-
try. As a formal device for keeping track of pow-
ers of symmetry breaking, we introduced the
"small" scale parameter». (Of course, this de-
composition of the total Hamiltonian into a sym-
metry-conserving and symmetry-breaking part
means nothing until we add to it the assumption
that an expansion about the limit & -0 makes
sense, a hypothesis strongly suggested~ "by any
Lagrangian field theory. ) That &r»»»»is indeed sym-
metric in the SU(3) indices can easily be seen by
writing a Jacobi identity for the double commuta-
tor in Eq (19.) and taking into account isospin and
hypercharge conservation. Therefore, in the soft-
meson limit, we obtain' the low-energy theorem

T+ (0, 0, 0, 0) = -F» 'o„„, (20)

where T'(v, t, q, q") denotes the isospin (crossing)
even off-mass shell amplitude.

Unfortunately, objects like matrix elements of
the o commutator cannot be measured directly,
but can be obtained by extrapolation from on-shell
scattering amplitudes. Going off the mass shell
through a power series expansion in q' and q"
(which has been used in Refs. 9, 10, and 16), then
the Adler consistency conditions (PCAC) for ka-
ons,

imply

=0 (21}

T'(0, 0, 0, 0) = -m»'(s/8 q') T'(0, 0, 0, 0) + O(e')

= -m»~(s/sq' )T+(0, 0, 0, 0)+O(e ),
(22)

and it follows that

T'(0, 2m», m», m» ) =-T'(0, 0, 0, 0)+O(c ),
(23}

where we have dropped terms of order m~~ since
they are of order ~'. Thus, provided these higher-
order terms in chiral symmetry breaking can be
neglected, Eq. (23) offers a unique relation be-
tween the off-mass-shell and on-mass-shell am-
plitudes independent of any (ambiguous} model-
dependent off-mass-shell extrapolation procedure.
In addition, the point v = 0, t =2m~' is clearly out-
side the physical region; it can, however, be
reached for instance by a fixed-t dispersion rela-
tion. Still, two questions remain open: (i) Is the
approximation in Eq. (23) acceptable, i.e., can
terms like m»4 be safely neglected? (ii) To what
extent is Eq. (21) compatible with experiment' ?

%'e will come back to these points in Secs. IV
and V.

B. The (3, 3)+(3, 3) Model

Chiral symmetry is obviously broken by two

physical effects: mass splittings within SU(3) mul-
tiplets and finite masses of pseudoscalar mesons.
Assuming the simplest SU(3}xSU(3) transforma-
tion properties for the chiral-symmetry-breaking
Hamiltonian density X', Eq. (19), namely that K'
belongs to the (3, 3)+(3,3) representation of SU(3)
x SU(3}, and if we require that K' conserves iso-
spin, hypercharge, and parity, the most general
form for e X ' is

Qo+CQ8 y (24)

which has been suggested by Gell-Mann, Oakes,
and Renner. " The basis of the (3, f}+(3,3} repre-
sentation is spanned by the set of scalar and
pseudoscalar operators g, and v, (a =0, . . . , 8),
respective1y. The parameter c fixes the relative
scale between SU(3} breaking (through u, ) and
SU(3}-invariant chiral symmetry breaking (through

u,}. Fitting the pseudoscalar meson masses gives

mgc=-2v2
2mg + m~

= -1.25. (26)

(N [u, [N) =40 MeV,

(N)u, )N) =1'TO MeV.
(28}

The matrix element (N ~u, )N) is not known, but
the naive guess would be that its magnitude is
similar to that of (N[u, (N). The reason for this
is that SU(3) mass splittings are always of the
same order as the masses of the pseudoscalar-

In the limit m„'-0 we have c=-W2, i.e., exact
SU(2)xSU(2) symmetry since u, —Wu, commutes
with the vector and axial-vector charges F, and
F', for a = 1, 2, 3. Thus, deviations of c from -v 2

are a direct measure of SU(2) x SU(2) breaking.
In this model the divergence of the axial-vector

current is given by"

&„A,"= -(3)'"(v 2 —~c)v, , for a =4, 6, 6, '7

(26)

from which it follows, by calculating the commu-
tator of Eq. (19),

o»»= —,'(W2 —gc)(N ~&2u, + gv3 u, —gu, [N) .
(2V)

The matrix elements of u; (i = 1, . . . , 8) between
baryons are fixed by the measured SU(3) mass
splitting s:
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i o„„i
= 100 to 200 Me V . (29)

Since we will also compare our results with
those for wN scattering, we briefly outline the
prediction of the GMOR model for this case. The
divergence of the axial-vector current for the nN

system is given by

B„A,"=—
3 (v2 +c)v, for a=1, 2, 3
1

(30)

and therefore the mN cr term takes the form

&„'„"= —', (vY+c)(Nis 2 u, +u, iN) . (31)

Using the above estimates for the expectation val-
ues of uo and u„we obtain

meson octet. This observation suggests that the

strengths of the two symmetry-violating terms are
comps, rable. Since u, breaks SU(3)xSU(3) and u,
breaks SU(3) as well as SU(3)x SU(3), we cannot
allow (N iu, iN) to be different by as much as an
order of magnitude, say, from (Niu, iN) and still
have the two symmetries broken by a comparable
amount. (There could be a possible enhancement
of (N i u, iN) with respect to (N i u, iN), if one as-
sumes" u, to be coupled to the Goldstone boson of
a further symmetry, namely scale invariance. Al-
though this is an attractive possibility, there is
no further hard experimental evidence for such a
so-called "dilaton" and for the moment we have no

a priori reason to consider such a situation. )
Therefore, one obtains the following estimate for
Eq. (27}:

i
o„'„"

i
= 10 to 20 MeV . (32)

It should be noted that the estimate of o~„, Eq.
(29), seems to be more reliable than in the case
of »N scattering, Eq. (32), where o„'„"is propor-
tional to (W2 +c), which is very sensitive to slight
variations of the negative number c.

IV. CALCULATIONS OF THE 0 TERM

We will consider two methods for calculating the
magnitude of the 0 commutator: One is a dis-
persive approach and the other one is an expan-
sion of the scattering amplitude in terms of kine-
matic invariants, in which full use is made of
Weinberg's smoothness hypothesis and where the
KN-channel discontinuities are calculated from
field theory; in this way we also can study higher-
order contributions, i.e., terms proportional to
m~', etc.

A. Dispersive Approach

For the time being we neglect higher-order
terms in chiral symmetry breaking, which means
that Eq. (23) is the correct relation between an on-
shell and an off-shell amplitude. In order to reach
the unphysical (but on-mass-shell} point v =0,
t =2m~', we will use a fixed-t dispersion relation.
From Eq. (10), using Eq. (5), we get for v =0,
$=2mg,

0 E 0 4~ g g2 V V —
V()

(33)

ReT'(v„2m»') =(8.9+3.9)m» '. (34)

where, as in Sec. II, we no longer display the
q', q" dependence of an on-shell amplitude. The
subtraction constant in Eq. (33}is given by Eq.
(16); using recently determined2'24 s- and p-wave
scattering lengths, we obtain

s-wave part of the unphysical integral [last term
in Eq. (33)] was evaluated using the K-matrix
solution of Martin and Sakitt, '~ continued below the
KN threshold. The p-wave unphysical region is
assumed to be dominated by the Y,*(1385) reso-
nance, and here the narrow-width approximation
was used:

The KN coupling constants in the Born terms of
Eq. (33) are taken to be

my*
Im(f„/k)„,*=2»a 6(v —vz),

N
(36)

gA'/4» = 5.0 a 1.9,
gr'/4» =1.0+1.5.

(35)

Using recent kaon-nucleon phase-shift analyses,
feeding the various partial waves f, , into Eq. (8),
and with the help of Eq. (7), the physical region
integral in Eq. (33) can be easily calculated. " The

with

z & ( ~ „')'-
Ck =

4m 3m&*2
mN1

The c.m. momentum at the Y,* resonance is de-
noted by k„, and the KY,*N coupling is taken to be
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aNN = 540 + 160 MeV . (39)

For calculating the subtraction constant in Eq.
(34), we have used a positive value for the real
part of the p„, K p scattering length in the isospin
I =1 channel, which is the favored solution of most
of the KN phase-shift analyses done up to now."
However, changing the sign of this scattering
length only decreases the value of a„„given in Eq.
(39); we will come back to this point later.

In spite of the extrapolation from I;=0 to t =2m~2,
Eq. (39) shows that the errors in the partial waves
are still kept within tolerable limits when extrap-
olated to the unphysical region. Because of this
rather long-range extrapolation one might argue
that our results strongly depend on the extrapola-
tion procedure used. This is, however, not the
case, as one can see from the partial. -wave de-
composition in Eq. (8}: At low energies the main
contributions are coming from s and p waves; the

syg2 and P&12 contributions are independent of the
extrapolation procedure, whereas the p3/2 term de-
pends only linearly on cos8. Another possible
enhancement in the t -channel extrapolation could
come from (KK) poles. However, we do not have
any experimental evidence" that the e(700), say,
is coupled to the gg channel, giving rise to a
significant contribution at t = 2m~2.

The two basic assumptions we have used for
estimating the o commutator are (i} the PCAC
condition [Eq. (21)] and (ii) the validity of Eq. (23),
namely that higher-order terms in chiral symme-
try breaking are negligible compaxed to first-
order terms. That (i) is compatible with experi-
ment will be shown in Sec. V, whereas higher-
order terms are also calculated in Sec. IV B and
are found to be rather unimportant.

8. Low-Energy K X Scattering, Smoothness
Hypothesis, and Higher-Order Corrections

Since we are interested in the (smooth) behavior
of the scattering amplitude in the neighborhood of
the Weinberg point v=t= q'=q" =0, we first have
to construct (as far as possible) a smoothly vary-
ing amplitude in this region. In order to do this

g„*'/4ll = 1.2 s 0.6,
which is smaller by a factor 2-3 than its SU(3)
value (gr*'/4ll=2. 4), as suggested" by high-ener-

gy photoproduction of Y,*(1385). With these input

data, we obtain" from Eq. (33)

T'(0, 2 m»P) = (18.2 + 5.5)m„',
where practically all recent kaon-nucleon phase-
shift analyses have been used. Equation (38) to-
gether with Eqs. (20) and (23} yields

(41)

where vs =(t-q' —q")/4m„, vs = vs+&„and g„'
is given by Eq. (35). The (nonsmooth) unphysical
regions in the KN channel are dominated by the
I =0 s-wave Y,*(1405) and by the I=1 P-wave
Y',*(1385). Those two contributions are assumed to
be described by effective Lagrangians where, in
the gradient coupling theory, we have for the
Yl (1405)

~r*=Zr*~r*& + 4'+H c ~ (42)

with fr* representing the spin-2 Y,* field, and g
and P are the nucleon and kaon fields, respective-
ly. This Lagrangian yields for the isospin-even
Y,* amplitude in Eq. (40) the following expression:

- "0gr,* -vs (vs' + m» + mr,*) m„+ mr*-
m» ( vgp )~ v& m» —mrs

(43)

with grd = grl'(mr+ —m„)'. The KY,"N coupling
j.s taken to be

g„*P/4» = 0.32 + 0.04 .
The KY,*N vertex is described by

(44)

grl = (gr*/m„) g„ltavg + H.c. , (45)

where g„ is the spin--,' Rarita-Schwinger field. We
have used the following form for the Y,*(J»= —*,')
propagator:

pl+ P'+ m 1„.(,&)=Pl p g„.+3 (P„r. -r„&.)

2
3m2 PpP - 3'yPy

(46)

we must subtract from T' the Born terms and the
various nonsmooth contributions of the unphysical
regions in the gN channel. Taking this into ac-
count we define

E(v, t, q', q") = ReT' —Ts —Tr* —Tr*, (40)

where for our purpose we only consider the real
parts of the amplitudes. [All quantities in Eq. (40)
are assumed, where not explicitly stated, to rep-
resent the real parts of the appropriate ampli-
tudes. ] In Eq. (40) we did not include possible t-
channel contributions since in our case, as men-
tioned above, there is no direct experimental evi-
dence for such effects.

The Born terms in Eq. (40) are given by

g,' -
vs" (vs" + m„—m, ) m» —m„-

Tg—
2m» (vs) —v m»+ m3, 2 2 +
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It is well known that the spin- —,
' propagator is not

unique. This nonuniqueness is immaterial as far
as our analysis is concerned in that any other pos-
sible choice of D'„'„' leads to a Born term which

differs from ours by a polynomial in external mo-
menta, which turns out to be entirely negligible
and would only amount to a redefinition of the
(smooth} amplitude E. The result for T„'* is

2

m m2 2
2 N 2 2 N 2 2 2m

+v (m+m„)v + v + (v +ve) + g v v —v» +vs —m» —m
2m 2m2 2m mN

(47}

where m denotes the F,* mass and g~~' is given
by Eq. (37).

Besides those two Am and Zw discontinuities be-
low the physical KN threshold, there are two ad-
ditional three-particle channels open: the Awm

and Znw just below and above threshold, respec-
tively. However, close to threshold such final
states are experimentally strongly suppressed and
the measured branching ratios for those decays
are small compared to the two-particle final
states. " It is therefore reasonable to assume that
such small three-body final-state contributions
(if they are important at all) are included and well
accounted for in our amplitude F defined in Eq.
(40). Thus, the amplitude E is expected to be a
smooth function in all its arguments. Finally, the
amplitudes in Eqs. (41), (43), and (47) vanish at
the Weinberg point and fulfill Adler's PCAC con-
dition, Eq. (21), as a natural consequence of the
gradient coupling theory.

Following Weinberg's original suggestion" for
low-energy nÃ scattering, which has been recent-
ly applied by Altarelli, Cabibbo, and Maiani' in
connection with the study of the wN o commutator,
and taking into account the symmetry properties
of F, we can write:

F(v, t, q, q' ) = Am» +Bt+C(q'+ q' )

+D +vR(v, t, q, q' ), (48)

where R measures the deviations of F from linear-
ity and, of course, it has to vanish together with
its first derivatives at the Weinbe~g point. These
deviations can occur due to the presence of nearby
singularities in each of the variables v, t, q', and
q". It will turn out that the only non-negligible
contribution in thegN channel comes from the
A'(1520) which lies closest to physical threshold.
In the t channel, a possible contribution could
come from the e(700). However, as we have point-
ed out previously, no experimental evidence" ex-
ists for a coupling of the e(700), if it exists at all,
to the (Kg) channel giving a significant contribu-

1 mg
2B+ D +CA,

4w mN

1 mrf Bg
+ —. , (m», 0, m»', m»')

47/ mN ~ v

where

+ + +C, = —(T» ~ + Tr,*,i + Tr,*.l ) ~

with T,', = ST/ 8(k'c os8} ~p„, e „and

X= 18, (2a, +b, +b,}
1

mN

+ 4(2Q~~ + bo~ + b~~)

3 mg
+ + (2Q~S +bo~ +b~~)

mN

(50)

(51)

The KN and KV s-wave scattering lengths for a
definite isospin channel are given by a~ and AI
= b, + i cr, respectively, whereas the P -wave scat-
tering lengths are denoted by a, » and A»~

tion in the region between t = 0 and 2m~'. Even in
the case where the»(700) was important, its con-
tribution could well be included in the linear part
of Eq. (48), since it is supposed to be a, very
broad, backgroundlike "resonance. " It is difficul".
to say anything reliable about possible enhance-
ments in the q and q'2 channels, but compared to
the rather dominant effects of the A'(1520), they
should not be of substantial importance.

The next step is to find four equations (consis-
tency conditions) for the four low-energy expan-
sion parameters A, 8, C, and D. If we expand F
in powers of 0' and cos8 around the physical
threshold and compare the coefficients of k2cos 6,
we obtain a relation between the low-energy pa-
rameters and a linear combination of kaon-nu-
cleon s- and p-wave scattering lengths:
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=0
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and at physical threshold,

E(m», 0, m»2, m»2) = m„(A + 2C + D)

(52)

+R(m», 0, m»', m»') . (53}

=b, ,~+i c~,~, respectively. The constant C, can
be easily calculated using Eqs. (41), (43), and (47)
which yields C, =(-0.95+0.23}m» '. Even if the
effects of nearby singularities are neglected
(R =—0), the sum rule in Eq. (49) is nearly satu-
rated. "

In addition to Eq. (49) we need three further
equations for determining the low-energy parame-
ters of I. These can be found from the knowledge
of I' at the following points: Adler's consistency
condition (PCAC),

F(0, m»', m»~, 0) = m»'(A +B+C)+R(0, m»', m», 0)

The left-hand side of Eq. (53} can be calculated
using Eqs. (41}, (43}, and (47), in addition to

Re T'(m», 0, m»', m»') = » 1+ (2a, + b, + b,),
mN

(54)

which follows from Eq. (13) with the appropriate
isospin decomposition. Finally at v= t =0 we have

E(0, 0, m»', m»') = m»'(A +2C)

+ R(0, 0, m», m»2) . (55)

Again, it is straightforward to calculate E(0, 0)
once we know T'(0, 0), where we no longer display
the q', q" dependence of an on-mass-shell ampli-
tude. This quantity appears as a subtraction con-
stant in a subtracted forward dispersion relation
at threshold; from Eq. (10) we get, for v= m»,
t=0,

ReT'(m», 0) = T'(0, 0)+m»' Q 4
", ', , +I',g„' (m, —m„}'—m»'

4mN (dy (g)y mr(.

with

(56)

I = P d+, , 2 + P u(gp (57}

where

v, = b „—m» /2 m», k~ = &u
' —m»*,

and

u = [(mA+ m, )' —m„2 —m»'] /2m»,

and the total K'N cross sections are given by the optical theorem: ImT, (w, 0) =k~o, . Using the results
of Perrin and Woolcock" for the forward dispersion integrals,

I ' = (-25.7 + 3.2) m» ',
and for Eq. (54) taking the recenti'24 s-wave scattering lengths, Eq. (56) yields

T'(0, 0) =(-34.9+4.6)m» '.
Solving Eqs. (49), (52), (53), and (55) with respect to A, B, C, and D, one obtains

mg mg-m»'A = 1+ E(0, 0) — E(m», 0)+4»m»'(X —C, ) +R~,
N mN

m» B=
& ]4»m» (X —C,) — [F(m», 0) —F(0, 0)] +R (0, 0) —2R (0, m», m», 0) +R ~

N

(58)

(59)

(60)

(61)

m~ C= 1+ +0'0
2

I m~0 +2@m@ X —C —pR 00 +pRg,

m»'D = F(m», 0}—F(0, 0) + R (0, 0) —R (m», 0),
where R ~ is defined by

(62}

(63)

R(m», 0) — 1+ R(0, 0)+2R(0, m», m», 0)
mN mN

m 3
BR p g p~R 2 2

m& v 2 (m», 0, m», m» ) —2m» —(m», 0, m„, m» ) .
ag (64)
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The amplitude F in Eq. (48) is now completely determined provided we can calculate R. As discussed
above the only important contributions are expected to come fromgN channel resonances. In this case we
found that the only non-negligible contribution is due to the A'(1520). Its pole term can be calculated using
the effective Lagrangian

2, = (g, /m„) g„y,Q"P+ H.c. (65)

Therefore, the propagator of this 4 = —,
' resonance can easily be related to that of the —,

"resonance in
Eq. (46):

D&'„(m, P) = y~D„P (m, P)y,
=D„"„' (-m, P), (66)

where the standard commutation relations for the y matrices have been used. The A'(1520) contribution
can now be obtained from Eq. (47) by making the substitution m- -m and, in order to obtain R, we have to
subtract from this expression its linear expansion around the Weinberg point, with the final result

(g~/m } 1 m», ~, 1 M, 1 2,2 m», v

(,'}2-,2 4M
'

M q ' "'"'
2

'
4Mm qq

2m„mz 2 m„m„
M+ m~ 2M 2M M

m» — 2m» q, 2M (M- m»)~, .'.'- - ' ["-(;"')']~; — „+M} I,2M M+ m„m»(M+ m»

(67)

where M denotes the A'(1520) mass. With a par-
tial width for the A'(1520) of 1"~, »»=7.2+1.1
MeV, we have" g~ 2/4» =0.55 +0.1 and find for Rz,
of Eq. (64) a value of: R~ =(-0.2+0.03)m» '.
Using the recent determinations"'~ of s- and P-
wave scattering lengths to evaluate X in Eq. (51),
we finally find for the low-energy parameters in
Eqs. (60}, (61), and (62)

-A =(16.4+3.7)m» ~,

B=(9.3+1.4)m» ',
C =(7.1+2.3)m» '.

(60a)

(61a)

(62a)

Equation (63), which does not depend on scatter-
ing lengths, yields

D = (53.1 + 3.0)m» '. (63a)

CalculatingA, B, and C, we have used a positive
value for b», the favored solution of most of the
EN phase shift analyses done up to now. "

The low-energy theorem, Eq. (20), together with
Eq. (48) tells us that the o term is directly related
to the coefficient A:

a'NN =-EK mK A,KK 2 2 (68)

which, by Eq. (60), relates the nucleon expecta-
tion value of the a commutator to s- and p-wave
scattering lengths and to a rather well-known inte-
gral over total K'N cross sections, where we have
made full use of the smoothness hypothesis for F.
Equation (68) together with Eq. (60a) gives us

a „=480~110MeV. (69)

with

F(0, 0, 0, 0)-= F(0, 2m», m», m» )+A, (70)

Although the present method is entirely indepen-
dent of the dispersive approach" of Sec. IVA, the
above result agrees very well with the one of Eq.
(39). However, like in the dispersive approach,
it is very hard to make a reliable estimate of the
lower limit in Eq. (69}due to, as mentioned earli-
er, the possibility ' of a negative solution for b»,
in this case, Eq. (69) would read: a»=480",,",
MeV. A negative result is at least not favored by
our analysis and we regard a negative a„„asun-
likely in this context. In this respect much work
remains to be done, in that, especially for the p-
wave scattering lengths, we are far from having
universally accepted values.

In closing this section, we want to comment on
the importance of higher-order corrections to
chiral symmetry breaking. Comparing Eq. (69}
with the calculation of Ref. 18, where we did not
consider any nonsmooth contributions from nearby
singularities, we find that higher-order correc-
tions due to the A'(1520) are less than 5%. Simi-
larly, the higher-order corrections to Eq. (23),
which is frequently used for dispersive approach-
es, turn out to be negligibly small. According to
Eq. (23), taking into account the R term of Eq.
(48), we obtain
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C. Discussion

On the basis of hvo entirely different approach-
es, we found a remarkable agreement of the two

results, Eqs. (39) and (69), for the magnitude of
the a commutator. These results compare very
well with the one obtained by Kopp, Walsh, and
Zerwas'" using off-mass-shell finite-energy sum
rules. Within the quoted uncertainties, these es-
timates are compatible with Eq. (29), which one
expects from a (conventional) (3, 3)+(3, 3) breaking
of chiral symmetry. Using Eq (69) .together with

Eqs. (27) and (28), we can estimate the nucleon
expectation value of u„

(N [u, [N) = 540+150 MeV,

and find no significant enhancement with respect
to (N [u, ~N). A strong enhancement comes about
if one assumes~ uo to be coupled to the Goldstone
boson of a further symmetry, namely scale in-
variance: In this case we expect (N ) u, [N) =1500
MeV, in clear contradiction to Eq. (71).

Using the QMOR model, Sec. IGB, we can pre-
dict the o term for»N scattering: Equation (71)
together with (28) and (31) yields

a„"~=50+15MeV. (72}

Although this result is definitely in serious dis-
agreement with o»„=110 MeV (which. implies
(N [ u, ~N} = 1350 MeV) found by Cheng and Dashen, '
it is in excellent agreement with most of the re-
cent calculations ' ' for the wN system and is
not incompatible with the (3, 3) value in Eq. (32).
Therefore, our results together with most of the
»N calculations are in favor of the (3, 3)+(3, 3)
chiral-symmetry-breaking model, where SU(2)
x SU(2) is supposed to be a much better symmetry
than SU(3}, which suggests the following breaking
chain:

SU(3) x SU(3) —SU(2) x SU(2) —SU(2),

contrary to the symmetry pattern

(73)

a = 2 II (0, m»', m»', 0) —R (0, 2 m»', m»', m»') .
Corrections to Eq. (23} turn out to be rather small:
& =10 'm~ '. It therefore appears that the non-
smooth contribution due to the A'(1520) is such
that it does not appreciably modify the low ene-rgy

theorem if the amplitude is approximated by Eq.
(23); higher-order terms (proportional to m»')
might be neglected and still obtain reliable re-
sults, in spite of the rather large kaon mass com-
pared to m, . In the case of mN scattering, one
might expect such a result a Priori, because of the
exceedingly small factor m, 4, and it has been ex-
plicitly shown by several authors. ""

SU(3) x SU(3) -SU(3) —SU(2)

suggested by the so-called weak pole dominance"
and (possibly) required by a strongly enhanced

(N [ uo [N) as the Cheng-Dashen' result indicates,
provided no ad hoe "dilaton" of conformal invari-
ance is assumed" to exist.

The relation between broken scale invariance and

broken chiral symmetry is also intimately con-
nected to (N[u, ~N). Some of these questions have

been recently discussed by Renner. '4 Without
going into details, such relatively small values of
(N ) u, (N), as in Eq. (71) for example, indicate
that the possibility of a c-number scale breaking,
but SU(3) xSU(3) conserving part of the hadronic
energy density should be ruled out, provided one
does not assume" an (ad hoc) scalar meson which
dominates matrix elements of the trace of the
energy-momentum tensor. In addition, Eq. (71)
suggests the dimension d of u, +cu, to be d&3,
and certainly rules out d =3 as obtained" by using
the result of Ref. 9. However, within the frame-
work of Ref. 15, the uniqueness of the dimension
of the chiral-symmetry-breaking Hamiltonian is a
delicate problem. '4

Although our results favor, in agreement with
several other recent calculations, '" "'4 "with-
in quoted uncertainties the (3, 3) + (3, 3) scheme for
chiral symmetry breaking, they all yield values
somewhat larger than the theoretical estimates of
the GMOR model. Since all those entirely indepen-
dent calculations produce slightly enhanced results
(by about a factor of 2) with respect to the con-
ventional (3, 3)+(3,3) estimates, it appears to us
that this could be something more than just an ac-
cidental coincidence; especially if such slightly
larger a terms are unambiguously confirmed by
more accurate future experiments (unique values
for the various scattering lengths in KN as well as
»N scattering). This, however, could mean that
further admixtures in the symmetry-breaking
Hamiltonian are required in addition to the (3, 3)
+(3, 3) transforming part. An interesting attempt
in this direction has been made by Sirlin and
Weinstein" by studying a Hamiltonian belonging to
a (3, 3) +(8, 3)+(8, 8) representation of SU(3) xSU(3).
In the limit where SU(2}xSU(2) is nearly exact,
and without requiring a large value for (N ~ u, )N),
they obtain an order of magnitude estimate for
a„'„" in the neighborhood of 50 MeV.

A similar conclusion has been reached by Ren-
ner, "who estimated the meson-nucleon sigma
terms based on the Li-Pagels" mechanism of cal-
culating (3, 3) + (3, 3) chiral symmetry breaking.
In this model the octet enhancement is achieved by
the threshold dominance of Goldstone-boson-pair
states and one obtains" a~„=400 MeV. However,
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V. TEST OF KAON PCAC

It remains to be answered if the PCAC condition
for kaons, Eq. (21), is indeed compatible with ex-
periment. Confining ourselves to K'N scattering,
PCAC imposes" a nontrivial consistency condi-
tion on the A, amplitude [defined in Eq. (5)]

A, (O, m, ', m, ', O}=O, (V5)

this close agreement with the above results could
be accidental, since various uncertainties are con-
tained in the estimate of Ref. 37, especially in
evaluating dispersion relations for the form fac-
tors of the scalar operators u, .

which, contrary to mN scattering, is a null condi-
tion. Some time ago, on the basis of rather in-
complete experimental information, Martin" cal-
culated the on-shell amplitude A. ,(0, 2m»') to be
about -14.4m„'. Giving convincing arguments,
he therefore concluded that the off-shell condition
in Eq. (V5) is in violent disagreement with experi-
ment.

In this section we are going to recalculate the
on-shell amplitude A, using most recent results
of practically all existing kaon-nucleon phase-shift
analyses as input for a subtracted fixed-t disper-
sion relation. Similar to Eq. (10), the subtracted
dispersion relation at v =0, t =2m~' for A, reads

p, g„2(m„—m„}
A, (0, 2m» }=A, (v0, 2m»2)—+yj+OE2g I +g

v, " ImA, (v', 2m»') v, " ImA (v', 2m»') v, "o ImA (v', 2m»')

(76}

where ImA, (v', 2m»') is given by the decomposi-
tion of Eqs. (7) and (8). Analogously to Eq. (16),
the subtraction constant can be written, by keep-
ing s- and p-waves, as

A, (vo, 2m»') = (2m„+ m»)(a, +3m» a»)
BIN

—8»m» m»(a, ~
—a,s), (77)

where the p-wave scattering lengths are especial-
ly important, since they give a large contribution.
With the recently determined"' scattering lengths
we obtain A, (v„2m»') = (7.0+ 1.6)m„'. Using the
same sets of phase-shift analyses as in Ref. 16 for
calculating the dispersion integrals in Eq. (V6),
and for the p-wave unphysical region assuming
Eq. (36), we obtain an average value of

A, (0, 2m»'} =(-3.4+ 1.1)m, ', (78)

compared to -14.4m ' obtained by Martin. '
This large difference in the two results is due to
the fact that in Ref. 19 only the s-wave scattering
length has been taken into account for calculating
the subtraction constant A, (v„2m»'), and further-
more, only s waves were used in order to calcu-
late the integrals in Eq. (76), which have been
truncated at rather low energies.

Up to this point we have been dealing with the on-
shell amplitude. Unfortunately, in the present
case, a simple reliable procedure for off-mass-
shell extrapolations is not readily available and
any attempt would yield rather (unrealistic)
strongly model-dependent results. Previously,

using a simple model, off-shell effects were ex-
plicitly calculated for pion-baryon scattering by
several authors" and also for the strangeness-
changing hyperon decays4' requiring an extrap-
olation to zero kaon mass. Since these off-mass-
shell effects turned out to be rather small, they
could very well account for corrections to
A, (0, 2m»') in order to make Eq. (78) more con-
sistent with (75), without changing our on-shell
result in Eq. (78) drastically. [Note that the error
estimate in Eq. (78) constitutes a purely statisti-
cal one not including any systematic errors. ] In
addition, the PCAC hypothesis for kaons receives
further support by the fact that rather recent esti-
mates2 ' of the kaon Yukawa-coupling constants
and of the semileptonic hyperon decay constants
are compatible with generalized Goldberger-
Treiman relations. 20

VI. CONCLUSIONS

In studying chiral-symmetry-breaking effects
we derived for low-energy kaon-nucleon scattering
a relation between low-energy parameters of the
scattering amplitude and s- and p-wave scattering
lengths, taking into account nonlinear, higher-
order effects due to singularities near threshold
in the gN channel. Contributions from the un-
physical KN regions and from resonances lying
close to threshold are calculated using gradient-
coupling effective Lagrangians. This sum rule
based on scattering lengths turns out to be nearly
saturated, using recently calculated low-energy
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parameters and experimentally measured scatter-
ing lengths.

Considering the sum rule as an independent
equation in addition to the PCAC consistency con-
dition and equations obtained at various energy
points of the isospin-even amp1. itude, we expressed
the nucleon expectation value of the 0 commutator
in terms of s- and p-wave scattering lengths and
a rather well-known integral over total g'X cross
sections, by making full use of steinberg's
smoothness hypothesis. Higher-order correc-
tions, calculated from field theory, due to the
A'(1520) turn out to be rather small, contributing
about 5%. The result obtained for the magnitude of
the kaon-nucleon o term is in agreement with most
of the calculations (mainly for the vN system)
done up to now and favors the (3, 3) +(3, 3) scheme
for chiral SU(3) x SU(3) breaking, giving support
to the notion that chiral SU(2) x SU(2) is in fact a
better symmetry than SU(3). In addition, we pre-
sent an entirely different approach to calculate the
o term, by using subtracted fixed-t dispersion re-
lations and working to first order in chiral sym-
metry breaking, and find essentially the same re-
sult. However, all these results are definitely not
compatible with the rather large value for
(N I &0 IN) obtained by Cheng and Dashen' studying
nN scattering.

On rather general grounds, nonsmooth (nonlin-
ear) contributions to the crossing-even amplitude
between the %'einberg point and threshold are ex-
pected to come mainly from the presence of the
A'(1520) resonance close to threshold. On this
basis we found that nonlinear corrections due to
the A'(1520) are such that they do not appreciably
modify first-order expansions in kaon moments
squared of the off-shell scattering amplitude, an

approximation frequently used in dispersive calcu-
lations of low-energy amplitudes (o terms). It
therefore appears that even for the kaon-nucleon
system first-order calculations in chiral symme-
try breaking (i.e., neglecting terms proportional
to mr') are accurate enough to yield reliable re-
sults.

Furthermore, the PCAC hypothesis for kaons
(a basic assumption in the present approach) has
been directly compared with experiment. Contrary
to previous calculations, its compatibility with the
data is very encouraging, as suggested by general-
ized Goldberger- Treiman relations.

Although, in agreement with several recent de-
terminations of (N ~u, ~N), the (3, 3)+(3, 3) chiral-
symmetry-breaking scheme is favored, it ap-
pears to be more than accidental that the magni-
tudes of the various 0 terms obtained are slightly
larger (by about a factor of 2) than the convention-
al (3, 3) estimates. This indicates that presum-
ably either further admixtures in the symmetry-
breaking Hamiltonian are required in addition to
the (3, 3)+(3,3) transforming part, or other mech-
anisms, which generate, for example, octet en-
hancements, are necessary in order to calculate
symmetry-breaking effects. Recent estimates
using a Hamiltonian belonging to a (3, 3) +(3, 3)
+ (8, 8) representation of SU(3) xSU(3) or using the
Li-Pagels mechanism for calculating symmetry-
breaking effects have confirmed these enhanced
o terms with respect to the conventional (3, 3)
+(3, 3) values.
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An exact expression for the lepton-pair mass spectrum for an a' two-photon process in lepton-lepton,

lepton-hadron, and hadron-hadron scattering processes is derived. This result is applied to muon pair
production in proton-proton scattering to show that such a process is an important background to the

n one-photon process in certain energy ranges and can become physically significant by itself at very

high energies. The general physical significance of such a two-photon process in hadron-hadron

scattering is discussed, and comparison of our exact expression with some approximation schemes is

made. The main differences between this work and earlier papers on the subject are that (1) exact
calculations are given and (2) the inelastic contributions are included.

I. INTRODUCTION

Recently, lepton pair production in high-energy
collisions has been the subject of various studies.
The reactions under consideration are of the type

a, (p, ) +an(p~) —l(l,) + i (l~) +X, (1.1)

where a, are the incident particles with momenta
p, , l and I, are the produced lepton pair with mo-

menta l, and total invariant mass squared Q'

=(l, + l,)', and X may be either a definite exclusive
state or anything inclusive. This type of reaction
is important in studying the electromagnetic struc-
ture of hadrons and the purely electromagnetic in-
teraction at high energies.

There are two important mechanisms contribut-
ing to the reactions (1.1), namely, the o' one-
photon process and the z4 two-photon process.


