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The existence of long-range azimuthal correlations in inclusive data is known to imply that the
Pomeranchuk singularity is not a simple pole. A simple independent-emission model, which shares many
properties of multiperipheral models except that the produced particles are not ordered along a
multiperipheral chain, possesses these long-range correlations. Therefore the leading J-plane singularity

in this model is seen to be a cut.

I. INTRODUCTION

The use of s-channel unitarity constraints in
high-energy physics takes two distinct and com-
plementary forms. One can either discuss simple
models for production processes and investigate
the nature of the Regge singularities they generate
via unitarity in elastic or other amplitudes, or one
can construct a model for the high-energy be-
havior of an amplitude and use unitarity to con-
strain production models. In this paper we demon-
strate a simple example of the use of unitarity in
the first way. From the application by Freedman,
Jones, Low, and Young' of Mueller’s generalized
optical theorem,? we know that azimuthal correla-
tions in 2-body inclusives can give information
about the nature of the leading Regge singularities.
We therefore calculate such correlations in a
simple independent-emission model (IEM).2** We
see that the correlations are of long range and con-
clude that, in such models, the leading or Pomer-
anchuk-Regge singularity in the Mueller diagram
is invariably a cut. This contrasts with the situa-
tion in multiperipheral models (MPM) where, be-
cause of a property called short-range order,’ all
correlation lengths are finite, and the leading
Regge singularity generated via s-channel unitari-
ty in this manner can be a pole.

In Sec. I we reproduce, for convenience, the
arguments leading to the extraction of information
about the type of Regge singularity from the azi-
muthal correlation. In Sec. III we introduce the
independent-emission model and in Sec. IV we cal-
culate its predictions for the 2-particle azimuthal
distributions. In Sec. V we discuss models with
short-range order and briefly review the experi-
mental evidence on 2-particle correlations. In
Sec. VI we draw some conclusions about the use-
fulness of deciding, through models, the nature of
the physical Pomeranchuk singularity.
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II. THE EXPANSION OF THE FORWARD
8-POINT FUNCTION

The fact that the behavior of inclusive two-parti-
cle distributions can give important information
about the nature of Regge singularities was first
realized by Freedman, Jones, Low, and Young!
(FJLY). The starting point in their analysis is
Mueller’s? connection between the inclusive spec-
trum for ab - c,c, X and a discontinuity in the
(missing mass)? of the forward 8-point function

Oyt~ dO
"b_’cl‘:Zx EOE) tot
P2 (s59,,d,) (@q,/0,) (@ qy/wy)

= (0,0 M?)~1disc,, 2

X [A abey 5, ave, 5, (85 Ty 21l A%=0)] .
(2.1)

The discontinuity and the physical variables are
shown in Fig. 1. Taking the asymptotic behavior of
the discontinuity, FJLY focus on the limit shown in
Fig. 2 corresponding to a situation where one of the
produced particles is in each fragmentation region.
In this limit

t,=(pa—aq)?, (2.2)

ty=(pp— @) (2.3)

are fixed. The subenergies related to the c.m.
Feynman variables x, =2q,,/s'?, x,=2q,,/s*?,
viz.,

52/ = (1 =), (2.4)
S/M?=(1 +x,)7", (2.5)
s/MP=(1 = x,)"4(1 +x,)7t, (2.6)

are fixed and 9n® is large. The sixth independent
variable is chosen to be ¢, the azimuthal angle be-
tween the transverse components of , and §, in
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any Lorentz frame collinear with the beam.

The 8-point function illustrated in Fig. 2 is seen
to have zero total-momentum transfer between the
two sides of the diagram. Lorentz invariance then
implies the scattering amplitude, and presumably
the relevant 92 discontinuity of the scattering
amplitude, has an O(3, 1) expansion analogous to
the expansion of an equal-mass forward 2-2 scat-
tering amplitude,®

A 1b3,6, abéyéy = O )JM 2 f do(M? -0?)
'T'f'

x Aabéléz(M9 0,7, ‘Y')

xe*?df3 .m), (2.7)
where d}2, is an SO(3, 1) rotation matrix and
coshn =2 —¢,~t,)/2(¢,t,)"/*. At zero total-mo-
mentum transfer, the leading contribution of
a¥s ,.(n) for large 9M? is to helicity flip A=xM,

dMo.(n) ~ (@u)e-1-tu=2D (2.8)
The contribution of a Lorentz pole with g, M to the
8-point amplitude at large 9M® is then
A

abéyép— abéyép
~ (M)t Fylt 1, £ 2y S,/M?, S5/IMF) cos(M¢) .
(2.9)
A Lorentz pole with Toller quantum number M#0
cannot correspond to a simple Regge pole since it
contains a mixture of parities. A simple Regge
pole with intercept a(0) does not lead to ¢ depen-

dence of the same order, but down by an extra
power of 1/9m%

A-chge pole ~ (mz)ct (O)Fo(t 12 t27 sl/mz’ 52/3“2)

X [1 . 205¢ (t 15 toy §1/TM3, 5,/IMP) 4+ jl

e 81
(2.10)
2
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FIG. 1. Mueller’s generalized optical theorem relates
the two-particle inclusive cross section to a discontinu-
ity of an 8-point function, The variables ¢;=(p, — q1)°,
ty=(0y —q2)% M*=(p, +by —q1—a2)% 51=(b, +1p —2)%,
and s, =(p, +p, —q)* are illustrated.

The contribution of a cut in the o plane would be
more complicated, typically involving Indn? fac-
tors, if the discontinuity across the cut can be ex-
panded in a power series. Note that, if cuts are
present, the J? discontinuity can have different
numbers of logarithmic factors than the amplitude
itself, as in the simple example

disc [91* In(In?) In(~90°)] = 2090 In(9) .~ (2.11)

me>o0
The resolution of logarithmic factors involves
asymptotic behavior in the entire 91 plane, so we
must study crossing constraints. See, for ex-
ample, a discussion of sum rules in M2.” The
point is, although the presence of logarithmic fac-
tors in the two-particle inclusive distribution can
signal the presence of a branch point in the o
plane, we cannot immediately conclude anything
about the nature of the discontinuity of the branch
point in the amplitude.

In using (2.1) and (2.9) to discuss the leading,
Pomeranchuk, singularity, we see that the domi-
nant contribution must have Toller quantum num-
ber M=0 in order that the two-particle distribu-
tion be non-negative for all values of ¢. In the
case of a cut, the M=0 component can be con-
sidered the factorizable (in the sense of Lorentz
variables) component. If the Pomeranchuk singu-
larity is a simple pole with intercept greater than
the intercept of any cuts, the azimuthal correla-
tions will vanish as a power of 2. With some as-
sumptions about the smoothness of the continua-
tion into the central region, this can be translated
into rapidities

Fi(xy, % 8, tz)(mlz)a"(o)-up(o) cos¢
~Fy(x, X5, £y £ )

x( Mﬂl) (=2 cos ¢
—X, Xy

~F'(3’1; Y25 Ky K3)(Ky K2)1/2

xexp{|y, = y,1[a.(0) —ap(0)]}cos¢ ,

(2.12)

Pa q, d, Py

Po q, a, P,

FIG. 2. Exchange of a Lorentz pole with ¢, M in the
8-point function,
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where k;2=u % +qr°. Interms of the Feynman gas-
liquid analogy, this corresponds to the statement
that the azimuthal correlations have a finite cor-
relation length

A=[ap(0) —a,(0)]"*.

If the Pomeranchuk singularity is a cut or a cut
coincident with a pole,® the azimuthal correlation
length will, in general, be infinite. The azimuthal
dependence in (2.1) will typically vanish only as
an inverse power of In(9n?).

(2.13)

III. THE INDEPENDENT-EMISSION MODEL
AND THE BEHAVIOR OF THE TOTAL
CROSS SECTION

In this section we introduce the independent-
emission model (IEM)** and review a method of
estimating the phase-space integrals® which oc-
cur in the model. To illustrate the method, we
calculate the total cross section in a specific ex-
ample of an IEM. We will formulate the model in
terms of a process which we will call pp—~ pp +nn
although, for simplicity, we ignore all considera-
tions of spin and internal quantum numbers. The
modulus squared of the amplitude for this process
is written in the form

|4, 12= F(p)F(py) II @), (3.1)

where the specification of the functions F(p) and
f(q) defines the model. These functions are usual-
ly chosen to guarantee that the protons behave as
“leading particles” and that all particles have
limited transverse momenta.'® Most of what we
are going to do is independent of the exact form

of these functions, but for illustrative purposes,

it is convenient to have a specific form such as
that discussed in Ref. 3:

F(p) =G 2\ pp-Forr® (3.2)
flg)=ge~Fer” (3.3)

Here A is a four-vector, which in the c.m. frame
has only a time component. From the n-particle
rate

9,,(,P)=f[H F(p; )] [H f(q,]
xG‘(P - b, = py- ,E, q,.> , (3.4)
we form the total rate
Q(z,P)= io = (3.5)

S

F(p‘)] @u(2,P = by~ p3),

(3.6)

where the parameter z is introduced for conve-
nience. We can estimate the phase-space integrals
in (3.5) and (3.6) using the method of Lurg¢at and
Mazur.? This involves taking the Laplace trans-
form

Qz, p)= f d*P Q(z,P)e~ P 3.7
=[vx(B)Pexp[20,(8)], (3.8)

where
@)= [ L e-5r Fp), 3.9)

3
¢ﬂ(ﬁ)=f‘12—£e'”'”f(q). (3.10)

In the case where F(p) and f(p) are given by (3.2)
and (3.3) we have

¢(8)= 9(B2, Br)
=g [ dlaMe " Io(Brar)Ko(By )
(3.11)
in(B)= 4 &, Br)
=1G [ dlprP)e™ ™" 1o(Br, prIKo(tkn)

(3.12)

where «, =(u?+g7%)"? and ky =(m?+ p,°)'/? are the
transverse masses and the I,(x) and K,y(x) are
modified Bessel functions,

BL= (ﬁo2 = 332)1/2 s (3.13)

Br=(8,+B;)"?, (3.14)
and

€= [(Bo =21/ 2)? = (By = 2Xo/sY2)?] /2. (3.15)

In a large number of models of this type, once the
proton factor is chosen to ensure leading particles,
no extra dependence on the longitudinal momentum
of the pions is inserted. In any case we have a
different dependence on the transverse and longi-
tudinal momenta and this is reflected in the non-
symmetric treatment of the components of 3
[(3.13), (3.14), (3.15)]. The total rate (3.6) is then
estimated by using the steepest descents estimate
of the inverse transform

Q(z,P) -8-P_ d*t

-iP- Q(Z;B_it)
Qzp ¢ TJ) @’ o

Qz,p
(3.16)

valid for positive timelike 3. Expanding



Qz,B-it) _
TP

—iA t=3BMEyt, 4o,

(3.17)

the condition —A * =P ¥ determines the point of
stationary phase of the integrand. In a frame
where P, =0 and |P,| is small compared to P,, the
conditions on 8, and B are

Py=- 2 InQ(z, B;, Br) =s'/?, (3.18)
38,
9
PTE—B—B—TIIIQ(Z,[‘}L,BT). (3.19)

To a good approximation, B*” only contains diag-
onal components

, (3.20)

9
00 _
B = gy 0@, B Br)|

BLL = sl/Z/BL , (3.21)

(3.22)

B™T=(1/8;) a%r mQ(z, B;, z)

Bp =0

In this limit, the approximation is straightforward
and the steepest descents estimate gives

exp(B, P, —ET ‘Fr)

Q(Z, P) = (21[)2(detB)1/2
X Q(z, B, 0)[1+R(8;, Br)] . (3.23)
Using (3.19) and (3.22),
exp(B.P,) 2
Qz,P)= m:-tg)—m exp(-P,*/2B,)
XQ(Z, 3],)[1 +(R(ﬁ1,’ BT)] (324)

With a reasonable choice of F(p) and f(q), the er-
ror term, ®(B;, Br), is small when the energy in-
creases. The nature of the error term depends on
the exact form of F(p) and f(g), and is discussed
in more detail elsewhere.?:11:12

Looking at the high-energy behavior of the total
cross section, we can use the optical theorem to
infer something about the nature of the Pomeran-
chuk singularity implied by these models. How-
ever, we do not know if the exact behavior of the
cross section in the high-energy limit is sensitive
to the choice of F(p) and f(g). With the choice of
(3.2) and (3.3), we observe that the limit s~
corresponds to small 8;, and we have the approxi-
mations?®

¢.(8) =(gn/R?*)[-%v - In(8/2R)

+0(B%Ing) +O(u?1np?)], (3.25)
(£ =(G1/R?) [~y - X ™I (0, R*m?)
=In(m¢/2) +0(L%1ng)],  (3.26)
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where y is Euler’s constant and I'(q, x) is an in-
complete gamma function. Therefore, Eqgs. (3.18)
and (3.19) have the solutions

B =2hs"/2[1 + 4R* 1 +0(In lns/lns)z):l
L . zgm Ins ’
(3.27)
Br=0. (3.28)

The total cross section then approaches the high-
energy limit

010t =Q(2, s)/s
~consts*#"/28%-2)(1ng) [1 +O(InIns) ++ - + ].

(3.29)

In this particular version of the IEM, therefore,
the leading J-plane singularity is seen to be a cut
with a singular discontinuity (or a cut coincident
with a dipole). We have not gained any special in-
sight into the nature of the Pomeranchuk in the
general class of IEM’s, however, because we can
now see that this result depends very strongly on
the choice of F(p), (3.2) and f(q), (3.3). In par-
ticular, we have a factor

[¥n(2)]* ~(7G Ins/2R?)?, (3.30)

which can be attributed to the growth in the “lon-
gitudinal phase space” available to the leading
protons. Alternate versions of the IEM approach
can easily be constructed where this type of fac-
tor is not present.*'!? It remains an open ques-
tion, however, whether a model can be constructed
which gives a reasonable leading-particle effect,
but which does not contain logarithmic corrections
to the leading behavior of the total cross section.
Instead, we turn to two-particle azimuthal distri-
butions to find whether in these models the Pomer-
anchuk singularity can be a pole.

IV. TWO-PARTICLE AZIMUTHAL DISTRIBUTIONS
IN THE INDEPENDENT-EMISSION MODEL

The idea that a simple phase-space model can
give insight into the nature of diffraction was first
discussed by Van Hove.* Others!® have also calcu-
lated the shape of the diffraction peak generated by
2-2 unitarity when an ansatz for the phase of the
n-particle amplitude is made. The calculation
which follows is in the same spirit as these earlier
works, except that unitarity is used in the form of
the generalized optical theorem.?

A reliable indication of the nature of the Pomer-
anchuk singularity implied by an IEM approach ap-
pears through the long-range nature of the two-
particle azimuthal correlations. For definiteness,
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we will calculate proton-proton azimuthal distri-
butions in the model specified above, although the
basic features of azimuthal distributions will be
seen to be quite insensitive to the details of the
model.

The proton-proton distribution function in the
model is given from (3.6):
1 F@,)F®,)

pp— pPx X A )=
s =
P2 (s, Py, D2) Ton s

XQW(Z)P—pl_pz)lz=1' (4-1)
The contributions due to no pions (elastic scatter-
ing) and one pion involve 6 functions and can be
computed exactly:
Q.(2,P = py = p)=6“(P = p, - )
+2f(P = py = p2)6(M* =)
+0(2%), (4.2)

where %= (P - p, — p,)°. In what follows, we will
exponentiate the sum over final particles, keeping
in mind the fact that the terms of zeroth and first

J
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order in z calculated in any such result should be
replaced by the exact forms above. Let @=P - p,
— p,; we can now follow the method of Lurgat and
Mazur® described above and calculate

Q.(z,B)= f d*Q Q(z, Qe 89

=exp[z¢,(B)], (4.3)

where ¢,(8) is given by (3.11) and (3.25). The

high-energy limit of the energy-momentum equa-

tions (3.18) and (3.19) become
B =mgz/REM,,

2R @, +52)
@R M, /z1g) — 3y — 5 P T P)rs

(4.4)

IR

Br (4.5)

where we have the longitudinal missing mass
n, = (Q02 - QL2)1/2 .

In the limit as Il —~~ with transverse momentum
small, the longitudinal missing mass is approxi-
mately equal to the total missing mass. Using
(3.24), we have at high energy

(4.6)

Qw(m: Z) ~ lnmlz

const .10 /ar2 [2R4(P11-2 + par® +2p 7 par COSP)
(o) P T In@R%M/z1g) - 37 - &

] wn

In the limit of large 9, in which (2.9) is valid, we therefore expand the exponential to give

/2R% -2
const (IM?)*"* -1

PP>PPX (D B )~
p (S, ply pz) 0 1ot lnmz

s~texp[2M(E, +E;)s ™2 —=R%*(P 12 +P 1,0)]

x[l , ARUDy 7 40,1 + 2D, 1Py pC0SS)

1ndn?

The power zmg/2R? -2 is the same which appears
in (3.29). So that, independently of the logarithmic
factors which appear in o0,,,, we can rely on the
analysis of FJLY" discussed above to conclude that
the component of the Toller quantum number M=1
in the exchange is down from the leading M =0
term by only an inverse power of Indt?. The exis-
tence of M=1, from the discussion in Sec. II, sig-
nals unambiguously the presence of a Regge cut.
We can identify this leading singularity with the
Pomeranchuk singularity since its intercept is the
same as the intercept of the singularity which ap-
pears in the total cross section. From the dis-
cussion above, the fact that the azimuthal cor-
relation vanish only as an inverse power of Indi*
is seen to imply that, in this IEM, we necessarily
have an infinite correlation length.

From (3.23), we see that the origin of the azi-
muthal correlations in the IEM is directly related
to the conservation of transverse momentum. It

] . (4.8)

r

is easy to see physically how transverse momen-
tum conservation gives rise to an asymmetry in
azimuthal angle. In a specific n-particle final
state, we have

22 4;7=0. (4.9)
i=1

If we assume that when we remove one particle,

air=-2 Ejr,

j=i

(4.10)

the remaining particles are randomly distributed.
We have the conditional average

<akr>l3”=—(-1’”-/(n—1) , (4.11)
so that
<ﬁir‘§u>=-<q.-r><qu>/(n-1)- (4.12)

The distributions calculated [Eq. (4.8)] just re-
flect this fact. The approximation of Gaussian be-
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havior in (P, +P,) in (4.7) is just valid in the same
sense in which the central-limit theorem in mathe-
matical statistics is valid.'*

On the exclusive level, Foster el al.'® have
shown that all the integrations except one azimuth-
al angle in

(5o 3o ()

can be done exactly when G(q 2) depends only on

(4.13)

22%-14;7°. The result for the integrated normal-
ized distribution is

do, 1 n(n-2) 1

dp 7 m=1)* 1=[cos¢/(n-1)]

<cos¢[arc sin(cos¢/(n—1)) - 57] . 1)
(n-1){1 =[cos¢/(n - 1)]} /2 ’

(4.14)
which can be shown to approach a form for high #:
. do, 1 7 cos¢ 2 ]
tim =21~ F gy o/

(4.15)

The integral (4.13) does not include any constraints
of energy conservation to normalize as a function
of n except implicitly through the function
G(255-1 ¢;7°). What the analysis in terms of the
IEM shows is that the effect of energy conserva-
tion when the exclusive cross sections are summed
to give the inclusive spectrum is to introduce a
1/In9M® damping on the asymmetry when the trans-
verse momenta are limited. The connection be-
tween the inclusive distribution (4.8) and (4.15) can
be seen by noting that the average number of ad-
ditional particles grows with InJn? in this model.
This was an illustrative calculation. The basic
form of the distribution (4.8)

- - A cos
p(s; By, D) crexp(——ﬂ>

B+C In9n? (4.16)

is repeated when we calculate n7 and np azimuthal
distributions.?

The presence of long-range correlations does
not arise solely because of the assumption that
the modulus squared of the amplitude is written in
the strictly factorizable form (3.1). The emission
of -particles in clusters can be studied in the
framework of a cluster expansion for Q(z, 8) (Ref.
16). It can then be shown that the basic form
(4.16) is retained in these cluster emission models
due to the fact that there is not an ordering of
particles in rapidity space. The thing which is
required for the asymmetry to be of finite range,
so that the leading singularity in the 8-point func-

tion can be a pole, is for the transverse momen-
tum to be conserved semilocally in rapidity space.
This is just one aspect of the general feature of
short-range order which is built into multiperiph-
eral models.® We will discuss these models brief-
ly in Sec. V.

V. MODELS WITH SHORT-RANGE ORDER
AND EXPERIMENT

A. The Consequence of Short-Range Order
If we define the momentum variables
7 =di+qi, (5.1)
related to the rapidities by
yi=1n(gi /x)
= ~In(q;/x), (5.2)

Campbell and Chang'” define a property they call
q factorization by the requirement that the cross
section can be written

O-(ql. .. q")

+

~ fm(ql. . qm)fn-m(qm+l. ©t qn)
(eF b}

+
. "“m)>(q:x+1"'qn

+0(q;/qi), (5.3)

where i< (1, m) and j&(m+1,...,n). This prop-
erty, often called skort-range order,'® is shown
to imply that all correlation lengths are finite.
This property has been identified by some as a
crucial element in general multiperipheral mod-
els, and has led to various applications within the
context of the Feynman gas-liquid analogy.'®* Be-
cause of the assumption of short-range order, the
limit ap(0) =1 is very delicate in the framework of
MPM. Since short-range order disappears in this
limit, MPM calculations involving Pomeranchuk-
ons depend sensitively on the nature of secondary
trajectories.®

A particular consequence of short-range order
is that transverse momentum is conserved, not
only in bulk, but semilocally in rapidity space.
The arguments leading to (4.16) from (4.15) there-
fore are not valid. For example, Mak and Tan*°
have examined azimuthal correlations in the
framework of a general multiperipheral model
containing a leading pole and a branch cut with in-
tercept a;(0)<ap(0). They claim that the require-
ment that the correlation be positive at cos¢ = -1,
in agreement with semilocal momentum conserva-
tion, determines the sign of the discontinuity
across the cut in other processes. Note that, in
contrast to our claims, these authors state that an
IEM does not lead any to azimuthal asymmetry.
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B. Comparison with Experiment

Friedman, Risk, and Smith?* have done a de-
tailed comparison of data on azimuthal correla-
tions in pp =ppr*atn ™ at 23 GeV/c with a simple
statistical model and a multiperipheral model.
While these data are not strictly inclusive, the
authors claim the general features are typical of
an inclusive distribution. Their statistical model
was similar to the one discussed in Sec. III except
the proton factors were given by

F(p)=efGa=t1)?, (5.4)
The multiperipheral model chosen was a simple
multi-Regge form,

-1

n 2a;(¢;)
|4,12=CT] <b+bs‘> AL, (5.5)

Their results show that the statistical model pretty
well fits the experimental distribution over a wide
range of rapidity gaps. Both the correlation be-
tween neighboring pions and between protons was
well approximated by the statistical model, while
the multi-Regge model overestimated the correla-
tion between neighboring pions and underestimated
the correlation between the protons. Figure 3,
taken from their paper,?! illustrates these findings.
The evidence, of course, is not conclusive in
support of the infinite-range azimuthal correlations
necessary to conclude that the leading Pomer-

pp—pp 7t wtr w

T
- (b)
5004
160 T 7
r (a) 1
400
120~ —
° Sramn
@ - . b o
5 - < 300:
£ 80F — @
§ oL 1 &
o o 200
401 —
I T - s -
o I IOO—’/ _
0° 90° 180° - 4
TRANSVERSE ANGLE

|
0 0° 90° 180°
TRANSVERSE ANGLE

FIG. 3. Figure taken from Ref. 21 where further de-
tails can be found. The data are on pp —ppr*n*7~r~ at
23 GeV/c. Figure 3(a) shows pp azimuthal distributions,
and Fig. 3(b) shows the azimuthal distribution between
protons and pions with the largest c.m. longitudinal mo-
mentum. Solid curve is statistical model and dashed
curve is multi-Regge model.

anchuk singularity is a cut. All the comparison
really shows is that the correlation length is much
larger than that predicted by the simplest type of
multi-Regge model with p exchange. These came
in only to order o, —1. A more complicated
multiperipheral model with a moderately realistic
spectrum of output singularities such as that
envisioned by Mak and Tan®° would have a very
large correlation length, so that it would really
be necessary to do experiments at ultra-high en-
ergies in order to distinguish between the two
cases.

Stone, Ferbel, Slattery, and Werner?? have also
noted that experimental azimuthal distribution in
K*p and 7*d interactions are well represented by
models without ordering assumptions.

Further indirect evidence in support of the ab-
sence of strong ordering features in experimental
¢ distributions came from Foster ef al,' who
studied the dependence of azimuthal dependence on
charged prong number in pp and pd collisions at
28 GeV/c and K™p collisions at 9 GeV/c. They
did not make a direct test of the dependence of the
correlations on the rapidity gap, but their results
on 7 dependence can be related to this as discussed
in Sec. IV.

The field is certainly open for more thorough
analyses of data on azimuthal correlations. They
are easy in the sense that the one-particle spectra
do not have to be subtracted. A study of azimuthal
correlations between leading particles at high en-
ergies would be very instructive.

C. Diffraction

Another important experimental consideration
is the azimuthal dependence of those diffractive
fragmentation cross sections which have the same
energy dependence, within powers of logarithms,
as the total cross section. Berger® points out that
asymmetry in ¢ is an experimentally established
fact at currently measured energies for those 2-3
or 2-4 processes commonly labeled diffractive.
Deck-model calculations or simple phase-space
arguments suggest these asymmetries persist at
high energies. If this is true, the presence of
M =1 in the leading singularity is again inevitable
as a special example of a general statement of the
necessity of long-range correlations in the pres-
ence of diffractive dissociation.?*

Specific diffractive models also have long-range
azimuthal correlations. In the nova model,? this
is seen to be a consequence of the assumption that
the decay of an excited state is isotropic in its own
rest frame. These models also have a leading
cut.
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VI. CONCLUSIONS

We have seen that in the framework of models
without short-range order the presence of long-
range azimuthal correlations indicates that the
leading Pomeranchuk singularity is a cut rather
than a pole. IEM’s form a class of very simple
models which share many properties with MPM’s
but which do not have short-range order. These
models, therefore, provide a counterexample to
s-channel unitarity calculations which produce a
leading J-plane pole.

In an IEM, factorization properties of the Pom-
eranchuk can be valid only in the limit that loga-
rithmic factors are neglected. This may allow

the possibility for experimental factorization
tests to distinguish between the two cases. On the
other hand, there is some experimental evi-
dence® " which supports the idea of long-range
azimuthal correlations, but the situation cannot
easily be distinguished from the possibility of a
large but finite correlation length such as that
predicted by an MPM with a leading pole only
slightly above a cut.
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