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The effects of the breaking of an internal symmetry on the singularities of the scattering matrix,

especially near thresholds, is discussed in terms of the K-matrix formalism. It is shown that, in first

order in the symmetry-breaking coupling constant, the K matrix transforms like the symmetry-breaking

Hamiltonian. This result provides a justification for the Gell-Mann-Okubo mass formula for narrow

resonances with nonzero orbital angular momentum. The position of poles in different sheets of the

energy Riemann surface and their displacement with the symmetry-breaking parameter is investigated in

detail, particularly for s waves. The specific case of baryon-baryon scattering in the triplet s-d states

is discussed using a potential model with broken SU, symmetry. On the basis of information from

low-energy n p scattering and Ap final-state interaction we suggest that a resonance probably exists in

the I = 1, "N system, below the XA threshold. The Gell-Mann —Okubo mass formula would have

placed the resonance close to the XX threshold.

INTRODUCTION

An analysis of the effects of a symmetry-break-
ing interaction on bound-state poles and resonances
in multichannel amplitudes was carried out by
Yang and Oakes. ' They investigated the splitting
and displacement relative to thresholds of these
singularities as the symmetry-breaking parameter
A, is gradually turned on. Their analysis cast doubt
on the validity or, more precisely, on the theoret-
ical foundation of the Gell-Mann-Okubo mass for-
mula. The basic objection is as follows. Let us
assume that in the exact symmetry limit the scat-
tering amplitude for transitions in a given partial
wave and irreducible representation of the sym-

metry group has a bound-state pole (or an anti-
bound state). Now, in order for such a pole to
change sheet or to become a resonance as the sym-
metry-breaking interaction is gradually turned on,
it has either to cross a threshold or meet with an-
other pole (a shadow pole) or both. In each case the
position of the pole as a function of A. has a branch
point at the value of A. for which this occurs. There-
fore, the linear approximation which is the basis
for the Gell-Mann-Okubo mass formula is unwar-
ranted. Moreover, they pointed out that for some
range of values of the symmetry-breaking param-
eter, a resonance pole might move into a Riemann
sheet far removed from the physical one. If this
should occur for the actual strength of the inter-
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action, the effect of the pole on the physical scat-
tering amplitude would not be easily observable.
As a result, some members of a multiplet of poles
would appear to be missing. This work aroused a
great deal of interest, prompting several authors
to discussion of the problem. ' ' Owing to centri-
fugal-barrier effects, there is an essential differ-
ence between the singularity structure associated
with resonance in s waves and in higher partial
waves, particularly near thresholds.

The discussion of Yang and Oakes, ' although ad-
dressed to the meson-baryon resonances in a p
wave, is actually more pertinent to s waves. Eden
and Taylor' described in detail an s-wave model
in which a number of poles appear close together,
but in different sheets of the scattering amplitude.
Then it might occur that, as the strength of the
coupling constant is varied, one pole always would
be on a sheet adjacent to the physical sheet, pro-
ducing a resonance. However, for this to happen,
one would need a certain condition on the coupling
constants of the model. As they pointed out, if that
condition is not satisfied, the preceding result
does not obtain. In addition, in the symmetry limit
this model would actually have two dynamical poles
close to the physical region. A similar model was
discussed by Nauenberg and Nearing. '

Ross' called attention to the difference in the
structure of resonances in s waves and in higher
partial waves, but only the latter case was dis-
cussed in detail. The main point is that for p and
higher waves, resonance poles near a threshold
always occur in pairs in sheets that are adjacent
to the physical sheet on the left-hand and the right-
hand side of that threshold. Then as one varies
the symmetry-breaking parameter, there is always
a pole adjacent to the physical region. The reso-
nance pole does not change sheet as it moves past
a threshold, but is replaced by its pair on another
sheet. This is not generally the case for s-wave
resonance poles.

In this paper we shall discuss the displacement
of poles in multi-channel scattering amplitudes as
a function of an internal-symmetry-breaking cou-
pling constant A, . In Sec. I a general discussion of
the problem is given based onthe K-matrix for-
malism. A theorem is proved stating in what inter-
vals of the real axis between two consecutive two-
yarticle branch points a pole is allowed to cross
from one sheet to another. If follows from two-
particle unitarity generalized to unphysical sheets.
In Sec. II the displacement of poles for partial
waves with angular momentum E~ I is reviewed.
We supplement the analysis of Hoss' by showing
that at x =0, 8K/BAtransform, s under the symmetry
group as matrix elements of the symmetry-break-
ing Hamiltonian. In the narrow-resonance limit

the real part of the position of a resonance pole is
given by the zeros of detK. To first order in A. it
will obey a Gell-Mann-Okubo mass formula. Here
however, there is, in principle, no objection to
the linear approximation, at least in so far as pro-
duction thresholds may be neglected. In Sec. III
we discuss the particular case of s waves. It is
shown that the location of shadow poles in the
sheets of the energy Riemann surface depend qual-
itatively on the Clebsch-Gordan coefficients for
the decomposition of the product of the represen-
tations of the scattering particles, into irreducible
representations of the symmetry group. This is
essentially a kinematical threshold effect. As the
symmetry is broken the poles are displaced and

may move into different sheets. The displacement
of the poles also depends on the amplitudes for
transitions in states belonging to representations
that, through symmetry breaking, can couple to
that to which the pole belongs. This happens even
if dynamical representation mixing, as given by
the nondiagonal matrix elements of the K matrix,
is neglected. It results from kinematical repre-
sentation mixing. An application of this discussion
to low-energy baryon-baryon scattering in the
triplet s and d states is carried out in Sec. IV.
There we use dynamical parameters taken from a
broken-SU, model of baryon-baryon scattering
whose details will appear in a separate publica-
tion. ' A summary of results and conclusions is
presented in Sec. V.

I. THE L-MATRIX FORMALISM

Let us consider a two-body transition in a defi-
nite state of total angular momentum J and energy
square s. We denote by a a set of conserved in-
ternal quantum numbers, such as isospin and
bypercharge, specifying a state of a pair b of had-
rons and by l the orbital angular momentum. We
shall refer to this specification of the states as the
particle basis. The matrix element for a transi-
tion (b, l )- (b', l') of states with quantum numbers
(n, J) will be denoted by T(s; J, n), , ». The K
matrix will be defined by

t I

k~
' T (s J o!)q, » k~' ~K(s J n)Q g»

~ 2t+1
&~a&~ r

where k, is the center-of-mass momentum of the
pair b, given by

k, ' = —[s—(m, + m, )'] [s —(m, —m, )'], (l.2)

and m„m, are the masses of the particles in the
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pair b.
The elements of the K matrix have the same sin-

gularities in s as those of the elements of the T
matrix except for the two-particle unitarity branch
points. In addition the K matrix will have poles at
the positions of zeros of detT. We shall assume
invariance under time reversal which implies that
the K matrix is symmetric. We also assume an

underlying internal symmetry which is broken by
an interaction whose strength is given by a param-
eter ~. In the limit of exact symmetry, i.e., for
A. =0, baryons and mesons belong to irreducible
representations of the symmetry group (e.g. , oc-
tets in SU,). We shall also use the basis of ir-
reducible representations B, of the symmetry
group, which is related to the particle basis in the
following way:

Is; J, a;B, I) = g Can(a)ls; J, a; k, l) .
b

(1.3)

The C»(cy)'s are Clebsch-Gordan coefficients for
the decomposition of products of representations
of the symmetry group. They form an orthogonal
matrix. For A, =0 the T and K matrices are diago-
nal in the B basis, if each irreducible representa-
tion of the symmetry group appears only once in
the decomposition of the states b, or block diago-
nal if they appear more than once (such as, for
instance, in the decomposition of two octets, where
the octet representation appears twice). At X =0
all the k's are identical. As the symmetry is
broken, the masses and thresholds split and for a
given s the k's will be different. The k matrix,
which is diagonal in the particle basis, will take
on, in the B basis, the form

ks B —Q CB'a(Q)Cab (a)ky
b

(1.4)

We shall consider the Riemann sheets that are
reached from the physical sheet by crossing the
two-channel unitarity cuts in arbitrary order.
They are characterized by the set (e,) of signs of
Imk, in the complex s plane or, in a given k,-Rie-
mann surface, by the set of signs {q,.j of Imk,
relative to the sign of Imkb. If the number of two-
body channels is n, the number of sheets so defined
is 2" in the s-Riemann surface and 2" ' in a k, -
Riemann surface. The physical sheet is defined by
the condition Imkb~0 for all b. The poles of the
T matrix are given by the roots of the equation

a =det(KQ
g M k~"i+'5, , 6g g)

(1.5)

In the physical sheet of the variable s, the require-
ment of causality precludes the existence of poles,
except along the real axis below the lowest thresh-
old. In addition, unitarity places restrictions on

the location of poles in other sheets, on the real
axis above threshold .In fact unitarity in an arbi-
trary sheet gives

T- T =2iT k8T,

where 8 is a diagonal matrix given by

8b'b 55'be(s —sb) ~

(1.6)

where s, is the energy at the threshold b. If there
is a pole of T on the real axis at s=so sb&sp&sb
then (1.6) gives

R k08R=O, (1.8)

6 = ao+ a,k~'+ ~ ~ —ik~""(a +a01,'k~'+ ),
(1.10)

where the coefficients are in general complex, and
l is the lowest value of the orbital angular momen-
tum. If l ~ 1, the roots of 6 =0 near the threshold
k will be approximately given by k, =s(-a,/a, )'~',
that is, there are, in general, two nearly symmet-
ric roots on some sheet of the k, plane. In the s
plane these roots are reached from one another by
going around the branch point at s,. If one root is
on the sheet adjacent to the physical sheet below
s„ the other is on the sheet adjacent to the physi-
cal sheet above s,. If b is the lowest threshold,
the coefficients in (1.10) are real; then for a/a,
negative, the poles will be on the same sheet (the
second sheet) corresponding to a resonance just
above threshold, whereas for a,/a, positive, the
poles will be on the real axis of the s plane, below
threshold, one on the physical sheet being a bound

where R is the matrix of the residues of the T ma-
trix. If in this sheet all the k, 's have the same
sign for k' cb, then (1.8) can be written as

(k ~~2eft)t(k ~i2gft) =0 (1.8)

which implies 8R =0. Hence, we have the following
result:

~co~em l. A pole of the T matrix between
thresholds 5 and (k+ 1), in a sheet such that the
signs ~b are the same for all b' «b, decouples
from the open channels. (The thresholds are la-
beled in ascending order from left to right. )

Such a situation cannot generally happen and
should be regarded as anomalous. Barring this,
it follows from the above theorem, that there can-
not be a real pole between the first and second
threshold in any sheet.

Suppose now that there is a pole of the T matrix
very near a threshold b. By this we mean that the
distance of the pole to this threshold is much
smaller than the distance to any other threshold.
Then near the pole we can expand ~ in power se-
ries of kb. The expansion will be of the form
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state, the other on the second sheet being an anti-
bound state.

In the case of s waves, 1=0, this situation does
not generally occur; one might have just one pole
a't 'lky —ap/ao .

a~b amp
aA, am~ aA, &m2 aA,

(2.5)

where all the derivatives are taken at the symme-
try point s = s„A.= 0. Now

II. DISPLACEMENT OF POLES WITH THE
SYMMETRY-BREAKING PARAMETER

where m, and m, are the masses of the two par-
ticles in the pair b. Then in (2.4) we have

Let us study the poles of the T matrix as func-
tions of the parameter A. . Let us assume that for
~=0 there is a pole just below threshold in the ir-
reducible amplitudes B. For l ~ I the pole occurs
in both the physical and second sheets. For l =0
there may just be either a bound state o~ an anti-
bound state. As the symmetry-breaking interac-
tion is turned on, the thresholds split and a mani-
fold of new sheets is coupled to the physical sheet.
It is clear that, for L ~ 1, a pair of poles similarly
located appear in all the sheets of the k plane. For
I =0, if la,a, l«a," in (1.10), there will be only
one pole in every sheet of the k plane whose posi-
tion is given by

aik=~ Q C,,(a)'q,
ao

(2.1)

If for some (li,) we have Q,cs,,(a)'lb= 0, then on
that sheet there will be a pair of poles symmetri-
cally disposed with respect to the origin.

As A, varies, the poles may approach the lowest
threshold. The case l =0 will be discussed in de-
tail in Sec. III. In the case l ~ 1 the poles will meet
at threshoM and then move along the branch line
in the second sheet, becoming a resonance. As
they move past a threshold there will always be a
pole on the sheet adjacent to the physical sheet as
described before and in Ref. 4. To first order in
X the position of the pole is given by

ak "" ak '+'
e, , ~',' Os=, as, (2.6)

a @ am, ak' am2
am, aA. am, ay

(2.7)

&&Olsml/~zlB ) =pc &b' leml/sxlb& c...
=pc,„2&blsm, /»Ib) (2.3)

The matrix element on the left-hand side trans-
forms like matrix elements of the symmetry-
breaking Hamiltonian. Taking this into account it
follows that the last term on the left-hand side of
(2.4) also transforms in the same way, and there-
fore so does

Let us consider a basis (lb)) for a (reducible) rep-
resentation of the internal-symmetry group which
is the direct product of the irreducible vector
spaces of particles 1 and 2, l b) =

l l)l 2). In this
basis em, /BX is a diagonal operator, transforming
under the symmetry group as the symmetry-break-
ing Hamiltonian. Therefore we have

+sol';sol lb!'l zcsol(a) kb
b

(2.2)

aKgo

s=s;) =oPl

To simplify the analysis let us assume now that
the orbital angular momentum is also a constant
of motion. Then (2.2) becomes

(2.3)

aKa g aKa g' Os+as ag
2&+ & ay 2&+ &

—i+Cs, (a)' ' os+ ' z =0as ax
(2 4)

Ks, l (s, X) —i+Cs,,(a)'k,""=0.
Let s, be the solution of this equation. Then the
displacement of the pole for sufficiently small val-
ues of A. will be, to first order in A., given by

aT =x'
~=o

(2.9)

where the derivative is taken with fixed external
momenta. Then the total derivative with respect
to X of the two-particle amplitude T, » at fixed
center-of-mass energy and scattering angle, is
given by

This result can be generalized to arbitrary ener-
gies (within the two-particle approximation). In
fact, if A. X' is the symmetry-breaking Hamiltonian
density, including all the counterterms for mass
and coupling-constant renormalization to first or-
der in A. , then we have
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87 Bm Bm 8T
+

j=1 2 ~m' ~~ ~~ emj b'b

where m, and m,' refer to the masses of the par-
ticles in the initial and final states b and b, re-
spectively N. ow, at X = 0, B T/Bm, and B T/Bm1 are
invariant under the symmetry group and, as has
been observed, the diagonal matrices (Bm, /BZ)»
and (Bm,'/BA), , transform as matrix elements of
K' in the product space of one-particle states.
Therefore we can write

the symmetry is broken. The k, plane has two
sheets I and II defined according to whether Imky
and Imk, have the same or opposite signs. In the
symmetry limit we have k, =M, and the two sheets
disconnect from each other, In the s plane there
will be four sheets defined by the signs of Imk,
and Imk, as follows: S, =(+, +), S, =(-, -), S,
=(+, -), S,=(-, +). S, and S, in the s plane corre-
spond to the upper and lower half of sheet I in the
k, plane, S, and S4 to the upper and lower half of
sheet II. Let B=1 be the representation which
has a pole in the symmetry limit. In the basis of
irreducible representations of the symmetry group
the position of the pole in sheet I is given by

dTg g ~ ~ ~+ ~mj
gl ~ + +

dX j=i,a ~m ~" ~~ ~mj a'a

(2.10)

Kx, —ik=0 .
In sheet II there will be a pole given by

(K» —ik cos2p)(K»+ ik cos2p) + k'sin2p = 0,

(3.1)

where all the derivatives are taken at A. =0, and (3.2)

=Q Cs 1(o')
B

' Cs1(a), .
B'B b

~ bb

(2.1 1) where the angle P is defined by the Clebsch-
Gordan matrix C» which is of the form

with an analogous expression for (Bm,'/BA) s s.
Now

cosP sinP
-sinP cosP (3.3)

—(k'T 'k') = T 'k'+k'T ' T 'k'&k' T
8& BX &A.

Bk'k

where

(2.12)

Without loss of generality we can take --,'m &P
&-,'m. We shall distinguish three cases:

(a) cosP & (sinP ( (cos2P &0). If the pole on the
first sheet is sufficiently close to threshold, the
pole on the second sheet is approximately given
by

8& j Sm &A,
(2.13)

Kl y ik cos2p = 0 (3 4)

Since (Bm, /BX)s, s as given by (2.11) transforms
like the symmetry-breaking Hamiltonian, it fol-
lows that (Bk'/BX)s s and dTs s/dX also do so
Therefore, it follows from (2.2) and (1.1) that at
fixed energy, dKs, s/dX transforms in the same
way. Thus, we have the following result:

Theorem 2. To first order in A. , one can write

K =Ko+ XK~, (2.14)

where K~ is invariant under the symmetry group
and K, transforms like the symmetry-breaking
Hamiltonian.

Since the K matrix has no two-particle branch
points, one might expect the linear approximation
to be good at low energies. An application of this
result to a phennmenological discussion of the de-
cuplet of meson-baryon resonances will appear in
a separate publication.

III. BEHAVIOR OF s-WAVE POLES

To fix ideas we consider a two-channel s w'ave.
Let b = 1 be the channel with lowest threshold when

and is located on the same side of the real axis
as the pole on the first sheet. As X varies, the
poles will move and may change sheets, but they
will not come together. Thus a bound state may
become antibound and vice versa, but it will not
turn into a resonance [see Fig. 1(a)].

(b) cosP= (sinP( =(-,')'~' (cos2P=0). Equation
(3.2) reduces to

K~~K22+k =0 . (3.5)

[ a11(» 2+11)] (3.6)

Unless r» is very large, these poles are not as
close to threshold as that on the first sheet. If
these roots are real, they will become complex
as we change X. For small A. , (3.5) will be modi-
fied in the following way:

«t a» and a» be the scattering lengths for chan-
nels B= I and B=2, respectively, and r» and r»,
the corresponding effective ranges. We assume
that (a» ~

«( a„(. Then the solutions of (3.2) are
approximately given by
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FIG. 1. The two sheets of the 4 &-Riemann surface

in two coupled two-particle channels. The hatches in-
dicate the physical region and the region adjacent to it.
The position of poles and shadow poles and their dis-
placements are indicated: in (a) for the case cos2p
& sin p; in (b) for cos p = sin p, with the original pole
being a bound state; in (c) for cos2p & sin2p, with the
original pole being an anti-bound-state pole; for a bound-
state pole, we would have a behavior similar to that
shown in (b).

&xi&22- &u - &i &2-0
y

K»(k,cos'p+ k, sin'p) +K»(k, sin p+ k,cos'p)

(3.9}

—2K»(k, —k, )sinP cosP =0 .

(3.10)

duce a resonance [Fig. 1(b)]. But if, on the other
hand, they are in the upper half plane, they will

not produce a physical resonance unless they turn
around the second threshold and back between the
thresholds. In both cases the resonance will ap-
pear in channel b = 1 below the threshold for b = 2.
Here we have a situation as conjectured by Yang
and Oakes, in which for some interval of values
of A. the pole moves into a sheet not adjacent to
the physical sheet, its effect on the physical am-
plitude being expected to be small. As A. increas-
es, however, it may emerge as a resonance pole
below the second threshold.

(c) cosP & fsinP f (cos2P &0). The pole on the
second sheet is given by Eq. (3.4) but is now lo-
cated on the opposite side of the real axis with re-
spect to the pole on the first sheet. As A. is
changed the pole on the first sheet may move to-
wards the real axis and into the second sheet and

we have a situation analogous to that discussed in
case (b) when the roots (3.6) are imaginary [Figs.
1(b) and 1(c)].

Let us investigate further under what conditions
poles on sheet S, and S4 can cross the real axis
beyond the second threshold. The position of the
pole on the real axis is determined by the simul-
taneous equations

KtzK22+ q(kq —k2) —2i(k~+k2)(K»+K22)

—i(k, —k~)K» = 0 . (3. |)
In sheet II, k, --k, as A. -O. The imaginary part
of k, will be approximately given by

lmk, = —k a»(k, ' —k, ') (3.8)

and will have the sign of -any If any &0 corre-
sponding to a bound state pole at A. =0, then Imk,
&0 and the pole cannot become a resonance. If any

&0 corresponding to an antibound state, then
Imk, &0. These poles on the lower half of sheet
II might eventually appear as a resonance in the
channel b =1, below the threshold for b =2, if the
position of this threshold moves past the position
of the pole. On the other hand, if the roots (3.6)
are imaginary, then it may happen that the pole
in sheet I moves towards the real axis crossing
into the second sheet and meeting with one of the
poles there. Then they will move apart alongside
the interval of the real axis between thresholds.
If they are on the lower half plane, they will pro-

Cs, ,(o.) k, , —0
y'&y+ Z

(3.12)

has solutions in that interval. The signs of the
k, .'s determine the sheets on which crossing may
occur.

It should be pointed out that these conclusions
are valid only if the s wave is not coupled to an-
other partial wave such as a d wave. In the case

Since k,' &k,', Eq. (3.10) has solutions only if the
following condition holds:

(K»+K») [(K» —K»)cos2P+K»sin2P] &0 .
(3.11)

If the pole is associated with a state with little
dynamical configuration mixing, then at the pole
we should have fK» f» fK» f and fK» f» fK» f.
Under these circumstances (3.11) would imply
cos2P &c, where e is a small number. Therefore
the crossing of the real axis is more likely to
occur if cos'P &sin'P. In general a pole is likely
to cross an interval of the real axis between two
thresholds b and 5+1, if the equation
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of coupled waves the argument presented here no

longer applies. [See, for instance, the discussion
of coupled partial waves in Sec. IV and, in partic-
ular, the condition (4.1).]

IV. APPLICATION TO BARYON-BARYON SCATTERING

We have studied a simple meson exchange model
of baryon-baryon scattering as applied to triplet
s and d waves in SU, antisymmetric states. We

used an SU,-symmetric coupling of pseudoscalar
and vector mesons to baryons and an SU,-sym-
metric hard core. The symmetry is broken only
through the splitting of masses of the mesons and

baryons, which are taken to obey a Gell-Mann-
Okubo type mass formula linear in a symmetry-
breaking parameter X. For X=O the masses are
degenerate within a multiplet, corresponding to
exact symmetry. For X =1 one obtains the actual
physical masses. We have calculated the scatter-
ing amplitude in the triplet s and d coupled chan-
nels in terms of the parameter A. . These states,
being symmetric in coordinate and spin space,
belong to antisymmetric representations of SU, .
(The full description of the model and results of
the calculation will be given in a separate paper. ')

It was found that for ~ =0, the model gives a pole
in the amplitude for scattering in states belonging
to the decuplet representation 10*. The pole is on
the second sheet very near threshold, at ik =0.11
fm . We have investigated how this pole is dis-
placed in the multichannel amplitudes for different
components of the decuplet, as A. varies from
zero to one.

In Table I, we list the components in the parti-
cle basis of each member of the 10~ rnultiplet and
give the Clebsch-Gordan coefficients for the de-
composition of each pair in terms of three anti-
syrnmetric irreducible representations in the
product 88.

The proton-neutron channel with I=O, Y=2, a
pure decuplet, and the coupled AN, ZNchannels
with I = —,', Y=1, were studied in detail. In the
p-n amplitude the pole moves into the first sheet
to become a bound state. In fact, one of the free
parameters in the model, namely the hard core
radius for the decuplet, was adjusted so as to ob-
tain the correct binding energy of the deuteron at
A, =1.

The I =-,', Y= 1 channels are superpositions of
the decuplet 10* and the antisyrnmetric 8F. One
can see from Table I that the Clebsch-Gordan
matrix for these channels corresponds to case (b)
discussed above with cosP =sinP =1/W. The posi-
tion of the poles on the second sheet of the k,
plane is given by (3.6) with a» -—a~~ =8.1 fm, r~~

=2 fm, and a» = a, =0.58 fm. These are the values
for these parameters at A =0. It was found (see
Fig. 1) that the anti-bound pole moves into the

upper-half of sheet 0 and meets the pole in this
sheet for X =0.02. As ~ increases they move

away from each other, staying close to the real
axis on the upper half of sheet II. No resonance
appears in the physical amplitudes. At A. =0.6,
the pole on the positive side of the plane crosses
the real axis around the NZ-threshold branch
point. For X ~0.6 the pole emerges as a reso-
nance in the NA amplitude, below the NZ thresh-
old. It turned out in our model that the resonance
(for A. =1) is almost purely in the d wave. This
suggests that the centrifugal barrier might be
responsible for keeping the pole close to the real
axis. If one neglects representation mixing, at
the position where the pole crosses the real axis
we have

(k, +k2)K~„+ (k, +k2')K, ~ =0 . (4 1)

TABLE I. Clebsch-Gordan coefficients for the reduc-
tion of two-baryon antisymmetric states into irreducible
representations of SU3 ~

Y I Particle pair
Ir reducible representations

F10* 8 10

2 0

1
2 1/v 2 1/v 2

-1/v 2 1/v 2

0 1 N 1/&3 1/W3 -1/&3
—1/v 2 0 —1/W2

-1/v 6 2/v 6 1/ 6

1 3

Notice that K«and K„should have opposite signs
for this equation to have a solution.

We have not done a numerical calculation of the
T matrix in the Y=O, I =1 channels. However,
from the results of the calculations for the other
members of the 10* multiplet, it will be possible
to make a qualitative analysis of these channels,
based on the effective-range approximation.

Let us denote by 1, 2, 3 the (antisymmetric)
channels =N, ZA, ZZ, respectively, and by K~+,
Ke Kzp the diagonal blocks of the J = 1 K ma-
trix in the basis of irreducible representations of
SU, . The nondiagonal blocks are zero in the limit
X =0. These blocks are 2@2 matrices correspond-
ing to transitions in s and d waves.

At very small values of A. and energies near
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threshold, one can argue that the off-diagonal
blocks of the K matrix may be neglected. Like-
wise, in the matrix ik"" in (1.1), we shall keep
only the elements linear in k, corresponding to s

waves, and neglect the d-wave elements which
are of 5th order in k.

Then, with these approximations, the position
of the pole of the T matrix will be given by

[A~* '-s(s k, + s ks+ s ks)][As ' —z(s kx+ s ks)][A» 2(sks+ s ks+ sks)]

++s(k, -ks) [A~* '+A, o
' —2i(sk, +sks++sks)]+(-sk, + ok, —+ks)'[As ' —i(sk, + —,'k, )] =0,

where

As '=(det K)s/ Kes

=Ke, —Ks, s /Ks s .

(4 2)

(4.3)

Since A, ' and A1p should be large as compared to A pp and the momenta k„one can simplify the above
equation so as to bring it to the form

[A,os
' —i( sk, + s k, ++~ks)] A, 'A, o

'+ +~(k, —ks)'A, o
'+ (- s k, + —,

'
k, —+~ks)'As ' = 0 . (4.4)

In discussing the roots of this equation near k, =0 and for small values of A. , it is sufficient to use an ef-
fective-range formula for A„* ' and to take A, ' and A„' as constants. So we write

1 1 2A10*
~

+ 2 &10*k10* &

10
A 1 1

8
8

A
1

10
10

(4.8)

where the variable k104 is the average center-of-mass momentum square in the 10* representation,
2 1 2 1 2 g 2

k10+ = 3k, + 2k2 +6k3 (4.8)

and the a's are the scattering lengths of the irreducible amplitudes at g =0. To first order in A. the param-
eters of the K matrix, according to Theorem 2 of Sec. II, are proportional to Y. Since Y=O in the chan-
nels we are considering here, these parameters are constant to first order in A.. According to the results
(2.7) and (2.8) of Sec. II, sk»*'/BX, for fixed energy and X =0, transforms in the same way as the symme-
try-breaking Hamiltonian. In the limit X-0 the solutions of Eq. (4.2) in the different sheets of the k,
plane are approximately given by

I(++) ik, = [1+(1+2rso*/a»s)'i'] ',
Q1~4

(4.7)

II(- -) ik, = — {I+[1+2(9r~&s+ Ba, + 8a»)/a»*] 'i')
QL04

III(+-) ik, = (I+ [1+—s'(9rs&s+ 8as+ 2a»)/asos]'~ ) ',
a10

(4 8)

(4.9)

IV(- +) ik, = +[a»*(s'r„*+a»)l (4.10)

In Appendix I we discuss the change in position
of the poles in the different sheets as A. varies,
The pole on the first sheet moves up into the sec-
ond sheet, where it meets a shadow pole. They
then move away from each other and eventually
turn around the branch point corresponding to the
ZA threshold, into the fourth sheet far removed
from the physical region [Fig. 2(a)]. At the same
time the shadow pole on the third sheet moves up-
wards, whereas the shadow pole on the upper half
of the second sheet moves down. They come to-

I

gether for a small value of X (x &0.07) depending
on the value of the scattering length a10 at A.

If a10 &4.65 fm, the two poles meet on the upper
half of the second sheet and move in a similar way
as that of the first pair of poles. But as they turn
around the ZA branch point they move into the
lower half of the second sheet adjacent to the phys-
ical region in the interval below the ZA threshold
[Fig. 2(b)]. Therefore this pole becomes a reso-
nance pole just below the ZA threshold [Notice.
that (3.13) has, in this case, solutions in the inter-
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FIG. 2. Position of poles of the scattering matrix for Y= 0, I=1 members of the baryon-baryon 10* decuplet, in dif-
ferent sheets of the k3& Riemann surface. Conjectured displacement of poles with SU3-breaking parameter A, is shown:

in (a) for the poles in sheets I and II; in (b) for the poles in sheets III and IV, assuming that they meet in sheet IV and

go on to sheet II to become a resonance between the «A and ZA thresholds; in (c) for the poles in sheets III and IV,
assuming that they meet in sheet III and become a resonance between the Z J]. and Z Z thresholds.

val between the AZ and ZZ thresholds. ]
If, on the other hand, Gyp&4. 65 fm, the two poles

meet in the lower half of the third sheet, and, as
they move along the real axis, will become a reso-
nance in the interval between the ZA and ZZ
thresholds [Fig. 2(c)]. Based on the position of
the poles in the Y=2 and Y=1 states, namely the
deuteron bound state and the AN resonance below
the ZN threshold, the Gell-Mann-Okubo mass for-
mula would predict a resonance pole in the Y =0
states =N and ZA, just below the ZZ threshold.
Since nothing is known about the scattering ampli-
tude in states with Y=O, I =1, our analysis shows
that no definite prediction can be made. It indi-
cates that there can be a resonance pole below the
ZA threshold in violation of the Gell-Mann-Okubo
mass formula, or below the 2Z threshold, in ac-
cordance with that formula. In the latter case a
rather large scattering length in the 10 amplitude,
Qyp & 4.65 fm, is required. A third possibility is
that these poles will not end up in a resonance po-
sition. Which of these alternatives is actually
realized depends on the dynamical features of the
interactions not only in the 10* decuplet but in the
octet and 10 decuplet as well. It should be pointed
out that this dependence on the dynamics is in no
way taken into account in the derivation of the
Gell-Mann-Okubo mass formula.

In the fourth member of the decuplet the Y=-1,
I = —,', =Z states the anti-bound pole moves away
from threshold. This result is not just specific to
the model. In fact, defining hap+ as the average

momentum for each member of the 10* multiplet,
then for small A.'s the position of the pole is dis-
placed according to the formula

d—
(ALOD) „=cy . (4.11)

Therefore the first and fourth members of the
multiplet move in opposite directions. The effect
of the anti-bound pole is to produce a rather large
Positive scattering length in the Y=-1 amplitude
in contrast with the large neg&»&e scattering
length in the triplet s-wave proton-neutron ampli-
tude.

V. SUMMARY OF RESULTS

We have derived a theorem for the K matrix
which states that if there is an internal symmetry
broken by an interaction proportional to a param-
eter X, (sK/BA. )~, transforms in the same way as
the symmetry-breaking Hamiltonian. This theo-
rem allows us to justify the Gell-Mann-Okubo
mass formula for compound two-particle states
with orbital angular momentum l ~ I. The case of
s-wave amplitudes was investigated in detail. It
was found that (i) the position of shadow poles in
the different sheets of the energy Riemann surface
depends on the Clebsch-Gordan coefficients for
the reduction of the product of the representations
of the scattering particles; (ii) the displacement
of these poles as A. varies depend not only on the
dynamics of the multiplet to which they initially
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belong, but also on the dynamics of the states to
which that multiplet couples by virtue of the sym-
metry breaking. This occurs even if dynamical
representation mixing is negligible, just as a re-
sult of kinematical representation mixing due to
the splitting of two-particle thresholds; (iii) in
some members of the multiplet which has a pole
in the symmetry limit near threshold, the original
pole and the shadow poles may move into positions

of the energy Riemann surface quite far from the
physical region, as conjectured by Oakes and

Yang.
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APPENDIX: DISPLACEMENT OF POLES FOR ) SMALL

In this appendix we shall investigate the displacement of poles for small values of A, in the F=O, I = I
amplitudes of triplet states of the baryon-baryon system. The change in position of the pole with X is given

by (d/dA. )(ik,}5X. This is obtained by differentiating (4.1). Making use of the SU, mass relation 2(mpI+ m„)
=3m~+m~, one obtains at A, =O:

{2ik,-[m, ()g+ p (1 —Ib)'A, '+ (- p+ —,'I), —,pb)'AM ']+ ( +p-,'I), +, Ii,)} (ik—,}

+ ( p (Iip + Ib)(sky) + ppb( I —Iip)Ap
' —

p (Ii, —Ii,)(- p + —,
'
Ii, —,Ii,)A„'}(mz —m~) m p

= 0

Therefore, in the different sheets, the initial motion of the pole is given by

(A1)

I(+, +): —(ik, ) =-(mz- mz)m (ikp, ) '(ik,r~~+1) ', (A2)

11(-,-): —(ik,) =(mz —mz)mp[(ik, ) '-pa, ][ik,(r,~+pa +pa, p) —3] (A3)

d- 2 j.III(, -): —„(ik,) =-(mz —mz)m p(pap+ pa, p)[ik, (r,~*+pap+ p a,p)+ p] (A4)

IV(-, +): —(ik, ) = -(mz —mz) m pa, p(ik, ) '(r&*+2a, p)
' . (A5)

In the first and second sheets the poles move towards the real axis. If a» is positive, the same happens
in the other two sheets. We are interested in the displacement of the poles in the last two sheets. In par-
ticular we want to determine under what conditions two poles meet in either of these two sheets. To first
order in A. and making use of the baryon octet mass sum rule, the relations between the momenta in the
different channels are:

2 2 1
Ky =K2 —2A y

Kg =K2 +A
y

A = Zm p(mz —m~),

(AS)

(A7)

(AS}

with Kz =i@&.
At the position where the poles meet the energy is a simultaneous solution of Eq. (4.1) and its derivative:

11 11 I I 2 I I I I I 11 11 11
rIpw + + — (Kg —Icp) — ap 2 — Icy+ Icp — Kp — — —

asap
= 0 ~

3Kz 2K2 6K3 9 Ky K3 3 2 6 3K' 2K2 6K3

It follows from these equations that unless a,p ls
very large and negative, which would imply the
existence of a bound state in the 10 decuplet, the
condition for the poles to meet in either of two
adjacent sheets is given by

/I 1 a (1
3QSK3 + K 2 K2 —

6 K3 JCgp & 2 (A10)

The upper and lower signs of inequality correspond
to positions of the double pole in the upper and
lower k, plane (II, &0). Let us determine the value
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of a„for which the poles meet at e, =0, so that

K = K
l

2
—3 3

1=2A . (All)

It will be given by so1ving the simultaneous equa-
tions (4.1}with z, =0, a, =(I/W)A, tc, =+(—,')'~'A,
and

2 1 "A
+~as+ 1%~ alp ~= 1 (A12)

The upper and lower signs in these equations cor-
respond to occurence of the double pole at Kl 0 on
the first two sheets or the last two sheets, respec-
tively. Taking the values for aypQ tip+ and a, as
given by the model discussed in Sec. IV, one finds
for the two cases the solutions,

(i) For double pole at threshold in sheets I-II:

K, =-0.056 fm ',

a2=0.15 fm ',

K3 = 0.25 fm ', ~ =0.018;

(A) 5}

poles will meet on sheet IV, whereas if asap
&4 65

fm, they will meet on sheet III. It should be noted
that (A13) and (A14) are values for a» at unphysi-
cal values of A.. However, since we are consider-
ing channels with Y= 0, the parameters of the K
matrix should have no first-order terms in A, and
therefore might not be expected to vary much as
we go from the values at X = 0 to the actual physi-
cal values at A. =1.

Assuming as=a, p=0, the positions of the double

poles and corresponding values of ~ are
I-II:

alp = 18~ 15 fmy X 0o0126 e (AI2)
III-IV:

(ii) For double pole at threshold in sheets III-1V:

a,p=4.65 fm, X=0.02 . (A14)

Then it follows from (A10) that if a» &4.65 fm, the

a, = -0.10 fm-',

g2=0.30 fm ',

g3=-0.50 fm ', A. =0.07 .

(A16)
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