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A model for low-energy mN scattering consisting of N, p, 5, and cr exchanges together with

current-algebra constraints is presented. We derive the 6 contributions to the scattering amplitude using

a general b, propagator and DNA interaction. We show that the data are consistent with the simplest

structure for both the b, propagator and the interaction. A cr term of 42+ 10 MeV at the

Cheng-Dashen point is found, and predictions of the o. term at t = 0, the mNN coupling constant,

and the isospin-even s-wave scattering length are made.

I. INTRODUCTION

The current-algebra constraints on the on-mass-
shell pion-nucleon scattering amplitude are well
known. ' 4 The amplitude is given as a sum of
equal-time commutator contributions and an axial-
vector -nucleon amplitude contribution. The most
appealing and common model for the axial-vector
amplitude, that of dominance by baryon and meson
exchanges, has in the past involved two difficulties.
First, the b, -exchange contribution is ambiguous
because a general b, propagator contains an un-
known complex parameter. ' Second, a realistic
calculation of the o-exchange amplitude has been
hampered by a lack of information about the rele-
vant vertices and propagator.

In this paper, we use the following approach to
these difficulties:

(i) We allow a complex parameter Z entering the
6 contribution to be determined by comparison
with experimental data.

(ii) We use a form for the o-exchange contribu-
tion obtained recently by Schnitzer' from unitar-
ization of mw scattering. ' As a result we are able
to express the total cr contribution to the wN scat-
tering amplitude in terms of the "cr term":

g.(t) =;2 (O'Io"(0)lp),

which is the nucleon matrix element of the "a com-
mutator"

a' (~) = t( Q;(x.), s „&'„(~)].
In the above p and p' are the initial and final nucle-
on momenta, t = -(p' —p), 4'„is the axial-vector
current with isospin index a, and

Q:(*.) —Jd'*&l( )

=(a', +a,'t}+(a,'+a,'t)v'
A y'v

+a V4+ ~ ~ ~
5

g+
= (b', +b,' t) + (b', +b,' t)v'

(4)

+Q p + ~ ~ ~4
5

where A and 8 are the usual invariant amplitudes
minus the Born terms of pseudoscalar-coupling
theory. The "experimental values" for the twenty
coefficients a& and 5& have been calculated from
fixed-t dispersion relations by Hohler et al.

Using our model we derive expressions for the
coefficients in expansion (4) which involve four
free parameters, the b, coupling parameters g*
and Z (where Z is complex) and the a term g, .
We find that an excellent fit to the experimental
coefficients is obtained provided

(i) the t), exchange contributions chosen are con-
sistent with those calculated with the simplest
possible choice of 6 propagator and b, N~ interac-
tion, a choice which corresponds to Z=--,';

(ii} the o term is assigned the value

g, (2 p, ') = 42 a 10 MeV,

where p, is the charged-pion mass.
Finally, using the information gained from the

fit, we make predictions of g, (0), for the sNN

Traditionally, predictions of models for low-en-
ergy mN scattering have been compared with s-
and P-wave scattering-length data. Instead, we
follow a suggestion of Hohler et al.' and make
comparisons with the coefficients of an expansion
of the invariant amplitudes in powers of v = (s —u)/
4M and t. The expansion can be written as fol-
lows:
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coupling constant g', and for the isospin-even s-
wave scattering length.

The current-algebra constraints on mN scatter-
ing are reviewed in Sec. II. In Sec. III our ex-
change model is described and theoretical expres-
sions for the coefficients in expansion (4) are ob-
tained. In Sec. IV a numerical comparison with
the experimental values of the expansion coeffi-
cients is carried out, and the values of the 6 cou-
pling parameters are discussed. In Sec. V the v
term is considered, and several predictions are
made. Finally, a brief discussion and summary
of our results is given in Sec. VI.

II. CURRENT-ALGEBRA AMPLITUDES

We begin with a brief review of the current-alge-
bra constraints on' ' the scattering process'

We assume that the weak vector currents V'„(x)

We define the pion field Q' by

s„A;(x)=F,p (t'&(x), (6)

and the nonpionic part of the axial-vector current
by

A'„(x)= A'„(x)—F,s, (P'(x),

where p. is the pion mass and I'„is the pion decay
constant. We also assume that it is possible to
define a local scalar field o' (x) by means of the
equal-time commutator

[A'o(x) s,A'„(y)]6(xo-y.) = -'6(x- y)c"(y) (6)

with 0"=cr".
The definitions and commutation relations given

above imply the well-known Ward identity'

and axial-vector currents A'„(x)are related by the
chiral SU(2)(3 SU(2) equal-time commutator

[A', (x), A', (y)]6(x, —y, ) =i e„,6( x—y) V'„(y). (5)

dxdye"'e " '" ~„'—p' „'—p' p' T* Q & Q' y ) P

2 /2

, q„'q„dxdye"'"e" *(p'IT'*(A'„(x)A'„(y))Ip)+ 2 1+ —~+, (tdye'(' ' '"(p'Ic' (y)IP)
m

which involves the off-mass-shell ~N scattering amplitude"

(10)

The presence of only the nonpionic parts A'„ in Eq. (9) indicates that all pion poles have been explicitly re-
moved from the axial currents.

At this point we recast the identity (9) in a form more useful for our purposes. We define the amplitudeR" by

bc ~
p ba

p 2 QPQV TPV

where

&';. (& ';)' ~) 'Jd*.e " ()' (T ~ (=~'-. (-*)&'''(0)&(~&. (12)

For the nucleon matrix element of the vector current, we use the standard form

(O'I V'„(0)IP) =t F", (t)y„-F.'(t)

where k =P' —P, t=-k', andM is the nucleon mass. Also, we write

(14)
After inserting Eqs. (11) through (14) into Eq. (9) and performing a few elementary manipulations we ar-
rive at

2 12T"=ft"+, 1+ —,+ 2 ~g6, (t) +,([F,"(t) +F(2t)]iy ~ Q+vF, (t)) —,[7,T'], (15)
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where Q =-,'(q+q').
Finally, we go to the pion mass shell, q'=-p', q" =-p', and write Eq. (15) in terms of the usual in-

variant amplitudes A' and B', which are defined by the decomposition

T '=(-A'+iy QB )6,~+(-A +iy ~ QB )—,'[ 7, r']. (16)

The result, which contains the constraints of current algebra, is

A'(v, t) =A'(v, t)+, g, (t},
1 (17a}

B'(v, t) =B'(v, t), (17b)

A (v, t) = A (v, t) —,F,"(t),

B (v, t) =B (v, t)+, [F, (I)+F, (t)],

(17c)

(17d)

where X' and B' are contributions coming from R".

III. LOW-ENERGY EXPANSION

In this section we describe the model that we are using for the amplitude R". Then we carry out the
expansion (4) of the invariant amplitude in powers of v and t

We assume that Rba can be represented by a sum of four terms

Rba Rha +Rba +Rha R ba
N p h o (18)

corresponding to N, p, v, and 6(1236) exchanges. We do not consider higher baryon resonances because
estimates" indicate that the contribution of all these resonances is not significant at points we are inter-
ested in.

For the nucleon-exchange contribution we use the pseudovector (pv) Born terms prescribed by current
algebra:

2

A„'=—,A„=o,
2 2 2v B g vg g

N M p2 p 2 ~ N I p2 p 2 2M2B B

(19}

where v~ = (2p, ' —t}/2M.
We treat the p-exchange contribution within the hard-pion approximation, keeping only the p one-parti-

cle reducible part of Rba and using the pe~ vertex of Schnitzer and Weinberg. " It has been shown' that
this procedure implies that the p-exchange contribution to the ~N invariant amplitudes can be included by
simply making the substitution

F'(t) 1 F,"(t), i =1, 2
P

(20)

fn Egs. (17). If one chooses 6 =-—,
' then one obtains agreement" with the experimental data for A, and p

decay.
To calculate 4-exchange contributions, we need to know both the form of the 6 propagator and the b, N~

interaction. For the 6 propagator we shall use:

&„,(P)-, .P M, „,—3yvy +3M, (y„P—y P„)+3M*P„P,

z 2(A*+1) 2(A +1) A +1 ' . ~ (2AA ~+A +A*)
6M* 2A*, 1 y P" 2A, 1 y P. — 2A, 1 y. (y P)y -' *

l2A, ll y y (")

=+
mass &
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which may be obtained from Eq. (109) of Aurilia and Umezawa, ' where we have made the substitution" a,
= --,'(1+3A").

The most general DNA interaction with gradient coupling is g, =g~II(„8„„$&„$+H.c., where 8„,=5„,
+Cy„y, and where C is an arbitrary complex number. One might expect the ~ contribution to depend in-
dependently upon C and A. However, Nath et a/. "have shown that for real C and A, the 6 contribution
will depend on only one real parameter.

Their method can be trivially generalized to treat the case of complex parameters. Rewriting the in-
teraction in the form

&I =a'*4~e] u4 ~p4+H c y

8„,= &„,+[-,'(1+4Z)A +Z] y„y„
(22)

where Z is an arbitrary complex parameter, we find that the total (free-field plus interaction) l,agrangian
is invariant under the point transformation:

&,
' =&, +~~,»&~

A —2a*
1+4a* '

Because of this invariance, the 6 contributions to the S matrix cannot depend upon A." However, they
will be a function of Z.

The simplest form of propagator and interaction can be obtained from Eqs. (21) and (22):

1 1 i 2
P+M* "" 3 " ' 3M* " ' ' " 3M

(23}

~l =a*4,4~ 0+H c

with Z=- —,', A =-1. This form has been used recently by many authors"'" to calculate 4-exchange am-
plitudes. Nath et aE."used field-theoretic arguments to fix Z at the value Z =-,'. In this paper we leave Z
in as a parameter to be determined by the data.

Using the b, propagator (21}and the interaction (22), we obtain the following n-exchange contributions
to the invariant amplitudes":

Az = (a,* +o(,* t) + — (E*+M)(2M* —M )
vg —v vg+v 9M*

4+ „p'+ „(2p'—t)
~

Z]' 2+ +(ReZ) 1+ M
(24a)

W2 1 1 16
(24b)

&, = —(8~.(;+;t)( —
)

—
9 .) Izl*(2 ~ „)+(Rez) ( ~ „) (24c)

18M* v& —v p&+ lr 9 M*

+ „,( (ReZ)[2M(M+M*) —p'] + ] Z~ ~[2M(M+2M*) +(p' ——,'t)] j, (24(i)
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where the relevant kinematic quantities are defined by

E~+M= [(M*+M)'- p'],1 42 E42 M2

t
Vg =(d +

42 M2 p2

2M

a,*= 3(M+ M *)q*' + (M * —M )(E* + M )', o.',*= ~g(M+ M ~),
(25)

P~ —3q* —(E*+M), pg 3

To evaluate the cr-exchange contribution, we keep only the 0 one-particle reducible part of R ', using an
approximation recently developed by Schnitzer. ' He assumed a form for the mmo vertex valid at small t
that follows from unitarization of ~~ scattering. The resulting approximate a exchange contribution, when

combined with the o commutator contribution in Eq. (17a), leads to the total c contribution

A; = —
(

2 4 —N(N+ 2) ——, g~(t),
1 2t

m

(26)

where N denotes the representation (-,'N, 2N) of chiral SU(2) 8 SU(2) to which 8 ~ A and the c field belong.
Our complete model for the wN scattering amplitude can be summarized as follows:

+$ 1 2t
M N(N+ 2)F,' 4-N(N+2)- —, g.(t), (27a)

B' —Bg (27b)

A = A~ —
2 1 —

2 vF,"(t),1 (1+5)t
mp

(27c)

B =B~ —
2 + ~ 1 —

~ [F (t) +F (t)],
g~ 1 (1 +6)t

mp
(2'ld)

where the pseudoscalar-coupling Born terms have been separated out,

1 1
(28)

and where the n, contributions are given by Eqs. (24).
The expansion (4) of the amplitudes given by Egs. (27) about the symmetry point (v =0, t =0) can be car-

ried out easily. We present the nucleon, p, b, , and o contributions to the various expansion coefficients
separately.

A. Nucleon Contributions

Since the Born terms of pseudoscalar coupling theory have been separated out, only the extra pieces of
pv coupling theory remain. They yield the contributions

2

a + g
(29a)

2M2 (29b)
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B. p Contributions

The p contributions affect only the antisymrnetric isospin amplitudes. The results are

F,"(0)
2Z''
F,' (0) 1+8

2
=

2F 2 +8F 2 2 Fm(0)i
1F mp

&i =
2F 2 f F2(0)+Fi(0)j

(30a)

(30b)

(30c)

&2 =
2 (F2'(0)+F,"(0)j—

2 g (F;(0)+Fg (0)).
mp

(30(j)

C. b Contributions

1. Z-independent contributions:

a

a 2g Q~
9M

a,'

a,*/ni~ —1/4M&v*

1

(1/u& *')(am~/a i~ —3/4M u&*)

1 +*4

(31a)

b

y+
2

y+
2g*2 P*1
9M e*

y+
5

P,*/P,*—1/2M (d ~

+p

(1/~*')(P.*/0,' 1/M ~—')
1/u)*'

(31b)

a2

a,

g42~+
9M+*2

a,*/ni~ —1/2Mur ~

1/(d~'

(1/~ ~ ')(n,*/n i~ —1/M(u~)

1 or*4

(31c)

g4 2p+

9M+*

M&* M+M*1-
P,* M*

P,*/P,*—1/4M (ii *

1 v*~ (311)

b5
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2. Z-dependent contributions:

4g + 2~2
a', = y,

4gg 2

a2

TABLE I. Experimental values for the coefficients of
the crossing-symmetric expansion (4) as determined by
Hohler et al . (Bef. 8). The pseudoscalar-nucleon pole
contribution has been removed.

8g* M
9M* y

8g+2M 4g+2p2
b, =+ „y+ ~a (IZI' —ReZ),

g+ 2

'=-9M* ~'~'

(32)
a, —8.4
b+ -3.3

—0.45

0.2

—1.15

—0.9

b; 8,0 + 0.4 0,3 + 0.2 1.0

2
a' = —= 27.4 + 1.1

M

a+ 26.1+ 0.3 1.15+ 0.1 4.4

0.1

—0.05

-0.3
-0.3

0.25

where
2

b, =—,=-2.0+0.1.

D. 0 Contributions

4 g, (0)
N(N+2) F ' ' (33a)

The o contributions to the expansion parameters
can be expressed in the form

The p-exchange contribution is given by Eqs. (30).
If" F„=0.657, 5 =--,', and the nucleon electromag-
netic form factors" and slopes at t =0 are

F,"(0}= 1.0, F,' (0) = 0.046,

F, (0) = 3.7, Fi "(0)= 0.22,

then the p-exchange contributions are

g.(2p'), 4
1 g.(o)

2F p,
' N(N+2) 2F 2p, 2 ' (33b)

a, =-4.3, a, =-0.25,

b, = 5.4, b2 = 0.30.

IV. COMPARISON WITH THE EXPERIMENTAL
CROSSING- SYMMETRIC EXPANSION

We have displayed in the preceding section the
theoretical expressions for the coefficients in the
power-series expansion (4). The twenty indepen-
dent expansion coefficients will now be compared"
with their experimental values. The experimental
expansion coefficients have been evaluated directly
in terms of derivatives of fixed-t dispersion rela-
tions by Hohler et al. '" and are reproduced in
Table I.

The theoretical contributions discussed in Sec.
III are the (i) pv-nucleon pole, (ii) p-exchange,
(iii) A-exchange, and (iv) o-exchange contribu-
tions. Each of these will be considered in turn.

A. Nucleon and p Exchange

Subtracting the pv-nucleon pole and p exchange
contributions from the experimental expansion pa-
rameters of Table I results in a new set of param-
eters given in Table II. The entries in Table II
should depend only on the b, contribution and v ex-
change.

B. Z-Independent 6

The 6 contribution given by Eqs. (31) and (32)
has been separated into two parts:

(i} Z-independent,
(ii) Z-dependent.

TABLE II. Expansion coefficients of Table I with the
pseudovector-nucleon pole and the p-exchange contribu-
tions subtracted. The coefficients in this table depend
on only 4 and cr contributions.

If we use the conventional ~NN coupling con-
stant"

—=14.64 +0.6,
4w

a; —4.1
b+ -3 3

4.6+ 0.4

—0.2

0.2

-1.15

-0.9

a+ -1.3 + 1.2 1.15+ 0.1 4.4

0.1

—0.3

-0.3

the pv-nucleon contributions in Eq. (29) are
0+0.2 1.0 —0.05 0.25
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The Z-independent part is nearly the same as the
"pole" terms of all previous analyses, the main

difference being in the coefficient a,' where large
"pole" and "nonpole" contributions nearly cancel
in the Z-independent form.

The Z-independent coefficients depend on only

one parameter, g*'. This constant is often evalu-
ated using the perturbation expression for the ~
width. However, since the pole term prediction
for the 4 phase shift near the resonance position
is quite poor, "the value of g*' found by fitting the
6 width will not be reliable. Hohler et al. ' com-
pare a dispersive calculation of the real part of
the resonance amplitude with the pole approxima-
tion and find a value of g*' about 40% smaller than

by the width method.
Since the expansion coefficients have been calcu-

lated dispersively, a direct experimental compar-
ison involving those coefficients which depend on

only the Z-independent 4 part can be used to eval-
uate g*'. The twelve i =3, 4, 5 coefficients are de-
pendent upon only the Z-independent terms. Of

these the largest is

g+ —4 4

Using the Z-independent expression for a,' from
Eq. (31a)

2g42~ ga'= 1:-9M *

and taking M*=8.6't (1211 MeV), which is the real
part of the second sheet pole position, "we find
that

g*' = 2.90.

The remaining Z-independent ~ contributions now
can be calculated by the expression in Eqs. (31)
with the above value of g*. The Z-independent b,

parts of the expansion coefficients are given in
Table GI.

When the Z-independent 6 coefficients of Table
III are subtracted from the entries of Table II, we
are left with the coefficients of Table IV which de-
pend on only the Z-dependent b, and 0 terms. One
should note that all of the large coefficients in Ta-

TABLE III. The Z-independent contribution to the co-
efficients of the crossing-symmetric expansion.

ble I with the exception of a,' have thereby been
reduced by an order of magnitude. Thus the Z-de-
pendent contributions are expected to be small.

C. Z-Dependent b,

b, = y,

a, =-b, ,

1
2M ''

a~ =-a,',
n; =-'~ g"*(~„)Izl*,

1

BM ''
where we have defined as before

(34)

y = 2+ „~Zi'+ 1+ ReZ.M ~ M
M* M+

In Fig. 1 the limits on y are plotted as a function
of iZi. The minimum value of y is -0.28, occur-
ring when Z= -0.32. As can be seen from Eq. (34)
only the coefficients b, = -a, = 2y are appreciable.
By referring to Table IV, one sees that both a,
and b, prefer a negative value of y. The total the-
oretical contribution to the coefficients a, , a,',
and b, are plotted in Fig. 2 as a function of y and

compared with their experimental values. One
may observe from Figs. 1 and 2 that the value Z
= —, implies a value of y quite inconsistent with the
data. However, the choice Z=--'„which is also

TABLE IV. Expansion coefficients of Table I with the
N, p, and Z-independent exchanges subtracted. The
entries of this table result from the difference between
Table II and Table III. The remaining coefficients are
explained by the Z-dependent and 0 -exchange contribu-
tions in our model.

The parameter Z which is a measure of the form
of the hNw interaction is in general an arbitrary
complex number. The Z-dependent expansion co-
efficients in Eqs. (32), neglecting terms of order
(1jM)', can be written as follows":

b+

—1.3
-4.75

3 \ 7

0.70

—0,1

0.15

4 4

-1 0

—0.8 0.05

0.95

-0.2
-0.15

a,.

b+

0.65

0.4

-0.1
0.05

0 + 1.2 0.45 + 0.1 0.15

-0.15 0 -0.1
-0.1 0.05 -0.15

5.0 -0.1 0.85 -0.05 0.2 b ] -0.4 + 0.4 0.1 + 0.2 0.15 0 0.05
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4 l2

10

b, exp.

lO

c 4
Cle~
CP

se
2

O
CP

c00»
CO
C0 -2
CL

4

Qt+
:--: -----:-=:=M+ eexp.

a, exp,

-I0

-I 2
~ 2

I I l I I

0 .2 .4 .8 .8 I.O I.2

.2
I I I

.6 .8

FIG. 2. Theoretical expressions for a &, a 2, and b
&

as a function of y compared to their experimental values.
One should observe that negative values of y are pre-
ferred by a& and b& and that a2 is not strongly y-depen-
dent.

FIG. 1. The quantity y aa a function of (Zj. Allowed
values of y lie be@veen the taro curves. The bounding
curves correspond to positive and negative real Z. A'(0, 2)=a,'+2a,' =As(0, 2)+ —+ s . (35)ga 2

attractive from a theoretical point of view, is con-
sistent with the data.

If a slightly higher value of g»' were chosen,
then the i =3, 4, 5 coefficients would exhibit slightly
better (and a,' slightly worse) agreement with the
data. The magnitudes of a, and 5, in Table IV
would be larger, making it even more likely that
y is near its minimum value. "

Finally, the o term contributing to a,' and a,'
will be considered in the following section.

V. 0 TERM

From Table II we see that As(0, 2) is negligible. "
The above equation provides the basis for a direct
determination of g, (2) by extrapolation. Unfortu-
nately the quantity A'(0, 2) —g'/M is experimental-
ly uncertain and the resulting g, (2) is poorly de-
termined.

From Table IV we note that the coefficient (a,')~
is relatively well determined and has the value

(a,'), =0.45 +0.10.
In our model this coefficient represents the v-
term contribution as given by Eq. (33b),

2E,'(a,'), =g, (2) + —1 g, (0) . (37}
The matrix element between nucleon states of

the o commutator, g, (t), introduced in Eqs. (1)-
(3) has been the center of considerable interest
and controversy. This term will be discussed in
detail in this section.

Using Eq (27a), one obta.ins the A' amplitude at
the unphysical point v =0, t =2 [henceforth referred
to as the Cheng-Dashen (CD} point] ":

g.(2) —g.(o)-=&. (38}

We expect that A. is small but may not be negligi-
ble. Most authors have neglected the difference
between g, (2) and g (0). However, Pagels and

The difference between the a term at the CD point
and at t =0 can be defined as
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Pardee" have noted that the two-pion-state con-
tribution to g, (t) gives

z =0.1. (39)

g, (2) = —,'F,'(a,'), + ,'AE, '—. (41)

Using the Pagels-Pardee value of X =0.1, the A.

correction, Eq. (41), is less than 4% and yields

g, (2}= 42 + 10 MeV.

The corresponding value for g, (0) is

(42)

Combining Eqs. (37) and (38) we obtain

g (2) = N2(N+2)F, '(a )2, +kF, '[ I —,'N(N—+2)].

(4o)

With the common assumption that the chiral sym-
metry breaking transforms as a (-,', —,') representa-
tion of SU(2) SSU(2) (i.e., N = 1), we have

g 2—= 14.52 + 0.18
4m

=g~(2)/F„—2a2 +1.31. (45)

For our value of the c term in Eq. (42) the value
of ao', is predicted to be

go 0 022 + 0 004 (46)

A specific model for calculation of the 0 term is
provided by the generalized v model discussed by
Turner and Olsson. " The v term in this model is
given by

by use of the technique of analytic extrapolation.
The symmetric scattering length ao', can be

written in terms of the expansion parameters as"

4m a' = g' ——+1.31M+1 +, g
o+ i M

g, (0) = 28 s 10 Me V . (43) N(N+2) bInga2 =
3 si (47}

= —(a' +—'a' + 1.02)
4 1 2 2

=14.9+0.2, (44)

where, from Table III, (a,'), =a,' —0.70. This pre-
diction can be compared to the usual" value of

2

=14.64' '
4&

' -0.72 y

and to the analysis of Lichard and Presnajder, "
who find

The above value of g, (2) can be used to predict
the magnitude of g'/4v by use of Eq. (35):

a'+2a' —,g (2)
g' M
4~ 4~

where n is the fraction (any positive or negative
number) of the pion mass contributed by the chi-
rally symmetric nonderivative portion of the La-
grangian and m, is the cr mass. If ¹1and n =1
we recover the original Gell-Mann-Levy 0 mod-
el." If m~ is taken to be the p mass and N = 1, we
find numerically

g, (2) =31a MeV. (48)

The primary attempts to find g, (2}by direct ex-
trapolation using dispersion relations have been

g, (2) —110 MeV (Cheng-Dashen, Ref. 22),

g,(2)-40 MeV (Hohler et al. , Ref. 26).

TABLE V. The 0 term as found by various authors.

Authors Reference a term (MeV)

F. von Hippel and J. Kim

T. P. Cheng and R. Dashen

E. Osypowski

G. Hohler et al.

G. Altarelli et al.

M. Ericson and M. Rho

S. J. Hakim

B. Renner

C. C. Shih and H. K. Shepard

H. Jakob

This work

31

22

26

34

35

30

29

-26

-110
60

-40

80 +30

~34

51+9

33 or 43

-46+ 140

43+ 12

42+ 10
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The analysis of Cheng and Dashen" emphasized
the low-energy data (below the n resonance). This
analysis was criticized by Hohler et al. ,"who ob-
tain a value" in the vicinity of 40 MeV. Recently
Shih and Shepard" have used the technique of ana-
lytic extrapolation to obtain

go(0) = -46 + 140 Me V .
A number of other authors" "have calculated

the v term under a variety of theoretical assump-
tions. Table V contains a collection of these re-
sults.

Finally, we present in Table VI the expansion
coefficient residue after all the contributions of
our model have been removed. The entries in this
table differ from those in Table IV by the subtrac-
tion of

(i) Z-dependent terms with Z=--,',
(ii) a,' and a2 calculated from Eqs. (33), with

g, (2) =42 MeV andg, (0)=28 MeV.
The success of the model can be evaluated by

comparing Table VI to the experimental coeffi-
cients in Table I.

VI. CONCLUSIONS

We have shown that a pole model with current-
algebra constraints can adequately account for the

experimentally determined nN scattering amplitude
at low energy. The experimental data'" used are
the twenty coefficients of the power series in v'

and t given in Eq. (4). This set of coefficients
serves to fix the free parameters of our model
much better than the conventional s- and P-wave
scattering lengths. '

The free parameters of our model are deter-
mined separately. Only the Z-independent b, ex-
change amplitude contributes to the twelve i
=3, 4, 5 coefficients, thus fixing g*'. Information
on the parameter Z is obtained by examining the
residue left after the p exchange and Z-indepen-
dent 4 exchange contributions are subtracted from
the experimental values of the coefficients a, and
b, . Since this residue is small, a small value of
Z is preferred as is shown by Figs. 1 and 2 . A
value of Z as large as Z =-,' is clearly ruled out,
and if Z is chosen real it should fall in the range
-0.8 & Z & 0. Once the 6 contribution is removed
from the coefficient a,' the remainder must be due

TABLE VI. Residues of the experimental expansion
coefficients left after all of the model contributions have

been removed. The entries of this table differ from
those of Table IV by the subtraction of (i) Z-dependent
terms with Z =-2 and (ii) values of a& and a2 calculated
with g (2) =42 MeV and g (0) =28 MeV.

0.15 + 1.2
0.35 0.1 -0.15

0.15

-0.1
0.50 0.05 0.1 -0.05 -0.15

b; -0.1 +0.4 0.1+0.2 0.15 0.05

g, (2) =42 +10 MeV.

Using this value of g (2), the wNN coupling con-
stant and the isospin symmetric s-wave scattering
length are predicted to be

—=14.9 +0.2
4m

a,', = -0.022 +0.004,

respectively.

to the o-commutator contribution. Using the work
of Schnitzer' we can immediately relate the a,' co-
efficient to the 0 term.

We noted earlier that when the b contributions
to the scattering amplitudes are calculated with
the propagator and interaction given in Eqs. (21)
and (22), the amplitudes will be a function of Z and
independent of A. Without loss of generality, we

can choose A = -1 which yields the simplest form
of propagator [Eq. (23)]. The interaction in Eq.
(22) then becomes 8„,= 6„,—(Z+ —,')y„y„.The
choice Z=--,' used by many authors"'" leads to
the simplest interaction [Eq. (23)]. We have shown
that this choice is consistent with the experimental
data. "

Finally, we have noted that the v-term contribu-
tion to a,' is easily extracted from the experimen-
tal data. Under the assumption that the chiral
symmetry breaking is characterized by N =1, the
v term at the CD point is"
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