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A new model for m*d<-—pp at high energy, based on the impulse approximation, is formulated. It is
observed that the shape of the differential cross section for this process is qualitatively consistent with
the deuteron momentum-space density, implying that nuclear structure plays a dominant role in
determining the momentum-transfer distribution. Despite the drastically nondiffractive nature of the
reaction, a multiple-scattering-like series can be formulated from the Lippmann-Schwinger equation and
evaluated by the linearized-propagator method. The resulting amplitude yields a good four-parameter fit
to pp —m*d data at 3.74, 10.0, 14.2, 21.1, and 24.0 GeV/c. Arguments against some aspects of the
Reggeistic interpretation of this process are also presented.

I. INTRODUCTION

The reaction pp— m*d at high energy has recent-
ly been studied rather extensively in two experi-
ments,* but corresponding theoretical progress
has been lacking. Barger and Michael? analyzed
the process using Regge exchange of the N, and
N, trajectories, the latter being included (via
broken exchange degeneracy) to account for the
absence of a wrong-signature nonsense zero in-
dicated in the N, residue by backward 7*p data.
Little other work has been published since that of
Yao® in 1964, which used a triangle-diagram ap-
proach in which an exchanged pion scattered back-
wards at its second vertex.

In other high-energy deuteron reactions, both
coherent and incoherent, it is well accepted that
the impulse approximation, with or without multi-
ple-scattering corrections, should be used. The
essential content of this approximation is that a
high-energy particle (momentum k) incident upon
a deuteron interacts with only one of its nucleons,
leaving the other as a spectator. The momentum
distribution of the latter should then simply be
representative of the deuteron’s momentum-space
density. The corresponding view of the process
n*d— pp is that one of the nucleons absorbs the
pion and flies away, leaving the other to emerge
unscathed, as shown in Fig. 1(a). Its momentum
(in the deuteron rest frame) is kinematically re-
lated to the invariant momentum transfer squared
t by

p*=[M+m)* ~ t][(M - m)* - t]/4M?, (1)

where M and m are the deuteron and nucleon mass-
es, respectively. Carrying out the impulse ap-
proximation, one expects to find

2 (n*d~pp)=g WP ), (2)

where g(t) is the coupling constant for the vertex
in Fig. 1(a), and P,(p? is the deuteron momentum-
space density distribution.

We show in Fig. 2 a comparison of experimental
pp—mn*ddata at five different proton lab momenta
with Py(p%) =[los®*+ |¢p(@)|2]/47, where g5 and
¢ p are the s- and d-state deuteron wave functions
obtained from the Reid soft-core potential.? It is
notable that P4(p?) (which has been normalized
arbitrarily in this graph) decreases at a rate
which is quite comparable to the near-forward
differential cross section. While the agreement is
not exact, it seems significant and suggestive that
the decrease of the differential cross section over
two orders of magnitude is predominantly a result
of the nuclear structure of the deuteron.

This viewpoint is antipodal to the Reggeistic ap-
proach used by Barger and Michael. Instead of
treating the deuteron as an elementary particle,
we emphasize its composite nature. Since there
is no nucleon exchange in the traditional sense,
we lose information on the energy dependence pro-
vided by Regge theory, but in return we gain a
new insight into the momentum-transfer depen-
dence as a result of the nuclear structure.

In this paper we wish to present a derivation
yielding the impulse approximation (2) as its lead-
ing term, but including the corrections to it as
well. The impulse approximation has previously
been applied only to processes in which nothing
drastic happens to the deuteron, whereas in high-
energy disintegration by pions it is violently broken
apart. As we shall show, however, a model of this
type can indeed be formulated, although it differs
somewhat in interpretation from the usual situa-
tion. The results lead to a multiple-scattering
series very much like Glauber theory, even though
the process is not itself diffractive in the usual
sense. To our knowledge, this approach has not
been tried before.
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FIG. 1. Diagrams describing the process n*d—pp:
(a) impulse approximation, in which the pion interacts
with only one nucleon; (b) double-scattering term, in
which the pion scatters elastically forward before being
absorbed; (c) double-scattering term analyzed by Yao
(Ref. 3), involving backward pion-nucleon scattering
prior to absorption.

II. DERIVATION OF IMPULSE APPROXIMATION

We consider the interactions of a three-body sys-
tem including a pion (mass p) and two nucleons
bound in a deuteron, including the possibility that
the pion can be absorbed (or created) by either of
the nucleons. The Hamiltonian of the system, as-
suming only two-body interactions, is written

H=Ky+K,+K 1+ V, + Ve + Vo + A, +4,, 3)

where K, is the kinetic energy of particle ¢, V,; is
the elastic scattering potential between ¢ and j,
and A, stands for the pion creation-plus-annihi-
lation operators on nucleon N. The Lippmann-
Schwinger equation will be used to obtain a cluster
expansion for the total transition matrix in terms
of the individual interaction terms. To show the
process clearly, we consider first the scattering
from a single free nucleon, omitting K,,, V,,, V.,
and A, from H to write

Hyee =Ky +K o+ Vo, + A, . (4)

Choosing the kinetic energies as the unperturbed
Hamiltonian, we obtain a Lippmann-Schwinger
equation

Toee=(Vip +A,) + (Viyp +A,)G g Tiree (5)

with Gy =(Ex -K, —K, +i€)”!, and an iterative solu-
tion (omitting subscripts for neatness)
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FIG. 2. Differential cross sections for pp — n*d at
incident momenta 3.74, 10.0, 14.2, 21.1, and 24.0 GeV/c.
The dashed line, arbitrarily normalized, shows the
t variation expected from the deuteron momentum-space
wave function. The solid curves are our fits.

Thee=(V+A)+ (V+A)Gx(V +A) + -+
=(V+A)1-Gx(Vv+A)]. (8)
By making use of the operator identity
R(F+G)=R(F) +R(G)+R(F)R(G) +R(G)R(F)+-++ ,

(M

where R(F)=F[1 - F]~! and the sum contains all
combinations in which R(F) and R(G) alternate,
this result can be rearranged as a power series
in A,

Tiee =V(1 = GxV)™!
+(1"VGK)-1A(1—GKV)-1+"' s (8)

where the omitted higher-order terms correspond
to multipion intermediate states. To the extent
that these may be neglected, we can identify

Ta=V(1-G,V)! 9)
as the elastic scattering part of Ty, and
A =(1-VGy) Al =G V)? (10)

as the pion creation-annihilation part, rerormal-
ized by the elastic scattering.

Now let us proceed similarly in the three-body
case. We choose H,=K,+K,+K ,+V,, as the un-
perturbed Hamiltonian, and V=V, ,+V,, +4,+A,
as the perturbation, with G,=(E - H, +i€)™"! the
propagator for the nd system. The T matrix is
now the solution of



7 IMPULSE APPROXIMATION AND MULTIPLE-SCATTERING... 3351

T= (pr + va +Ap +An)
+(Viap+ Ve + A, +A,)G,T . (11)

Proceeding similarly, we find

T=Ty+A+++-, (12)
where
T0=(V”+V”)[1 "G(J(Vﬂp"'V-rm)]-x (13)

generates the usual elastic multiple-scattering
series, while

A=[1- (Ve + Vya)Gol M4, +4,)
X[1=Go(Vyp+ V)™t (14)

describes the creation-annihilation process re-
normalized by the nuclear interactions, and the
higher-order terms again are multipion inter-
mediate states. A further clarification of 4 is
now possible, however, by using the identity (7)
again. After some manipulation we find that

A=), A4,p,+),4,p,, (15)
where
Ay=(1-VyGo) " Ay(1-GoVy)™

describes the creation-annihilation process on
nucleon N, renormalized by the elastic scattering
and the deuteron binding potential. The rescatter-
ing operators X, and p, are given by

A= [1 +R(vaco)][1 - R(VﬂpGo)R(anGo)]-1 ’
(16)
Py =[1=R(GoV 1,)R(GoV 1) [1 +R(G,V 1)),

with A, and p, obtained by simply interchanging V.,
and V,,. Explicitly, we have

ApA,0p=[1+R(V,Go) + R(V yGOR(V ,Go) +++ + 14,
X[1+R(GoV yp) + R(GoV yp)R(GoV p) ++ ]
=A, +R(V.,,"GO)A-p +A.’R(GOV“_")+- .., (17)

The series is easily pictured graphically with each
R corresponding to an “elastic scattering.”

The impulse approximation for this process
clearly corresponds to neglecting all of the rescat-
tering terms in (17), so that

A=A, +A,. (18)

In the usual procedure, one would also equate the
single-scattering operators A, with the free-scat-
tering operators corresponding to A, in Eq. (10).
Here, however, we have
Ay=A,+Vy(Go-Gp)A, +A,(Go=G)Vy+-+

I

(19)

with the difference between bound and free propa-
gators given by

Go=Gy=GgVpGy(l=V,,Gy)™t.

Since the kinetic energies of the bound nucleons
are fairly large (i.e., they are a considerable dis-
tance off the mass shell), G, — G, will not produce
negligible corrections, and A,, cannot be identified
with A,. In Regge language, this means one would
not expect the coupling to correspond to the nu-
cleon trajectory’s residue as determined, e.g., by
Chiu and Stack,’ in fitting 7*p backward scattering.
It should also be noted that the dependence of 11,,
on the deuteron binding means that the coupling
obtained from it may be a function of the nd center-
of-mass energy s as well as of the momentum
transfer ¢.

We shall therefore not assume any connection
between AN and the pion-nucleon coupling constant,
but simply write

A, =g(k-37(K)-F+c.c., (20)

where G and 7 are_the nucleon spin and isospin
operators, and 7(k) is the (isovector) annihilation
operator for a pion of momentum K. The matrix
element of A between the initial and final states
can then be taken straightforwardly, using the
formalism for deuteron breakup given in an earlier
paper.® We write the initial state [i)= [k )@4)l x4),
where |k ) is the pion state, and

| 0a) | xa)=27% [ d*blos @ + (118 o, @S]
x| B31-5)xe) (21)

is the usual deuteron spatial wave function with d
state included, |y,) being the appropriate SU(4)
spin-isospin state. (Both ¢g and ¢, are functions
of p? only, but we shall find it convenient to indi-
cate the vector P explicitly.) The final two-nucle-
on state is written analogously as|f)=[0)[@.)|xs.),
where |0) is the pion’s vacuum state,

l@ge)=27215,)1B,0+ 5.0 5], (22)

and |x,,) is the approximately symmetrized spin-
isospin state. Carrying out the calculation with
the matrix elements of Eq. (20) leads without dif-
ficulty to the result (2),

do

a0 (T d~pp) =g*(OP,(p?),
where

P(p?)=4n[| @s®) 2+ | 0B 1?] (23)

is the deuteron momentum-space density.
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[II. MULTIPLE-SCATTERING CORRECTIONS

In order to interpret the correspondence between
the differential cross section and the deuteron den-
sity shown in Fig. 2 as a manifestation of the first-
order result derived in Sec. II, we must establish
that the correction terms in (15) do not alter the
good agreement of the two. In this regard we may
note that, unless an appropriately increasing ¢ de-
pendence is ascribed ad hoc to g, the differential
cross section is initially somewhat steeper than
P,(p?), but then becomes less steep than the im-
pulse approximation alone.

This behavior is analogous to that expected from
the usual analyses of rescattering effects. We
therefore shall attempt an evaluation of the cor-
rections to A arising from succeeding terms of
(17), such as

AW = A, R(GoV,p) + A, R(GV ) - (24)

We shall relabel the nucleons 1 and 2, since they
are isosymmetrically indistinguishable. Either
term of (24) may then be expanded in the form

AR(GV,)=A,(GoV, + GVaGoVp+o00). (25)

This series is easily pictured graphically, the
first term corresponding to Fig. 1(b).

It is also illuminating to expand it in terms of
the off-shell scattering matrix ¢, =V,(1- G,V,)™%,
rather than V,. Then one obtains

AR(GV,)=A,Got,[1+(Gg =~ Go)t 5] ™" . (26)

Since, as mentioned above, an expansion involving
(Gx - G,) is not expected to converge well for this
process, we see that the corrections are more ap-
propriately related to the pion-nucleon potential
V, than to the scattering operator obtained from it.
We shall evaluate these corrections by making
use of the linearized propagator technique, which
Osborn” has shown is the essential gambit of the
Glauber® multiple-scattering theory. (The usual
Glauber theory cannot be assumed here because it
concerns diffractive scattering, with small, trans-
verse momentum transfers.) To simplify our
treatment of these terms we shall temporarily
omit the d-state part of the deuteron wave func-
tion, denoting it simply as ¢(p). The matrix ele-
ment of the first term of Eq. (25), for example, is
then given by

(F1A,GoV, )3y =06(k - B, - B)A,(K, Bo)
27)

4@ 5= [ 4% o®e®, - DG, By B~ )

X vz(k; _ﬁ; -ﬁl - f)’ -52) ’
where

= > > >

(RKP |V, [R)|B) =6(K + P - k- D)0, (K, B;k, D)
(28)

describes the pion-nucleon elastic interaction in
Fig. 1(b) and G,(, ., P, - D) is the propagator for
the three-particle intermediate state with the in-
dicated momenta. For notational ease, we have
also now written g (¢) as a function of the momen-
tum P, - D transferred to the struck nucleon.

The crucial step in simplifying this integral is
the assumption that the amplitude Eq. (28) is ap-
preciable only for certain values of the momentum
transfer. Diffractive elastic scattering at high
energy implies that the matrix element of £, is
small unless P, ~ ~P, and we shall assume the
same is true for v,. The propagator

Go(B, B, By = D) =[E+ i€~ p°/2m - p,*/2m
- ®,-p%/2u]"
is then well approximated® by
Go(®, Bz, B, - B) = 2u[k* + i - (B, - D]
zZu[ZE-(ﬁz +P)+i€] 7!, (29)

The integration over the component of P parallel
to k is thus converted into a simple pole term.
Neglecting the principal part of the integral in
favor of the 6 function yields

Go(-ﬁ,-ﬁza-ﬁl--ﬁ)zﬂ*’:zé(Pn*’Pz 1) (30)

where | denotes the component parallel to k, lead-
ing to

A 12 (E, 52)

in T S S S
~ BT f a’p, ¢(®g (b, - Bvz(k, -B; 5, -5, B.) ,

(31)

with the constraint p,=-p, .
This integral can be evaluated by approximating
the functions involved diffractively. We write

v,(K, -B; B, - B, B,) = Fe~*Pe*7).%
g(ﬁl_ﬁ)zgoe'y(h';)z’ (32)
-Ap2

¢(®) = g.e

and it follows that

IR —TF 2.2/ (asy+n)

A12 k g(k)(p(ﬁz)a+y+xe L ’ (33)
where p, is the component of B, normal to kK. We
expect this formula to be a good approximation to
A, even if g(k) and ¢(p) are not precisely of the
form (32), provided their slopes are satisfactorily
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represented by ¥ and A. The latter is true for the
Reid soft-core wave functions we have used, for
which P,(p?) <exp(-5.75p%) quite accurately over
the range of p involved here, corresponding to A
=2.875 GeV~2.

The succeeding terms of the multiple-scattering
series can also be evaluated in this way. With the
above parametrization of v,, it follows that
KB V,G,V, |K) D) =6(K + P - k- B),2(K, B; &, ),
with

2
02 (R, B, 5)= - L pars?e, (34)
where K, is the component of K normal to k. The
generalization to

—J

- - i - gl - > - % 2 Fz
(KKP|V,R(G,V,) k) |D)=6(K+P-k- p)mz:a’

<§|<§| Vz(Gon)"IE> I-ﬁ) = 5(1-(."' P-k- ﬁ)
sz"(ﬁ, ﬁ; E: )

can be shown inductively to yield

F (in°uF -
»,"(K, Bk P)“—‘n+1< k:: ) e-0K1?/(nt))

(35)

In fact, the summation over all terms of (35) can
be carried out using the integral relation

f bdbe "/ J(bK ,) =27°‘ e~ Ki?/n
[

to obtain an impact-parameter representation

f bdb .2/aJ°(bKL) ' (36)

in?uF2/ka

The final integration involving A'l, however, cannot be carried out analytically using this integral form.

The series obtained for
(fIAR(G,V,) |4y =8k - B, - B,) @, (K, B,)

is given by

(k pz) g(k‘ﬂ(ﬁz)z

a+n(y+)\)< ka

in “F> A2p 2/(y+rsalm)

(37

If all terms in Eq. (37) are to be included in the amplitude, however, it is also necessary to keep the
higher-order terms in Eq. (17) describing elastic scattering on nucleon 1 prior to annihilation, e.g.,
(flA,G,V,G,V,|i). If we neglect internal quantum numbers, it is reasonable to assume that G,V, com-
mutes with G,V,. In that case, all G,V, terms may be moved to the left, and the relevant part of Eq. (17)

becomes

(m +n 1)! - .
1p1 ZZA “mln - 1) (G V)™Go V2",

m=0n=1

(38)

the binomial coefficient arising from the number of possible orderings of terms. The matrix elements of
(38) for m > 0 can also be evaluated as above [assuming the same parametrization (32) for v, as for v,]

with the result
(FIALG V™G Vo) |3) =85, + B, - K) By &, B,),

where

@i, 5)= [ @, [ a*p, o®e B, - B)o, "B -~ B)v, G, +H)

 a2g(®)e(B,) (mzup ntm ( a  ya
T (my + a)mr + @) +nya ka) exPl:Azplz/)‘+n+m-y+aﬂ (39)

This form reduces correctly for m =0 as well, so we may write

(flAp,|i) =6(k =P,
with

_ﬁz)g (B<P(P2)[1 + C(plz)] ]

2

(40)

m=0n=1

() e/ ) W

2 (m+n-1)! a
Clp.%) = ZZ mlin =1 (my+a)nr +a)+nya\ ko

This final result gives, in the diffractive approximation employed, the amplitude for the process n*d— pp
with all orders of multiple scattering correctly included.
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IV. EVALUATION AND FITS TO DATA

The series (41) describes the multiple-scatter-
ing corrections to the impulse approximation re-
sult (20). It may be noted at the outset that the
envelope of these corrections, as a function of p,?,
is simply a multiple of exp(Ap,2?). If |C(0)|< 1,
we obtain the usual situation in which single scat-
tering predominates at small momentum transfers,
but multiple scattering takes over for larger p, 2.
[In the latter situation, the ¢ dependence is simply
¢®,)e*?1* = ¢(,,).] This behavior is perfectly
consistent with the data.

Let us now estimate the magnitude of the correc-
tions. The relevant parameter in the expansion
(41) is the power term 72%u|F|/2ka, which de-
pends on the magnitude and slope of the matrix
element of the pion-nucleon interaction V. Al-
though we have pointed out that this quantity may
differ measurably from the off-shell scattering
matrix, and a fortiori from the on-shell one, it
seems nonetheless reasonable to estimate it from
the available data. In the normalization used for
the expansion (8), the total cross section will be
0p=-1673u Im(T ),/k, where (T), is the forward
matrix element of 7. Taking |F|=-Im(T ), and a
total cross section of 25 mb yields

T2u|F|/2ka=~(1.3 GeV™?)/2a.

If the slope a is taken from typical diffraction
peak values, say, 2a~10 GeV~2, then each correc-
tion term is about 15% of its predecessor, a nu-
merical relation common in high-energy multiple-
scattering phenomenology. This implies that our
corrections are indeed corrections, in the sense
that they represent a decreasing series of terms.
To test these results more quantitatively, we
have fitted them to the experimental data. Terms
up to n=m =4 in the sum (41) were included explic-
itly. In the higher-order terms we assume that
a/4x and a/4y are negligible, so that the contri-
bution of terms with » >4 and m > 4 can be approx-
imated according to
rin O a2 m =) iw 2 \"tm
C'ps?) =T 2 « “mmlnl ( ka >

m=4n=

(42)
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FIG. 3. Evaluation of the series
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appearing in the multiple-scattering series, for real
values of z.
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The double summation in C’(p,?) cau be trans-
formed into

o k=4 1 )
s(z)=2[}: m}(k_ DI, (43)

k=8| m=4

which can be evaluated numerically. It does not
converge particularly quickly, requiring terms up
to =50 to achieve 0.1% accuracy for |z|=0.5.
The values obtained for real z are shown in Fig. 3.
The remaining terms in Eq. (41) are those with
m<4and =>4, or vice versa; these can be
summed explicitly.

The amplitude obtained in this way was fitted to
experimental pp + 7*d data™!® at proton lab momen-
ta 3.74, 10.0, 14.2, 21.1, and 24.0 GeV/c, taking
80 7, and z as free parameters. The best-fit val-
ues of these parameters are summarized in Table
I, and the fits are shown graphically in Fig. 2; the
agreement is good at all five energies.

The values obtained for g, decrease proportion-
ately to £7'*?® to a good approximation. As point-
ed out earlier, this quantity is not directly inter-
pretable as the usual pion-nucleon coupling con-
stant due to the presence of the deuteron binding
potential. Its simple energy dependence implies
a corresponding relationship between A, and A,
via (19). The values of y show somewhat more

TABLE 1. Parameters of best fit to pp — 7*d.

Phb 80 Y
(GeV/c) (mb/2x 10-2) (GeV~?) Rez Imz x*/point
3.74 4.23 +0.06 5.08+0.09 0.396 +0.003 0.313+0.002 0.98
10.0 1.30 +0.02 12.8 +0.2 0.438+0.010 0.282:+0.010 1.05
14.2 0.837+0.018 24.3 0.5 0.339+0.008 0.432 0,004 1.58
21.1 0.5320.011 14.2 +0.3 0.408+0.011 0.339+0.006 0.62
24.0 0.339+0.008 19.4 +0.4 0.380+0.008 0.391+0.005 1.93
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fluctuation, primarily at 14.2 GeV/c, where the
data show much less flattening for larger ¢, but a
(Regge) logarithmic dependence seems a reason-
able guess at their variation. Thus, the coupling
A, of a pion to a bound nucleon, despite the com-
plicated dependence on internal deuteron dynamics
in (19), seems phenomenologically to have a rath-
er simple and not unfamiliar energy behavior.

V. CONCLUSIONS

It appears that the reaction 7*d — pp can be de-
scribed quite well by the impulse approximation,
even though some of the amplitudes may be far
from the mass shell. The momentum-transfer de-
pendence of the differential cross section is quite
similar to that expected from the deuteron wave
function. This result suggests that nuclear effects
are quite important in this reaction; even at high

energies, the deuteron should not be treated as an
elementary particle.

A multiple-scattering series has been derived
for processes involving creation or annihilation,
using the Lippmann-Schwinger equation, which is
applicable to 7*d - pp even though the deuteron is
not a fixed composite system. Evaluating this
series via the linearized propagator technique
with diffractively parametrized amplitudes, we
find that the theory gives good four-parameter fits
to the data. It is hoped that this method will be
applicable to other processes as well, e.g., pd
-ntrn.
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