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Odorico has derived bootstrap conditions for P (pseudoscalar) meson interactions from the hypothesis
that the zeros in PP scattering amplitudes are linear in the Mandelstam plane. We explain the relation
between this hypothesis and an earlier bootstrap hypothesis based on duality. If the solution proposed
by Odorico for the PP scattering bootstrap is correct, other bootstrap conditions involving virtual P
mesons suggest that a tenth member should be associated with the P nonet. If the 1422-MeV E
meson is pseudoscalar, it is a possible candidate for the tenth member. It is shown that in some, but
not all, hadron-hadron scattering amplitudes, a simple condition based on duality and isotopic-spin

invariance is almost sufficient to predict linear zeros.

I. INTRODUCTION

Odorico has proposed a strong bootstrap condi-
tion for VPP and TPP interactions, where P de-
notes a pseudoscalar meson, and Vand T Reg-
geized vector and tensor mesons.! His basic hy-
pothesis is that the zeros in PP~ PP amplitudes
are straight lines in the Mandelstam plane. The
bootstrap condition requires not only an internal

symmetry group, but, if the group is SU(3), it also
requires the 1 - X mixing angle to be tan~!(1/V2).}!

Recently, the author published a paper (to be re-
ferred to as C1) extending Odorico’s condition to
VP - PP and yP - PP amplitudes, where y denotes
a photon.2 Another result of Cl is that the quark-
model values of VPP and TPP interactions lead to
a solution of the PP~ PP conditions overlooked in
Ref. 1.
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The purpose of the present paper is to extend
the results of Cl in several ways. The first is to
explain the relations between various PP - PP
bootstrap conditions. Section II of this paper con-
tains a proof of a statement of Cl, of the equiva-
lence of Odorico’s condition and a simple set of
algebraic equations involving the interaction con-
stants. In addition, several points in Odorico’s
derivation of his bootstrap condition are clarified.

In Sec. I, the possible solutions to the PP~ PP
conditions are considered. It is shown that experi-
mental evidence favors Odorico’s solution over the
quark-model solution. Furthermore, a more com-
plete set of approximate bootstrap conditions, con-
sidered previously by the author, suggests thata
tenth P meson should be associated with the P
nonet if Odorico’s solution is correct.

Finally, in Sec. IV, we discuss the validity of
the linear-zero hypothesis. It is shown that ap-
proximate linearity of the zeros follows from
more basic assumptions for some amplitudes, but
not for others. Thus, the significance of experi-
mentally observed linear zeros depends on which
type of amplitude is involved.

II. THE BOOTSTRAP CONDITIONS

We consider only PP - PP amplitudes, interact-
ing with V and 7' Regge trajectories. The exten-
sion to VP -~ PP and yP - PP amplitudes involves
only the straightforward modifications described
in C1.

Mass differences among the P mesons are ne-
glected, and all the V and T Regge trajectories
are taken to be degenerate and linear. The am-
plitude in the s, ¢, and » Mandelstam channels is
represented by a+b—~c+d, a+c—~b+d, andc+bd
—~a+d, respectively. The residues of the Vand T
trajectories in the ¢ channel are denoted by V; and
T,;; these are given by?

Vs = frdcfrab ’ Ts = drdc drub ’
Ve= frdEfrEa y Ty=dg5d,5,., (1)
Vu= frdafrbi-" T,= drda drbt-: s

where f_,; and d,;; are the VPP and TPP interac-
tion constants, and summation over » is implied.
The d and f interaction constants are symmetric
and antisymmetric, respectively, in the inter-
change of the P mesons.

We assume that the residues V; are all propor-
tional as functions of the energy-squared variable
i. Thus, the V, and f’s of Eq. (1) may be defined
at any convenient value of 7. A similar assump-
tion is made for the 7T, and the d’s.

It is pointed out in C1 that Odorico’s bootstrap

condition is closely related to a condition used
previously by the author.* The earlier condition,
which may be derived from duality and a simple
proportionality assumption, relates the Vand T
residues in any pair of Mandelstam channels. The
resulting three equations are

Ty=Vs=Ty+ V,, (2a)
Tt_ Vt=Tu+ Vu, (2b)
T,— V,=Ts+ V. (2¢)

The different signs in front of the V; are related
to the orderings of the P-meson indices in Eq. (1);
a simple rule is that the sign of V; is negative in
Eq. (2a), (2b), or (2c) if exchanging the last in-
dices on the f’s in V, in Eq. (1) leads to the chan-
nel on the other side of the bootstrap condition.
One could include a positive proportionality con-
stant in front of the 7T’s in Eqgs. (2a)-(2¢); our
normalization condition for the d’s and f’s is that
this constant may be omitted.

It is stated in C1 that Odorico’s bootstrap condi-
tion is equivalent to Egs. (2a)-(2c), plus the addi-
tional condition

T,V{(TZ?-V2)=0, 3)

which must be satisfied for each of the three val-
ues of the channel index ;. We will demonstrate
the equivalence later in this section.

Since Odorico’s justification of his condition is
abbreviated in Ref. 1, we will give the argument in
our own words. The zero-width approximation is
made, so that resonance poles occur at real ener-
gies. If an i -channel resonance exists at i =m; 2
the residue R, is defined as

’

R,= lim [(i -m2)A],

i—>mi2

where A is the invariant amplitude. A resonance
on a Vor T trajectory may be accompanied by one
or more daughters of smaller angular momentum.
Thus, each R; is a sum of a finite number of
Legendre polynomials in the scattering angle, and
so is a polynomial of finite order in the cross-
channel energy. We assume that the relative pro-
portions of daughters (if any are present) is the
same for all leading-trajectory resonances of the
same spin. Therefore, if two resonances of the
same mass on two different s-channel V trajec-
tories are considered, the ratio R (¢)/V, at a spe-
cific £ will be the same for the two resonances. A
similar conclusion holds for the T trajectories.
Let m and m, be the masses of an s-channel
resonance and a {-channel resonance, not neces-
sarily of the same spin or parity. Odorico consid-
ers the intersection of such a pair of resonances
in the Mandelstam plane, and makes the following
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power-series expansion in the vicinity of the inter-
section®*®:

(s =m2)(t-m2)A=Rs -m?) +R3(t - m )
+higher-order terms, (4)

where RO and R? are real constants. There is no

constant term in this expansion because a residue

R, cannot have a pole in the cross-channel energy.

Thus, the quantity (s - m,?) (t -m*)A is zero at

the intersection. The slope of the path of this zero

at the intersection is given by
ds RS

L_lt— == _RT: . (5)

Odorico’s basic hypothesis is that the path of the
zero is a straight line. Experimental evidence for
linear zeros in the physical region exists."® The
zero line cannot be at constant s or constant ¢,
because this would imply that one of the residues
is identically zero. Therefore, the amplitude A
is itself zero along the zero line, except at the
intersection.

Since each resonance is one of an infinite se-
quence of resonances of the same parity along a
trajectory, each intersection is one of a two-
dimensional pattern of intersections in the appro-
priate corner of the Mandelstam (s, ¢, «) plane.
Odorico assumes that the paths of zeros inter-
secting a particular trajectory at cross-channel
resonances of the same parity are parallel. It
may be possible to deduce this condition from
other conditions; however, we shall include the
condition as part of the “linear-zero hypothesis.”

If a zero line crossed a particular resonance
line between resonance intersections in the reso-
nance intersection region, then an infinite num-
ber of parallel zero lines would cross the reso-
nance between intersections. This would imply
that the resonance residue R contained an infin-
ite number of zeros, in violation of the condition
that R is a finite polynomial. Thus, a zero line
can cross a resonance in the resonance intersec-
tion region only at a resonance intersection. This
limits severely the possible directions of zero
lines. For example, suppose that s- and ¢-chan-
nel resonances of both parities exist, and one
considers an intersection in the interior of the
intersection region, such as that denoted with a
circle in Fig. 1. The zero line must correspond
to one of the two dashed lines in the figure.

The direction of the zero line at the intersec-
tion determines the residue ratio, by Eq. (5). Be-
cause of our proportionality assumption concern-
ing V trajectories, the magnitude of the ratio
V,/V, is equal to the magnitude of the correspon-
ding R} /R? at the resonance intersection. A sim-
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ilar statement applies to the tensor residues.
However, the signs of the V’s depend on the order
of indices in Eq. (1). For example, if V and T
poles of the s and ¢ channels intersect, and if all
the zeros are at constant «, then all the RI/R?
ratios at each intersection are determined from
Eq. (5) to be unity. This implies the equalities
T,=V,=T, ==V, the minus sign occurring be-
cause the ¢ -channel partners a and ¢ are in differ-
ent positions in the subscripts of V, in Eq. (1).

Odorico states that the linear-zero hypothesis
requires the pattern of zeros to be one of five
types, shown in Fig. 1 of Ref. 1. The residue
ratios for the five patterns are

(t) T,=V,=0, T,=V,=T,=-V,

I (¢) v,=0, T,=-v,=T,=V,=3T,,

I~ () T,=0, T,==V,==T,==V,=3V,, (6)
ur v,=v,=v,=0, T,=T,=T,,

- (¢) V,=T,=T,=0, T,==V,=V,.

The allowed residue ratios are these and the sets
that may be obtained from cyclic permutations

of the channel indices s, ¢, and #. The index ¢
following the pattern number is used to distinguish
the given ratios from those of the other permu-
tations.

In the rest of this section, we will demon-
strate the following two points. (@) The require-
ment of one of the patterns of Eq. (6) is equiv-
alent to the algebraic conditions of Eqs. (2a)-(2c)
and (3). (b) If the duality conditions of Eqs. (2a)-
(2c) are assumed, the linear-zevo hypothesis
implies one of the patterns of Eq. (6). This is
one form of Odorico’s contention of Ref. 1. To
my knowledge, this contention has not been dem-
onstrated in the literature.

FIG. 1. Resonance intersection region when reso-
nances of both parities exist in s and ¢ channels.
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First we consider point (a). One can verify
by substitution that each of the five patterns of
Eq. (6) satisfies Eqs. (2a)-(2c) and (3). Thus,
we need only show that Eqs. (2a)-(2c) and (3)
imply one of the five patterns. If T, V,, T,
and V, are known, Eqs. (2b) and (2c) can be used
to determine T, and V,. Hence, we classify the
possibilities by the number (N) of these four s-
and t-channel residues that are zero. If N=4,
i.e., all four are zero, it follows from Eqs. (2b)
and (2c) that 7, and V, are zero also. The num-
ber N cannot be three, because of Eq. (2a).
Therefore, a nontrivial solution requires N<2.

We consider the possibility N=2. If the two
zero residues are T, and V,, Egs. (2a)-(2c)
imply the pattern I(¢). Similarly, if the zero
residues are T, and V,, pattern I(s) results. If
one of the f-channel residues and one of the s-
channel residues are zero, Egs. (2a)-(2¢) imply
one of the patterns III*, III (s), II"(¢), and III"(x).

We next consider the possibility N=1. If the
zero residue is V,, Egs. (2a) and (3) require that
T,=-V,=3T,. Then, Egs. (2b) and (2c) imply
pattern II*(¢). If the zero residue is T,, V;, or
T,, similar arguments lead to pattern II"(¢),

IT* (s), or II"(s), respectively.

The only remaining possibility is N=0. In this
case, Egs. (2a) and (3) imply either that T ==V,
=T,=V, or that T,=V, and T,=-V,. In the first
of these two alternatives, Eqs. (2b) and (2c) im-
ply T,=V,=0, so the pattern is I(x). On the other
hand, if T,=V, and T,=-V,, Egs. (2b) and (2c)
imply that | T, |#| V,|. Then, Eq. (3) requires
that either T, or V, is zero. One of the patterns
IT*(u) or II-(u) is implied. This completes the
proof of point (a).

We next turn to point (b) mentioned above. Be-
cause of the equivalence of point (a), it is suffi-
cient to show that Eqs. (2a)-(2c) and the linear-
zero hypothesis imply Eq. (3). If one or both the
residues T, and V, is nonzero for any channel i,
it follows from Egs. (2a)—-(2c) that there must be
at least one nonzero residue in at least one of the
other two channels. Thus, there must be a corner
of the Mandelstam plane where resonances inter-
sect. We take this to be the s-¢ corner, and con-
sider first the case in which 7,, V,, T,, and V,
are all nonzero. We call such a corner a dense
intersection corner. The intersecting resonances
are illustrated in Fig. 1. It has been shown earlier
that a line of zeros through a resonance inter-
section in this case must be in one of the two di-
rections of the dashed lines in Fig. 1. These lines
correspond to ds/dt=1 and -1, so Eq. (5) implies
that RY/R?=2x1. Since this is true for all parity
combinations, the residues must all be of the same
magnitude, i.e.,

|Ts|=|Vs|:|Ttl=|Vt|' (7

Clearly, Eq. (7) implies that Eq. (3) is satisfied for
i equal to s and ¢{. Furthermore, it is easy to show
that if Eq. (7) is satisfied, Egs. (2a)-(2c) imply
that one or both of T, and V, is zero, so that Eq.
(3) is satisfied for all three Mandelstam channels.
Therefore, Eq. (3) is satisfied if there is a dense
intersection corner in the Mandelstam plane.

We next consider intersection corners that are
not dense. If one of the residues (V and T) is zero
for each of the three channels, Eq. (3) is satisfied,
so the only type of intersection corner we have
left to consider is one where exactly one of the
four residues is zero. For definiteness, we con-
sider the s-¢ intersection region, with T, or V,
equal to zero. In such a case, one can show from
Egs. (2a)—(2c) that neither T, nor V, is zero. It
follows that the s-u intersection corner is dense,
so that Eq. (3) must be satisfied. This completes
the proof of point (b).

It is seen from Fig. 1 of Ref. 1 that in the case
of patterns II* and II- some of the zero lines
pass through two intersection regions. It was
pointed out in Ref. 1 that in these cases the linear-
zero hypothesis cannot be true for arbitrary val-
ues of the trajectory parameters, but can be true
if a4(s)+a,(t)+a,(u)=1. This is equivalent to the
condition

2K-1= 3M2-4 2, (8)

where M and u are masses of the vector and pseu-
doscalar mesons, and K is the slope (da/ds) of
the trajectories.

III. THE SOLUTIONS FOR PP SCATTERING

It was stated in C1 that there are two solutions
to Odorico’s conditions for PP scattering. In both
solutions the VPP and TPP interactions are SU(3)-
symmetric, and the n-X mixing angle is
6 =tan"%(1/V2), where

n=(cosb)ng—(sind)n,, ©)
X=(sinf)ng+ (cosH)n,.
The VPP interaction involves only octets; the
over-all interaction constant is denoted by fgqs-
The constant d, ;, denotes the interaction of the T
trajectory multiplet i with P mesons of multiplets
j and k. The ratios of interaction constants in

the solutions are
faaa=('§).l/2dssa, d 1g= ‘(1?8) Uzdssa, (10)
dg19=7dggg, dyyy=— (‘Z)llz'rzdsaa .

The two solutions are the quark-model solution
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and Odorico’s solution. They differ only in the
parameter », which is given by

r(quark) = —(2) V3,

(11)

r(Odorico) =(&)"2.

The constants fges°, degs’, and dg,° are normalized
to be equal to the sum over all PP states coupled
to a particular V or 7, while d;,, is equal to
d(T;P,P;), where j is any octet state and P, is the
P singlet.

In the remainder of this section we discuss
some experimental evidence concerning which
solution is better, and also a physical interpre-
tation of Odorico’s solution.

A. Experimental Evidence

The predicted n -X mixing angle of ~35° in both
solutions is quite different than the value of ~10°
that follows from the assumption that the Gell-
Mann-Okubo mass formula applies to the squares
of the P-meson masses. However, since the
mass splitting is proportionally much larger in
the P multiplet than in any other multiplet, the
mass formula does not provide a compelling argu-
ment for a small mixing angle.

The Odorico and quark-model solutions differ

only in interactions involving the n or the X meson.

Some experimental arguments in favor of the
Odorico solution are given in Ref. 1. We present
here only one additional argument, involving the
nm/KK branching ratio of the A, meson. Exper-
imentally, this branching ratio is about 2.8+ 209%.”
The ratio of the fifth power of the decay momenta
is

EB(nm)/ k(KK )= 2.9.

Therefore, the experimental interaction-constant
ratio

R=[ d(A,nm)/d(A,KK)]?

satisfies the relation R=1, the approximate equal-
ity sign applying if the phase-space factor for the
D-wave decays is £° and the inequality applying if
the phase-space difference is weakened by the
inclusion of a finite-range factor. The predicted
values of R are R(quark)=0, R(Odorico)=1, and
R(no mix)=%, where (no mix) corresponds to a
pure octet assignment for the n. The experimen-
tal branching ratio rules out the quark-model so-
lution and is consistent with Odorico’s solution.
However, one cannot rule out the possibility that
the 7n is nearly a pure octet particle.
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B. A Possible Physical Interpretation
of Odorico’s Solution

If one disregarded Odorico’s hypothesis, and
looked for solutions of the basic bootstrap equa-
tions [ Eqs. (2a)-(2c)] for PP scattering, the
parameter » of Eq. (10) would be arbitrary.?

This arbitrariness is present only because the P
mesons cannot be internal particles in the ampli-
tudes; i.e., P-meson Regge trajectories do not
contribute. In previous references, the author
has applied a “complete” set of bootstrap equa-
tions to the scattering amplitudes of a hypothet-
ical set of mesons of both particles.*#® The set
of equations was complete in the sense that the
set of internal particles (lowest states on the
Regge trajectories) was the same as the set of
external particles. There was only one solution
for the interaction constants, corresponding to
the quark model; i.e., »=-(3)"2. (This model
did not predict the n-X mixing angle, however.)

Because of the complication of particle spin,
the correspondence with reality of such a com-
plete set of bootstrap equations is not very clear.
Turthermore, the complication of spin has pre-
vented us from applying Odorico’s linear-zero
hypothesis to amplitudes involving two or more
external vector or tensor mesons. However,
these considerations suggest that when accurate
bootstrap equations are formulated for amplitudes
involving P-meson trajectories, the quark-model
solution will satisfy the equations, and Odorico’s
solution will not. Consequently, we attempt to
modify Odorico’s solution so that it is equivalent
to the quark-model solution for processes involv-
ing internal P mesons.

We will show that such a modification can be
made, but only if a tenth P meson, another SU(3)
singlet, exists.® This meson is denoted by X’ or
(1), and does not mix with the n or X. The addi-
tional interaction constant ratios, that supplement
Eq. (10) with » =(&)'/2, are

dgyrg= (1_30)1/2d 888 9
dyyn=- Zaa)llzdaas, (12)
dyy oy = '(Z%)l/zdaaa-

We now demonstrate that this extension is equiv-
alent to the quark model for processes with inter-
nal P mesons, and satisfies the PP scattering con-
ditions of Odorico. One always can add a particle
that does not interact with anything to the solution
of any set of bootstrap equations. We let (1), de-
note such an inert P meson, and (1), denote a P
singlet with the interaction constants of the quark
model. We let 5, and X’ be orthogonal mixtures of
these singlets, i.e.,
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n,=(cos )(1), + (siny)(1) ,
) (13)
’==(siny)(1), + (cosy)(1), .

Standard bootstrap equations such as Egs. (2a)-
(2c) or those considered in Refs. 4 and 8 are linear
in the sense that if they are satisfied with either of
two particles in the role of one of the external me-
sons, they are satisfied for any linear combination
of the two particles. Therefore, such bootstrap
equations are satisfied for any value of the angle ¥
of Eq. (13). The choice cosy =1 leads to the usual
quark model, for which the meson X’ is not detect-
able. The choice cosy = —3 leads to the modified
Odorico solution, with the X’ of Eq. (13) identified
with the (1’) of Eq. (12) and the 7, of Eq. (13) mixed
with the 7y, as in Eq. (9).

We have left to demonstrate only that PP- PP
amplitudes involving the X’ in this modified
Odorico solution satisfy Eq. (3), the extra con-
dition resulting from the linear-zero hypothesis.
This is obvious, however, since the V trajecto-
ries do not contribute in any channel if one of the
P mesons is a singlet.

The fact that a pure SU(3) singlet satisfies
Odorico’s bootstrap conditions was not mentioned
in C1 or Ref. 1, because in these references two
orthogonal singlet-octet combinations were re-
quired for a solution. A pure octet n does not
satisfy the condition of Eq. (3).

Therefore, if Odorico’s solution corresponds
to reality, we expect the X’ to exist. Most of its
properties should be similar to those of the
X(958 MeV). There are various experimental
indications of neutral, nonstrange mesons of un-
known spin and parity in the mass region ~1
BeV/c2. It is hoped that further measurements
will reveal if any of these is a sister of the X.

The 1422-MeV E meson is an isoscalar meson
of even G parity; the spin and parity of the E are
believed to be either 0~ or 1*.!%!! If the 0~ assign-
ment is correct, the mass of the E is smaller than
that generally associated with the orbital angular
momentum 2, quark-antiquark multiplet of the
quark model, and larger than that generally asso-
ciated with the I=0 ground state. The =2 assign-
ment would be especially anomalous, since no
isoscalar members of the known meson multiplets
are very light compared to the average multiplet
mass. Hence, the E is a candidate for the pre-
dicted tenth member of the ground-state multi-
plet.

IV. TESTING THE LINEAR-ZERO HYPOTHESIS

The theoretical justification of some bootstrap
conditions is better than that of some others. For

example, Eqs. (2a)-(2c) follow from duality and a
plausible assumption concerning the proportion-
ality of Regge residues.* If one of the channels
is exotic, the two equations of Eqs. (2a)-(2c) that
involve the exotic channel may be derived in
several ways, and are especially believable.?
On the other hand, there is no strong theoretical
justification for the linear-zero hypothesis, al-
though it clearly has the virtue of simplicity.
Furthermore, this hypothesis could not be valid
in the SU(3)-symmetry limit, unless the mass
condition of Eq. (8) were satisfied.

In view of these considerations, it is important
to test the linear-zero hypothesis experimentally,
as has been emphasized by Odorico.>®!* How-
ever, it is important to notice that for many ampli-
tudes the linear-zero hypothesis is not needed to
predict the residue ratios. For example, if one
of the Mandelstam channels is exotic, or if tra-
jectories of only one signature can contribute in
each channel, then Eqs. (2a)-(2c) are sufficient
to predict that the residue ratios satisfy either
pattern I, III*, or III- of Eq. (6). These residue
ratios are such that the path of a zero as it cross-
es a resonance intersection is in the direction of
a sequence of resonance intersections. Hence, the
approximate linearity of the zero is nearly as-
sured by the duality bootstrap conditions. Cer-
tainly, it is worthwhile to study such amplitudes
experimentally. However, the discovery of linear
zeros in these amplitudes is not a compelling
reason to expect zeros to be linear in other ampli-
tudes. In order to test Odorico’s linear-zero hy-
pothesis, one must study amplitudes for which
the approximate linearity does not result from
more familiar requirements.

In the case of PP scattering, the duality boot-
strap equations for amplitudes with an exotic
channel, together with isospin symmetry, deter-
mine the residue ratios for all amplitudes that
do not involve an n or an X meson. These resi-
due ratios correspond, of course, to the linear-
zero patterns of Eq. (6). We demonstrate this
for the 7K—n K amplitudes first. If the two pions
are charged, then one of the two strange (7K)
channels is exotic and the nonstrange channel is
neutral. The duality conditions, Egs. (2a)-(2c),
predict the residue ratios of all four contributing
trajectories, i.e., the p° and f trajectories in
the nonstrange channel, and the V and T, K * tra-
jectories in the nonexotic strange channel. The
residue ratios of these trajectories in 71K=-7K
amplitudes involving one or two neutral pions then
follow from isospin symmetry. In the case of
ma—m7 amplitudes, the argument is similar, but
simpler, since only the p° and f trajectories are
involved. In the case of KK~KK amplitudes,
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there is always an exotic channel.

QOdorico has cited experimental evidence for
approximately linear zeros in 7-7 and 7-K scat-
tering amplitudes.® It is not clear at present if
this linearity is a result of duality and isospin
symmetry, or if it is a general property of PP
amplitudes. As pointed out in Sec. III, the n-X
mixing angle and the singlet-octet interaction
ratio » of Eq. (10) are not determined from the
duality bootstrap conditions. Therefore, these
parameters are important for testing the linear-
zero hypothesis.

Some of the better tests of the linear-zero hypo-
thesis involve processes other than PP scatter-
ing. The prediction of C1, that the VP-photon

| =3

interaction involves an SU(3)-singlet part of the
photon, does not result from duality bootstrap
equations alone. Another important test involves
pion-nucleon scattering amplitudes, recently
studied by Odorico.?® If the amplitude is 7*p— 7*p,
no channel is exotic and no trajectory signature

is forbidden in any channel. The discovery of
linear zeros in 7p amplitudes would provide strong
support for Odorico’s basic hypothesis.
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