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A partially collapsed spherical matter distribution is analyzed with the aid of an integral
equation for the gravitational potential, derived from the Yilmaz exponential metric. This
metric equals the Schwarzschild metric for weak gravitational fields but differs for strong
fields, avoiding any catastrophic collapse into a black hole. The quasars are interpreted as
gravitationally compacted protogalaxies, with galactic masses and dimensions which are ini-
tially stellar but increase as the quasar evolves into a galaxy. Good agreement is found be-
tween the surface red shifts calculated from the preliminary quasar model and the observed
red shifts for a sample of 151 quasars. Thus the quasar red shifts can be interpreted as
primarily of gravitational rather than cosmological origin, and the quasars are placed at
moderate distances, 3C48 being within the local group of galaxies.

1. INTRODUCTION

The Yilmaz exponential metric gives the same
results for the “four tests” as the Schwarzschild
metric, but differs from the Schwarzschild metric
in that it has no Schwarzschild singularity and is
readily generalized to incorporate multiple
sources and distributed sources for the gravita-
tional field. The generalization of the static-limit
exponential metric to incorporate moving sources
and time-dependent fields can probably be carried
out in several alternative ways, but this kind of
generalization will not be needed in the present
calculation.

As originally presented by Yilmaz,' the exponen-
tial metric was obtained from a scalar-field theory
of gravitation. In his second version, Yilmaz? ob-
tained the same metric from a tensor-field theory.

Objections to the Yilmaz scalar and tensor
theories have been raised by Will and Nordtvedt,®
and by Kinnersley.* In the static limit, how-
ever, we need not be concerned with these diffi-
culties.

In the static limit, the exponential metric has the
form

ds? =e2 c?df? — 2 (dx? +dy? +dz2?), (1)
where
GM, GM, GM.
- ey GMy GMs
u 57,14, czrl+cz1’z+cz'rs+ . (2)

The M; are gravitational sources, and the 7, are
the distances from these sources to the point at
which the gravitational potential « is being speci-
fied. The observer is outside the influence of the
sources in (2), in a region where u is effectively

1

zero, and the velocity of a massless particle
equals c¢. For regions nearer the sources, this
velocity slows to ce™2",

When only one of the terms in (2) is varying sig-
nificantly over the region of interest, a transfor-
mation can be introduced which has the effect of
moving the observer into the field of the other
terms, where his scale of space, scale of time,
and scale of gravitational mass are altered. In the
metric (1) the product dt exp(-u, —#;—**+) is re-
placed by a redefined dt, while dxexp(u, +uz;++++)
becomes the new dx, and so forth. What remains
is then a metric of the same form (1), but with on-
ly a single term in the expression for the gravita-
tional potential,

GM

U= 3, (3)
in which

y=r,exp(Uu,+us++++), (4)

M= M, exp(u, +tg+++*). (5)

The transformation (5) can be interpreted as a
gravitational violet shift or blue shift, applied to
the gravitational radiation from the source M, to
the observer. Since the observer is now within
the gravitational potential field of the other
sources, gravitons and photons and neutrinos will
fall toward him and have their energies increased.
The source M, thus appears stronger to him, now
having the effective magnitude M given in (5).

However, the observer has remained outside the
gravitational field of M,, so that gravitons leaving
M, are red-shifted in climbing from M, to the ob-
server, against this gravitational force. For this
observer, therefore, the effective gravitational
mass in M, is less than the sum of the gravitational
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masses of the individual atoms in M,. In gathering
together, these atoms have made it more difficult
for gravitons to leave.

This factorization of the metric is unique to the
exponential metric, and is an argument in favor of
its use to replace the Schwarzschild metric. For a
single source the exponential metric matches the
isotropic form of the Schwarzschild metric,®

_ (1= zup
T (1 +su)

- (1+3u)Ydx? +dy? +dz?), (6)

ds? c?de?

to three terms in the temporal part and two terms
in the spatial part, when the dependence on % in (1)
and (6) is expressed in terms of power-series ex-
pansions. This match is sufficient to give identi-
cal results for the “four tests,” which are all
weak-field tests in which # is much smaller than
unity.

Thus the solar system tests cannot distinguish
between (1) and (6). We can look to strong-field
phenomena, where (1) is well behaved but (6) be-
comes singular, for a “fifth test” which might pro-
vide the experimental evidence needed to distin-
guish between the predictions of the exponential
metric and the predictions of the Schwarzschild
metric.

II. FIFTH TEST

Evidence is accumulating® that certain quasars
are closely associated with galaxies of much
smaller red-shift values. For these quasars at
least, the quasar red shifts cannot be entirely cos-
mological, but may be gravitational in origin if the
quasar is a highly compacted structure. In one
particular case,’ there is evidence that a quasar
which is close to a galaxy has produced a tidal dis-
tortion of that galaxy, suggesting that the quasar
mass is not much smaller than a galactic mass.

In the quasars, therefore, we may have examples
of structures with strong gravitational fields, ga-
lactic masses compacted to dimensions comparable
to supergiant stars. This would put the matter dis-
tribution close to or within its Schwarzschild radi-
us, where the Schwarzschild metric (6) predicts
singular behavior such as catastrophic gravitation-
al collapse into a “black hole.” The Yilmaz expo-
nential metric (1), on the other hand, is well be-
haved for a highly compacted matter distribution.
We will examine its predictions of the properties
of such a matter distribution, to determine whether
these predicted properties resemble the observed
properties of the quasars. If they do, then we may
be able to say that the explanation of quasar prop-
erties constitutes a fifth test of a gravitational the-
ory, a strong-field test which other theories will

need to confront.

In order to isolate the features of a compacted
matter distribution which are specifically associ-
ated with the choice of the metric, from other fea-
tures which are associated with the kinetics and
thermodynamics of the particular matter that is
present, we will treat a very simple model, a
spherical matter distribution with constant intrin-
sic density and with a sharp boundary. This is
then a preliminary quasar model, which can later
be generalized through the introduction of a ther-
modynamic equation of state, with self-consistent
distribution functions of pressure, density, and
temperature, with energy generation in the appro-
priate thermonuclear reactions.

A generalization to incorporate internal rotations
will also be needed, once the static-limit formula-
tion has been clarified. However, the form of this
generalization need not be specified for the present
calculation. We can proceed in terms of a simple
scalar gravitational potential function, «(r), de-
pending only on the radial distance from the center
of the spherical mass distribution.

III. INTEGRAL EQUATION

In the Yilmaz theory, a distribution of gravita-
tional waves will make a contribution as a gravita-
tional source, and a real quasar can be expected
to generate such a distribution. However, the
static-limit analysis assumes that gravitational
waves are not present, and that the actual matter
distribution in the spherical model represents the
only gravitational source.

A constant intvinsic density is assumed in this
model. This is the density as it would appear to
an observer located in the midst of the mass dis-
tribution. To an observer outside the gravitational
field, a region with the intrinsic density p and the
gravitational potential » will appear to be compact-
ed by the linear compaction factor ¢, as obtained
from (1). The apparent density is thus increased
to pe®. Locally, however, the reduction in the
separation of the atoms is accompanied by a re-
duction in the diameter of each atom, to give no
locally apparent density change.

While pe®” is the density value to use when we
compute the number of atoms in a compacted re-
gion, a different expression is needed when we
compute the effect of the atoms as gravitational
sources. Here we need to include a red-shift fac-
tor, e™, which reduces the effective source
strength to

o'(r)=pe ™), (7

We can subdivide the spherical source distribu-
tion into concentric shells, each of thickness dv»”.
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The effective gravitational mass of a shell at the
radius #” will be given by

dMII = 41Tpl(7ll)7.”2d7.ll . (8)

From a summation over the atoms in this shell, in
accordance with (2), we find the contributions of
(8) to the potential function, outside and inside the
shell, to be

4

du(r) = %‘% for »>7r”, 9)

n

GdM
du(r): ?——

v ”

for r<7r”. (10)

We can now sum these contributions for a spher-
ical mass distribution of radius R. Outside the
sphere the resulting potential function is
471G

2

u(r>R)= =,

r”"=R
f pl(,’.”),’./md?.”' (11)
r"”=0

Inside the mass distribution, «(r) is given by

4rGg (7T
< - ’ " n2 ”n
u(r <R) = jru:o o' r"w"dr
r”=R
+4ﬂ2Gf p'(r"w"dr” . (12)
C "=y
At the center of the sphere, (12) reduces to
4G (TR
o)== J' "y, (13)
r?=9

When (13) is subtracted from (12), and (7) is
used, an integral equation for u(r) is obtained:

ulr <R)=u(0) - 4252

r'=r " y"2
x f e )(r"— T)dr”. (14)
r”=9

The integral equation (14) can be written in a di-
mensionless form with the aid of the definitions

L =c(41pr)'1’Ze"‘(°) , (15)
s=v/L, s"=r"/L, S=R/L, (16)
¢(s) =gt @s)=ul) a7

It is most convenient to let ¢3(s) be the function to
be determined, and the integral equation then takes
the form
s'=s "2
—loge §2(S) = f {%S”)(ZS" - 2s
=0 s

)ds” . (18)
This dimensionless integral equation can be
solved by a power-series expansion:
£(s)=Co+Cys? +Cys? 2 -, (19)
Co=1, qufg" (20)

and so forth, as determined with the help of the
power-series expansion for log,(1+x). For the

Cz="§',

actual calculations, these coefficients were eval-
uated through C,,.

From Eq. (19) and the power-series expansion
for (1+x)%? a related series can be obtained:

£3(s)=Dy+D,s® +D s*+ -, (21)
with
D,=1, Dy,==%, D,=%, (22)

and so forth. These coefficients were evaluated
through D, for the present calculation.

The function £2(s) is a positive function which
equals unity for s =0, and which decreases mono-
tonically toward zero as s increases toward posi-
tive infinity. For large values of s, this asymptot-
ic behavior of the function means that the integral
in (18) will be dominated by contributions from val-
ues of s” which are much smaller than s. This
suggests the asymptotic replacement

n2
(28"— 22 >~28”, (23)
giving, as the asymptotic solution to (18),
2(s)~s™2, (24)

which will accordingly be valid only for large val-
ues of s.

The series (19), truncated at the C,; term, can
give useful numerical results for rather large val-
ues of the argument s, provided the delta-square
summation technique®?® is used, not just once but
iterated as many times as possible, which is four
times for the nine-term truncated series. Figure
1 shows the results obtained from the truncated

Als)

FIG. 1. The function £7%(s), plotted against s>. The
solid curve has been computed from a nine-term trun-
cated series. The dashed line has been obtained from
the asymptotic solution in Eq. (24). The dotted curve
has been drawn to join the solid and dashed portions
smoothly.
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series with delta-square processing (solid curve)
and the result obtained from the asymptotic solu-
tion (dashed line). These have been connected
graphically (dotted curve).

For a more precise connection between these two
computed curves, a power-series solution of the
form

(A +8)=E[l+(et+e, 2 +e %+ +)] (25)
could be used, where
t=s=A. (26)

This is a series solution centered about the dis-
placed position s = A, where A can be chosen to
lie in an intermediate position where interpolation
between the solutions (19) and (24) is most uncer-
tain.

The same procedure which has been used here
for the solution of (18) can be used for the solution
of the radial integral equation which arises when a
less idealized, more realistic quasar model is
analyzed.

Three integral expressions will be of importance,
and are defined by

s"=s
Fy(s)= f ¢3(s")s"ds" | @7)
s”=0
1 s":s 2 ” n2
Fols)=¢ f g*(s”)s"*ds" (28)
s”=0
1 s”=s
Fy(s)= 3 f L3(s")s"ds" . (29)
s”=0

When the power-series expansions (19) and (21)
are used, these three functions are given by

Fi(s)=4Cos?+ 5 Cps*+4Cys84 -, (30)
F2(3)=éCosz+%Czs4+$C436+...’ (31)
FS(S):;D052+-51-D284+-%D436+-..‘ (32)

From (18), (27), and (28) it is evident that
—log, £%(s) =2F (s) = 2F,(s). (33)
In power-series form, based on (19), this gives
—log, £%(s) =5 Cos® +F Cos*+ 51 C 8%+« ¢, (34)

Generalizations to a more realistic quasar mod-
el, in which the intrinsic density p will itself de-
pend upon radial distance, can be treated in a sim-~
ilar way if this dependence is expressed as a poly-
nomial function whose coefficients are chosen to
satisfy particular requirements specified in the
generalized model.

IV. SURFACE RED SHIFT

With the Yilmaz exponential metric, the gravita-
tional red shift is given by z=¢* -1, where u is the

gravitational potential at the location of the emit-
ting atom. If this atom is at the surface of the
spherical matter distribution in the preliminary
quasar model, then the gravitational red shift is
given by

2 = (A redahifted = Mab)/ A 1ab
:eu(R)_ 1

—eFAS 1, (35)

Figure 2 gives this surface red shift, z, as a func-
tion of the parameter S, defined in (16). This pa-
rameter is dimensionless, but increases with the
amount of matter and degree of compaction of the
spherical mass distribution.

The solid portion of the curve in Fig. 2 was
computed from the series expansion (31), with
delta-square processing of a nine-term truncated
series. The dashed portion of the curve was com-
puted from the asymptotic solution (24). The lim-
iting red shift for very large S is given by

Zo=e-1=1.718. (36)

It is evident from Fig. 2 that the surface red
shift from the gravitationally compacted sphere is
not monotonic as a function of the parameter S.
The red shift increases to a maximum at about
2z =2.5, then drops back toward the asymptotic val-
ue (38). This doubling back tends to emphasize the
red-shift values between z2=1.7 and z=2.5.

The red-shift cutoff near z=2.5 and the emphasis
on the red-shift values near z =2 are features of
the experimentally observed red-shift distribution
for the quasars. Figure 3 shows a histogram of
the red shifts of 151 quasars, assembled from the
listings by Burbidge'® and Schmidt.!! Qualitatively
there is a reasonably good correspondence between
the implications of the theoretical red-shift curve
in Fig. 2, and the observed distribution shown in

z z
T T T
2.5 — 2.5
2.0 - 2.0
1.5 E— — 15
o
1.0 — —
0.5 [~ —
o
0.0 -
Lt bl vt
0./ / 10 100 1000

S

FIG. 2. The red-shift factor z, shown as a function of
the parameter S.
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Fig. 3. However, this is not sufficient to establish
that the quasars are compacted mass concentra-
tions with large gravitational red shifts, though
this possibility is left open by the analysis which
has been carried out.

While there have been additional quasar red
shifts observed since these listings were compiled,
including a few red shifts greater than z=2.5, the
histogram in Fig. 3 is a substantial and perhaps a
representative sample. The fine structure in this
histogram has been correlated with observational
selection effects'? arising out of the difficulty of
measuring the prominent quasar emission lines
when these are shifted to the vicinity of the strong
emission lines from our night-sky atmosphere.
However, it is possible that the strong peak near
2z =2, and the broad maximum near z=0.5, are
both to be associated with characteristics of the
quasar population.

The calculated red-shift curve in Fig. 2 has two
branches, the main branch with $<6.5 and the up-
per branch with $>6.5. To facilitate comparison
with observation, Fig. 4 is a modified histogram
in which the high-red-shift quasars have been di-
vided arbitrarily into two categories, presumed
main-branch quasars and presumed upper-branch
quasars. We will return to this comparison after
examination of certain properties, in addition to
the surface red shift, which characterize the the-
oretical model.

V. PHYSICAL PARAMETERS

As more matter is added to the spherical model
with the intrinsic density p held constant, the ra-
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FIG. 3. Histogram showing the distribution of red-
shift values for 151 quasars. The red shift z is plotted
vertically, while the number of quasars in each interval,
Az=0.1, is plotted horizontally.
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FIG. 4. Histogram showing 151 quasar red shifts,
separated arbitrarily into main-branch quasars, plotted
to the left of the vertical centerline, and upper-branch
quasars, plotted to the right of the centerline. The upper-
branch quasars, with red shifts between 2=1.7 and z2=2.5,
are tentatively associated with the portion of the curve
in Fig. 2 which lies to the right of the peak, in the re-
gion where S is greater than 6.5.

dius of the sphere first increases, then decreases
as the gravitational compaction collapses the
structure to a minimum size, and finally the radi-
us increases again toward a limiting value. This
behavior of the model is shown in Fig. 5. What is
plotted is

R/Ry=Se T1S) (37
where R, is defined by
Ry=c(47Gp)™V2, (38)

and where the function F,(S) is defined in (27), with
the series expansion (30). The solid, dashed, and
dotted curves have the same meaning as in Fig. 1.

0.5
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FIG. 5. The quasar radius, R, in units of R, shown
as a function of S.
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Figure 6 shows how the intrinsic mass in the
spherical distribution increases as a function of
S, with p held fixed. The plotted function is

M/M,=SF4(S), (39)
with M, defined by
MO=CSG-3/2(47TP)-”2- (40)
The intrinsic mass is defined by
r'=R ”
M = 411pe3“(’ )r”zdr”, (41)
r”=0

and is proportional to the actual number of nucle-
ons contained in the spherical mass distribution.
The apparent gravitational mass, on the other
hand, will incorporate the gravitational red-shift
factor ™, and will be defined by

r"=R
M = f 47Tpe2"(r”)’}"”2d'}’" . (42)
r

"=q
Figure 7 is a plot of
M'/M, = SF,(S)e~F18) | (43)

with M, as given above in (40).

From a comparison of Fig. 6 and Fig. 7, we can
see that the compacted spherical matter distribu-
tion is acting as a “gray hole,” for S>3. The addi-
tion of further matter, which increases the intrin-
sic mass M, will actually reduce the apparent
mass M’, weakening its gravitational pull on other
matter in the vicinity.

VI. QUASAR STATISTICS

Because of this “gray hole” feature of the model,
apparent in Figs. 6 and 7, we can envisage a pro-
cess of galactic evolution in which matter collects

M
M,

\

(o]

Lot votonl vovl 3 sy
[eX] / 10 100 1000
S

FIG. 6. The intrinsic quasar mass, M, in units of
M, shown as a function of S. The solid, dashed, and
dotted portions of the plotted function have the same
meaning that they had in Fig. 1.
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FIG. 7. The apparent quasar mass, M’, in units of
M,, shown as a function of S.

by gravitational accretion, until the mass and den-
sity reach the gray-hole stage. The aggregation
then weakens in its pull on further matter, but
continues to increase in its intrinsic density until
it reaches a density at which thermonuclear reac-
tions begin. The quasar then becomes a visible
source of electromagnetic radiation, and the ener-
gy generated is very great, so that the structure
expands, evolving into a compact galaxy and then
into a normal galaxy.

The core of the galaxy could retain certain qua-
sarlike characteristics. If the galaxy is very
large, explosive events in this core could eject
compacted matter which was then separately visi-
ble as a smaller quasar which proceeded to evolve
into a relatively small galaxy, a companion to the
larger galaxy.

There would then be a distribution of quasars of
different intrinsic masses, and these would be fur-
ther distributed with respect to their values of in-
trinsic density, according to their stages of devel-
opment between the quasar ignition point and the
expansion into an ordinary galaxy.

We can use the monotonic curve of Fig. 6 to re-
place the dimensionless parameter S by the quan-
tity

M/My=Mc~3G*?(4mp)"/? (44)

as the independent variable against which the qua-
sar-model physical parameters are plotted. The
red-shift factor z, shown earlier in Fig. 2, then
takes the functional form which is graphed in Fig.
8.

It is evident from Fig. 8 that the main-branch
portion of the red-shift curve, when plotted against
(M/M,), is very close to a straight line over the
red-shift range from 2=0.2 to 2=2.0. For the up-
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FIG. 8. The quasar red shift, z, shown as a function
of the intrinsic quasar mass, M, in units of M.

per branch, on the other hand, the curve is very
nonlinear.

Without a more specific model for quasar igni-
tion and evolution, we cannot say how a population
of quasars will be distributed over the curve of
Fig. 8, except that we might expect to see a sub-
stantial number where the upper-branch portion
of the curve flattens out and becomes almost hori-
zontal. This number will be somewhat reduced if
the ignition points occur only part way out along
the flattened upper-branch curve.

For the translation from a particular population
of quasars, distributed in surface red shift, into a
predicted statistical red-shift distribution for an
observationally selected listing such as that de-
picted in Figs. 3 and 4, we need to allow for those
observational factors which may have influenced
the selection process. The role of the night-sky
emission lines has already been considered.!?
Many quasars have been first observed through
their radio emission, while others have been stud-
ied because of their strong ultraviolet emission.
Quasars are also strong emitters in the infrared.

It is difficult to draw any general conclusions
about the spectral distribution of quasar emission,
except to say that the distribution is very broad,
and varies from one quasar to the next.’®> We can
certainly say that the brighter quasars are most
likely to be observed and appear in a particular
listing, but we cannot use a particular black-body
curve to determine the emissivity of the quasar
surface as a function of emitted wavelength or red-
shifted wavelength.

What we can do is to isolate the more straight-
forward factors that will be influencing the selec-
tion process, to see what then remains to be ex-
plained by spectral distribution functions or evolu-
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tionary processes.

We will assume therefore that the visible sur-
faces of the quasars are composites, containing
protostars of various temperatures, in accordance
with the presumed role of a quasar as a protogal-
axy. The rate of emission will be slowed by the
time dilation factor, (1+2z)™', but will otherwise
be proportional to the quasar surface area, 47mR%.
The apparent luminosity of a quasar will depend on
its distance from the observer, through the factor
r~2¢~%", where a is the attenuation factor resulting
from intergalactic absorption. If we neglect this
factor, because of our uncertainties as to the dis-
tances to the quasars, then we can compute the
relative probability of observing a quasar charac-
terized by a particular value of S, as influenced by
the dependence of its radius upon S (Fig. 5) and the
dependence of its red shift upon S (Fig. 2). The
result is the visibility function,

V5(S)=(R/R, (1 +2)™3/?
=53 eXp[—3F1(S)—%F2(S)]7 (45)

which has been made dimensionless through the in-
clusion of the factor R,™3. Since this factor in-
volves the intrinsic density, p, which will be
changing as the quasar evolves toward a compact
galaxy, we cannot expect the function (45) to ex-
plain the quasar statistics fully, but only to show
the effect of the quasar radius in the region
(shown in Fig. 5) where that radius is changing
rapidly with S.

Figure 9 shows the visibility function (45) multi-
plied by a normalization factor of 100 and plotted
against the surface red shift z. The histogram of

0 5 /0
4 z
25— 2.5
- ]
= 1
20 2.0
1.5 — 1.5
1.0
0.5 —
0.0~

20 15 10 5 o

FIG. 9. A plot of 100 Vg(S), where Vg(S) is the visibili-
ty function in Eq. (45), against the red-shift factor z.
The coordinates are those used for the histogram in
Fig. 4, and this histogram has been superimposed here
to show the close match along the main branch of the
red-shift distribution.
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Fig. 4 is superimposed, and it is evident that the
part of the function where R is changing rapidly
gives a fairly close match to the main-branch por-
tion of the observed histogram.

Figure 10 shows a similar comparison, but here
the function (45) has been divided by the slope of
the curve in Fig. 8, in order to give additional
weight to the parts of the upper branch where z is
changing very slowly with (M/M,). This is about
as far as we can go, without carrying out a much
more elaborate theoretical analysis, using a more
sophisticated model, together with a processing of
the observed data to incorporate distance esti-
mates and associated corrections for the cosmo-
logical red shifts attributable to those e~timated
distances.

Vil. EXAMPLES

Because of the extreme simplicity of the static-
limit spherical model with constant intrinsic den-
sity, we should not expect to find that there is a
precise match between this model and the observed
quasars. However, the rough agreement shown in
Figs. 9 and 10 is encouraging, and is a temptation
leading us to look at some special cases.

In the tabulation by Burbidge'® there are three
closely spaced red shifts, with values for z of
1.800, 1.805, and 1.810. These may represent
quasars close to ignition, lying on the upper branch
of the quasar distribution. Specifically, we can
look at the case

z=1.800,
S=67.

(46a)
(46b)

If we choose as the mass M the mass of our own
galaxy,

M=2.2x10%g, (46c)
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FIG. 10. A plot of 88 Vg(S)|d(M /M) /dz| against the
red-shift factor z, with the histogram of Fig. 4 super-
imposed.

1
we can solve for

p=1.3x10"*g/cm?, (46d)
R=1.0x10%cm, (46e)
M’'=0.14x10%g, (46f£)
The degree of gravitational self-shielding is in-

dicated by the ratio
M'/M=0.064. 47)

The density (46d) is close to the mean density in a
supergiant star of spectral classification A5, in
the tabulation by Allen.'* The optical appearance
of such a quasar might be expected to correspond
to the optical appearance of a young supergiant
star. With this intrinsic density as the average
over the interior of the spherical matter distribu-
tion, it is not unreasonable to expect nuclear burn-
ing, similar to that in a supergiant star, to be tak-
ing place in the core of the quasar, or in locally
dense nodules distributed through the quasar.

The radius (46e) is larger than that of a single
supergiant star. It is about eighteen times the ra-
dius of the largest supergiant category listed by
Allen, ' the category with spectral classification
M2. However, on a photographic plate an object
with the characteristics (46), at the distance of a
galaxy, would have a stellar appearance, even
though it contained enough matter to form a galaxy.

The example considered above was a highly com-
pacted distribution with a large value of the param-
eter S and a large red shift. We can also consider
examples for which the evolution of the quasar has
reduced its intrinsic density and moved it down the
main branch toward relatively small values of z.

Greenstein and Schmidt'® have assembled and
analyzed some very detailed measurements on the
quasars 3C48 and 3C273. We can look at the pre-
liminary theoretical model to see where these two
quasars would fit, on the assumption that each is
a protogalaxy.

For 3C48 the measured red shift is

z=0.3617, (48a)
which gives, from Fig. 2,

§=1.06. (48Db)
The choice (46c) for the intrinsic mass leads to

p=3.6x10""g/cm?, (48c)

R=3.6x10"%cm, (484d)

M'=1.5x10%g. (48e)

Since galaxies differ in size, a different choice for
M could be made, within the framework of this
very simple model, and the effect of choosing a
larger M will be indicated later.
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The emission lines from 3C48 are observed to
be sharp, and Greenstein and Schmidt!® inferred
from this that the line emission comes from a gas-
eous layer whose thickness is only 1.6% of the qua-
sar radius, if the observed red shift is assumed to
be primarily gravitational in origin. The observed
spectrum contains forbidden lines, and from the
intensity of these lines, Greenstein and Schmidt
estimated the electron density in the line-emitting
layer to be

N,=10°cm™3, (49)

From the observed brightness of the hydrogen
emission line HB, together with the observed line
widths, Greenstein and Schmidt obtained the rela-
tionship

NZ2R® - .
23 =2.8x10%cem™, (50)

where 7 is here the distance from the quasar to
the observer. Substitution then leads to the result

7=1.30x10%%cm
=42kpc. (51)

This is the distance obtained for 3C48 from the
simple model, on the assumption that the total in-
trinsic mass in the model equals the mass (46c) of
our own galaxy.

If instead we assume the same model but with
three times the mass of our galaxy, we obtain for
the red shift (48a) the model characteristics

p=4.0x10"8g/cm?, (52a)
R=1.08x10"cm, (52b)
M’ =4.44x10%g, (52¢)

where the assumed intrinsic mass is now
M=6.6x10%"¢g. (52d)

The distance from quasar to observer is now, for
this model,

»=6.7x10%cm
=220kpc. (52e)

Because of the preliminary nature of the quasar
model, the results should be considered as order-
of-magnitude estimates only. Furthermore, what
is being examined is the role of gravitational com-
paction, considered separately from other factors
which would enter into a more realistic model for
a quasar. What we can conclude, therefore, is on-
ly that the quasar 3C48 may be a protogalaxy which
is a member of our local group of galaxies.!®

Greenstein and Schmidt!® also considered the
quasar 3C273, obtaining the relationship
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2 p3
Neyf =4.9x10%cem™S, (53)

and the electron density

N,=10"cm™3, (54)
From the measured red shift

z=0.158, (55a)
the simple spherical model gives

S$=0.69. (55b)

As earlier, we can assume the intrinsic mass to
equal (46c), the mass of our galaxy, and we then
obtain

p=4.0x10"8g/cm?, (55¢)
R=9.0x10"cm, (55d)
M =1.8x10%g. (55¢)

Substitution into (53) leads to the distance estimate
r=1.22x10%cm
=4.0Mpc . (56)

As with 3C48, the assumption of a larger intrinsic
mass would lead to a larger distance estimate.
The estimate (56) is thus an order-of-magnitude
estimate for the distance of the quasar 3C273, and
places it among the brighter galaxies!” outside the
local group.

VIII. CRITICAL DISCUSSION

The quasar model which has been examined here
is obviously oversimplified in many ways. The
simple spherical matter distribution, with constant
intrinsic density and with a sharp outer boundary,
does not make allowance for pressure and temper-
ature variations within the distribution, or for ro-
tational effects which must play a large role in the
evolution of galaxies, particularly spiral galaxies
such as our own.

On the other hand, the close correspondence be-
tween the quasar red-shift statistics and the theo~-
retical results, as illustrated in Fig. 10, suggests
that the gravitational red shift is the principal con-
tributor to the observed quasar red shifts, and that
the Yilmaz exponential metric should be used in-
stead of the Schwarzschild metric, for calculations
involving strong gravitational fields. For weaker
gravitational fields, such as are found within the
solar system, these two metrics give the same re-
sults.?

The quasar model being discussed will lead to a
very large gravitational potential in the interior of
a sphere with a large value of S. Figure 11 shows
the red shift for a photon which leaves the center
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FIG. 11. A plot of (1+2,) against S, where z, is the
red-shift factor associated with radiation emitted from
a protostar at the center of the quasar structure char-
acterized by S. Here (1 +2,) =ef1(S),

of the sphere and is able to make its way through
the interior and out past the outer boundary of the
sphere. Should there not be some observational
consequence which will provide evidence for this
extremely compacted state of matter?

Such evidence may indeed be at hand. Many qua-
sars do emit a very substantial fraction of their
radiation in the infrared region of the spectrum.
An examination of the ratio of far-infrared radia-
tion to optical radiation, for quasars with red
shifts in the vicinity of z=2, may disclose a bi-
polar statistical distribution, which could permit
us to separate those quasars in the upper-branch
part of the statistical distribution from the quasars
in the main branch which have comparable red
shifts.

The evidence assembled by Arp® shows a pro-
gression from quasars to compact galaxies to
companion galaxies to ordinary galaxies. The
close association of members of this progression
having different red shifts shows that these red
shifts cannot be entirely cosmological, except per-
haps for the ordinary galaxies.!® In the other
members there can be a gravitational contribution
to the red shift. This contribution is strongest for
the quasars, which are the most compact of the
members of this progression.

This ordering of galaxies and protogalaxies by
compactness is also an ordering by noncosmologi-
cal red shift. The evidence of this correlated or-
dering constitutes a fifth test of a gravitational
theory.

As we have shown here, the Yilmaz exponential
metrie, as applied to a compacted spherical mass
distribution containing a galactic amount of matter,
passes this fifth test. Other gravitational theories

=3

will have to confront this fifth test, sooner or
later. To the writer’s knowledge, other gravita-
tional theories have been unable to give gravita-
tional red shifts approaching z=2, as appears to
be necessary for this fifth test. However, there is
no clear agreement on the limiting gravitational
red shift available with the Schwarzschild metric.®

As noted earlier, the fine structure of the quasar
red-shift distribution is well correlated with the
observational limitations imposed by the presence
of night-sky emission lines obscuring parts of the
quasar spectra.’? The gross structure of the qua-
sar red-shift distribution is well correlated with
the effects of gravitational compaction, as shown
in Fig. 10, provided the Yilmaz exponential metric
is used in the analysis. The model used is inade-
quate, however, to account for the polarization of
the quasar continuum radiation, the rotational fea-
tures of galaxies, particularly spiral galaxies, and
the bands of galaxies observed in galactic clus-
ters.!® There are also special cases of quasars
with z>2.5, and there are sure to be new observa-
tional surprises as quasars and galaxies are stud-
ied in further detail.

A more realistic quasar model, incorporating
internal rotations and more flexible density distri-
butions, is clearly needed, but can be based on the
simple static model presented here, in order to
retain the agreement with observation which is
shown in Fig. 10. There is also qualitative agree-
ment between the distances inferred from Arp’s
data® and the distances obtained from the simple
model; and qualitative agreement between the ob-
served variability of quasar emission'® and the
quasar radii inferred from the simple model, as
illustrated in (46e), (48d), (52b), and (55d).
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