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The use of data from cosmic-ray interactions with dense targets is discussed from the point of view of
extracting information on p-p interactions at high (cosmic ray) energies. %e present a result which

relates single-particle inclusive distributions on nuclear targets to single-particle inclusive distributions on

nucleons. We show that there exists no serious conflict between present nuclear data and a flat

pionization region.
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A great deal of experimental and theoretical ef-
fort in high-energy physics today is directed
toward single-particle inclusive density functions
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for the inclusive experiment a+5- c+anything.
This function is normalized such that

d =d qdg. (1.6)

Consequently,

J dn,
p,d q=

In terms of this variable the single-particle in-
variant phase space can be written as

the average number of particles of type c pro-
duced.

Ideas on scaling' have greatly clarified our un-
derstanding of p, as the invariant energy variable
s-~. It is the statement of Feynman scaling that
in this limit the differential inclusive cross sec-
tion can be expressed in terms of just two vari-
ables:

(1.3)

where q is the transverse momentum of particle c,
and»=2p&'2 &/Ps.

In many respects scaling ideas are more con-
veniently expressed in terms of the rapidity r de-
fined by

(g ~ 2122)1/2 2(g + 2212)1/2

(1.4)

In particular, the rapidity is simply additive under
Lorentz boosts in the longitudinal direction. Thus,
for example, for particle c,

where dn, is the differential change in multiplicity
of particles of type c over a range dr in rapidity.
Due to the experimental presence of a cutoff in q,
the integral converges rapidly.

Theoretical arguments have been presented which
state that it is interesting to split the function
de/dr into three regions, according to whether r
is "near" the projectile or target rapidity (projec-
tile or target fragmentation region) or in a large
region in between, whose width in r space grows
like ln(s) (pionization region). lt has been further
hypothesized that d/1/d2 will be flat in the pioniza-
tion region, giving rise to an over-all multiplicity
which grows like ln(s). Thus we are led to expect
a single-particle inclusive distribution d21/dt for
the reaction, say, 2+ p- »+X, of the (schematic)
form shown in Fig. 1(a) as a function of r, mea-
sured in the lab frame.

In view of the fact that relevant features of this
central region reveal themselves only on a loga-
rithmic energy scale, it is clearly useful to study
energies which are currently attained only in cos-
mic rays. Since the flux of primary cosmic rays
falls rapidly with increasing energy (flux cLE "),
dense materials (such as nuclear emulsions) are
very attractive as experimental targets.

We therefore want to be able to extract informa-
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tion on a hadronic process such as m+ p -w+ X
(referred to as I below) at very high energies in
terms of the experimentally more accessible in-
formation on a nuclear process such as w+A- v+ X (referred to as II below). Our purpose in
this paper will be to discuss dn, /dr as a function
of lab rapidity for II in terms of the corresponding
function for the reaction I. The reason this is not
a trivial procedure is the possibility that an intra-
nuclear cascade (see Fig. 2) can develop.

The remainder of this paper will be concerned
with deriving the formalism that relates reactions
I and II, and then applying the formalism to cur-
rent cosmic-ray data at several tens of TeV. The
approach to the problem will actually be inverse
to the problem itself; that is, we shall ask,
"What form should we expect for reaction II when
we have a particular (known) form for reaction
Ig tP

The derivation breaks into two parts. In the
first part, considered in Sec. II, we develop a pro-
cedure for writing down any general cascade dia-
gram (as in Fig. 2) and determining its contribu-
tion to the total dn/dr; in the second part (Sec. III)
we incorporate the nuclear physics into the pro-
cedure.

Section IV is devoted to applications of the for-
malism finally written down in Sec. III. Working
with an idealized high-energy multiperipheral
form for reaction I, we obtain a prediction for the
multiplicity (n, ) and differential multiplicity de, /
dr vs y for reaction II on a typical emulsion nu-
cleon for energies in the TeV range. W'e find in
fact that a flat pionization region in reaction I
leads in general to a rather rapid buildup of mul-

' T.F. P ION I Z I B.F.
dn

'
I

I

dr

tiplicity at the lower rapidities (lab frame) simply
because any particle in a cascade can only produce
particles of energy less than its own. It is seen that
recent experimental results are in excellent quan-
titative agreement with a flat pionization region
for reaction I.

In Sec. V we present conclusions and caveats.
This paper fills in the details of results previous-
ly presented in Ref. 2. We refer the reader there
for further discussion.

(2.1)

i.e., as a function of only the incident pion's ra-
pidity p (which is related to s) and the observed
pion's rapidity r, . (The arguments here and in all
the following will be most transparent in the tar-
get rest frame, i.e., lab frame. )

It is convenient also to define

&x 4 &i d&j. (2.2)

where v, =- v, (P) is the multiplicity of first genera-
tion pions in a single inelastic collision.

Now let us consider the next simplest diagram,
that shown in Fig. 3(b). This diagram represents
the same process as Fig. 3(a) (an incident pion of

Ist GEN. 2nd GEN.

II. DIAGRAMS

A. Contributions of Individual Diagrams

We consider first the contribution of the simplest
(most basic) diagram, Fig. 3(a). In this diagram
we have an incident pion (rapidity ~ = P) making an
inelastic collision with a nucleon, resulting in a
shower of pions. To maintain complete generality
in the discussion, we shall represent the distribu-
tion for these "first generation" pions by

GEN.

(b)
dn
dI'

FIG. 1. (a) A single-particle inclusive distribution
dn/dr=—g (P, r) (schematic) showing the breakup into
target fragmentation, pionization, and beam fragmen-
tation regions. (b) Idealized form for h& (Q, g used to
simplify calculation in Section II C.

Zl Z2

I

I

Zg Zg

FIG. 2. A typical intranuclear cascade.
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(So)

(S()

(Sz)

Here the fraction (v, —1)/v, accounts for the loss
of one first generation pion (out of v, initial first
generation pions) which is used up in fathering the
second generation. In what follows, it is conven-
ient to replace the factor in front of h, in Eq.
(2.5) by 1 =—v~/vm.

Similarly, for the diagram in Fig. 3(c), in which
theo of the first generation pions have fathered sec-
ond generations, the net average distribution is

(Sz() h, (y, r)+ 'h, ((j(,r).dr v,
' '

v,
(2.6)

(S()

I
I ~

I r

FIG. 3. Various individual cascade diagrams. See
text (Section II) for discussion.

rapidity P making a first generation) except that
one of the first generation pions has itself under-
gone an inelastic collision on another nucleon,
making a "second generation" of pions indicated by
the dashed circle. (We label the "generation" of a
particle as the number of inelastic collisions by
which it is removed from the primary projectile. }
If the first generation pion which fathered these
happened to have a particular rapidity r,', then the
distribution dn/dr, of the pions in the dashed cir-
cle is dn/dr, = h, (r,', r,). But since different val-
ues for r,' for the father occur with frequencies
given by the first generation distribution dn/dr,
= h, (p, r,}-i.e., since any pion in the first genera-
tion is equally likely to be the father of this second
generation —it is really more meaningful to speak
of an average distribution (dn/dr, ) of the pions in
the dashed circle. By definition of average, this
is simply

(
fh, (P, r,') h, (r,', r~)dr,'

[f«|(4 rl) dyl = vil-
(2.3}

and we can define

Also, we can define

v, = h, p, r3 dr3 (2.8)

as the mean multiplicity of pions in a single third
generation.

Thus the net average distribution (de/dr) for the
(entire) diagram of Fig. 3(d) is simply

(
dn 2V2 -1

h, (P, r) + h~((t(, y)
1 "2

+ —'h, ((j(,r) .
"3

(2.9)

It is by now fairly obvious what the general
forms are. The average distribution of a single
mth generation of pions is

Let us now consider a third generation, after
which the general treatment of all such diagrams
will become clear. A third generation is shown in-
side the dashed circle in the sample diagram of
Fig. 3(d). If the second generation pion which
fathered this third generation of pions happened to
have a particular rapidity r„ then the distribution
dn/dya of the pions in the dashed circle is dn/dy,
= h, (r,', r,}. But of course different values of r2
for the father occur with different frequencies
(given by h, ), and it is again most meaningful to
speak in terms of an average distribution (dn/dr, )
of the pions in the dashed circle,

(
f«2(g, r,')h, (r,', r,)dr,'

dr3 [f«2(p, r,')dr,' =- v, ]
(2.7)

v2= h~ p, r~ dr2 (2.4)

as the mean multiplicity of pions in a single second
generation.

Thus the net average distribution (dn/dr) for the
entire diagram of Fig. 3(b}—including the first
generation in that graph —is simply

fh. ,(y, r', )h, (r' „r )dr„'

[fh i(y, r„ i)dr, v,]=
and the mean pion. multiplicity therein is

(2.10)

vi-1
(yh, ) y+(1y«, r).

1
(2.5) v = h Pr dr (2.11)
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The extension of Eqs. (2.5), (2.5}, and (2.9) to

more complicated explicit graphs is obvious. In

all this we have ignored the possibility that energy
degradation in the cascade may cause some of the

higher generation reactions to deviate from scaling
simply because they are not kinematically in the
scaling region.

B. Counting the Diagrams

In part A of this section we developed a method—
given h, -to write down explicitly the net (de/dr)
of pions from any given diagram. It still remains
to develop a systematic way of including all possi-
ble diagrams and counting over them. This is the
subject of part B.

The first thing to notice is that there are many
diagrams which give the same contribution in
(dn/dr). For example, the diagram in Fig. 3(e)
is entirely equivalent to the one in Fig. 3(b}, and
the two diagrams in Fig. 3(f) are equivalent to each

other. The counting is tremendously simplified if
we introduce the notion of a sequence $ as being
the set of all diagrams equiva1. ent to a given dia-
gram. Individual sequences are identified by sub-
scripts $„,... . Here a is the number of second
generations, b is the number of third generations,
etc. For example, the two graphs in Fig. 3(f) be-
long to the sequence S».

We can write down the (ds/dy) for a representa-
tive diagram in a sequence following the proce-
dures outlined in Sec. IIA. We now ask how many
diagrams are contained in a particular sequence.
This is simply a problem in combinations. For
example, the total number of diagrams in $» is
(",&)('22) since there are (",&) ways of choosing two

pions from the v, first generation pions to father
second generations, and there are ('P) ways of
choosing two pions from the 2v, pions in the two
second generations to father third generations.
Therefore, for example, the net contribution of
sequence S» is

pl 2p2 vl 2 2V2 —2 2 vs
h, (P, r)+ h, (P, r) + 'h, (P, r)

2 2 pl V2
'

Ps
(2.12)

Now we only need to develop a systematic way of
counting all the sequences, being sure not to miss
any. This is most easily done by introducing N
=1+a+6+ ~ ~ as the total number of inelastic
vertices in a diagram belonging to a particular
sequence. [For example, the diagrams in Fig.
3(f), representing S», have N=5. ] For N=1 there
is only one sequence, which we call S„ the only
diagram of which [there is only one since ("g) =1]
is shown in Fig. 3(a); the appropriate (dn/dr ) for
this sequence is given in Eq. (2.1). For N=2 we
again have one sequence, S„which contains (",')
diagrams equivalent to Fig. 3(b), and gives (",')
times Eq. (2.5). For N=3 we have two sequences,
S, and S„; for N=4 we have $„$2' and $l l etc.
It was found in practice (after the nuclear physics
in Sec. III was included in the calculation} that
sequences beyond N =5 were negligible. [We ex-
pect a particular sequence to vanish both as
(o' /or)", and because of the improbability of a
large number of collisions occurring in a nucleus
of finite size. This latter point is discussed in
Sec. IV.]

To illustrate our ideas, we shall next present
an example in which a particularly simple form for
h, (&f&, r} is chosen.

the broad pionization region might possibly spread
wider and remain flat. Thus at extremely high
energies, we expect the salient features of Fig.
1(a) to be reproduced by the idealized multiperiph-
erallike' step function form shown in Fig. 1(b).
In this graph

is un' from lab rapidity zero (target rapidity) to
lab rapidity P (the lab rapidity of the incident
pion), and zero elsewhere The norm. alization
(height) can be adjusted by an over-all normaliza-
tion factor later. Although energy is not con-
served in this approximation of h, (P, r), we shall
see in Sec. V that we can handle this essentially
minor point.

It is useful for illustrative as well as calcula-
tional purposes in the remainder of this paper to
assume that multipion production in the inclusive
reaction m+ p- n+ X at high energies is described
by this functional form. Thus we take for the
basic diagram of Fig. 3(a) [and Eq. (2.1)]

(2.13)

This assumption results in
C. Illustrative Example

The discussion in the Introduction regarding Fig.
l(a) indicated that as collision energy increased,

Vl= P

and in general

(2.14)
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(4 -«.)
h (y, «)=

(2.15) h]

The first few h 's are illustrated in Fig. 4. It
should already be clear that even the simplest
cascade, represented by Fig. 3(b) and Eq. (2.5),
can result in an average "peaking" at low rapidity,
since even a form for h, as in Fig. 4(a) -which is
the same as Fig. 1(b) -results in a form for h, as
in Fig. 4(b), and Eq. (2.5}will look close to a sum

of the two curves 4(a) +4(b).

III. NUCLEAR PHYSICS

It remains to incorporate some nuclear physics
into the discussion of Sec, II. We shall do this with
Glauber theory, ' since it is simple and well un-
derstood, and is known to be a good description of
particle-nucleus collisions at high energies.

We begin by assuming as usuaj. that the single-
particle inclusive differential cross section der. /
d«dq' for the process v+ p- v+ X (process I) can
be factorized to [h, ((p, «)] [(v/p') ~ f (q) ~'], where . (p

and p are the rapidity and momentum (lab frame)
of the incident pion, r and q are the rapidity and

hp

hg

FIG. 4. The first three component distributions
h~ g, r) (m=1, 2, 3) given the step-function form (2.13)
for hl (p, r). [See Fig. 1(b)].

transverse momentum of the observed pion, and

f. (q) is the transverse scattering amplitude for
this inelastic process.

The single-particle inclusive differential cross
section for the process v+ 2 —v+ X (process II)
on the nucleus A. —for a particular sequence $'~~~
having N inelastic vertices (refer also to Fig. 2)—
can then be written

A

t e" (~ ~'V'M'h g p(s„~,)d'. ,d. ,drd4 (ef) 4g N i=1

dr N

n (' (b-1,)r. (b' —k,. )h, (r...r, )dr, ' l(r, —() Zll(, -r))

x g ([1—I;,(b-%,)][1—I'*,(b'-%,)] )' Q ([1—I;, (b —s,)][1—1 *(b'-s )])"
ga& el

e
—

a el a —
el

—
b

—
el

- Sb
1 b 2

x Q ([1—I', (b —s,)][1—I'*,(b' —s,)])" ~ - ~ .
Q &g &g3

(3.1)

('.(b) =
2„&I r "'f.(t()&'r, (3 2)

After we have discussed various terms in this ex-
pression, we shall make an approximation which
will enable us to rewrite it in much simpler form
[see Eq. (3.4}].

Since the main contributions to multiparticle
production come from incoherent events, we have
applied closure over final nuclear states. Equa-
tion (3.1) is essentially the form obtained in Ref.
5 for N inelastic scatterings in a nucleus, modi-
fied appropriately to handle multiparticle elastic
propagation through the nucleus. In this equation,
the profile function l" is the Fourier transform of
the transverse part of the scattering amplitude,

f.(q) =fPQ, e "' ". (3.3)

Here c ="el" or "in" stands for elastic m-p scat-
tering or the inelastic process I above, respec-
tively: Q„=(1/4v)o» ——(o„a„/w)'(2 for a Gaussian
amplitude as in Eq. (3.3),

o, and a, are the (energy-independent) cross sec-
tions and widths.

Other features of Eq. (3.1) are as follows: Z is
the transverse momentum transferred to the nu-
cleus. The factor („") is the number of ways N in-

where for convenience we shall work with the usu-
al form
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elastic collisions can take place among the A nu-
cleons. p(s, z) is the single nucleon density within
the nucleus, which we shall take to be Gaussian
to facilitate calculation: p (s, z) =p,exp[-(s'+z')/
R'], with R chosen so that the rms radius matches
charge form-factor data. The N inelastic pro-
cesses I and the folding of h's for the different
generations (as in Sec. II) are handled in the
bracketed product {}for the sequence 8( };x}( }
contains normalim', ing lad, counting factor s for this
sequence. The first 5 function guarantees that the
incident pion's rapidity is indeed p; the sum over
5 functions guarantees that at least one of the pro-
duced pions has the measured rapidity r.

The remainder of Eq. (3.1) treats the elastic
scatterings which occar 5tween inelastic colli-
sions. The factor Q, „,(~ ~ ~ )' describes the
elastic scattering of the iheident pion any number
(including zero} of times to the left of the first
inelastic vertex at z, in Fig. 2; z, of course is in-
tegrated over in the first line of Eq. (3.1). At z,
the incident particle scatters inelastically (de-
scribed by the bracketed product {}mentioned
above}, producing n, first generation particles,
which scatter elastically up to the point z„as
described by the factor Q, „,, (~ ~ ~ )"x (in Fig.
2, n, =6). At z, another inelastic collision occurs
(handled in {} above), followed by another elastic
series, this time for n, particles to go from z, to
z, (n, =8 in Fig. 2). This introduces the factor

g, „„(~ ~ ~ )"&. We can break these n, particles
up into those produced at z, (which we call second
generation} and those produced at z, which move

past z, (which are still first generation}. We can
obviously go on in this way to buiM up any chain
of cascades in the nucleus that we desire.

(We mention here that the factors ([1 —I']
x [1- I'*])" introduce strong nonclassical effects
for large n, such that these terms I,re damped fax
less than expected .In the ordinary Glauber the-
ory, where n=1, this effect, due i5 detail to cross
terms in I', is & 2~, whereas in the results we

report in Sec. IV we find this effect decreases the
damping terms by factors of 10 or more. %'e have
treated this phenomenon in more detail else-
where. ')

Equation (3.1) is still too complicated to handle

simply. The fact that inelastic colliSions occur at
different depths z, within the nucleus makes treat-
ment of the elastic scattering sdries very difficult.
Therefore we make the "rim approximation, '" in
which we assume that all of the elastic collisions
of produced particles start at the midpoint of the
nucleus, z =0, while the inelastic collisions can
occur anywhere. Since this approximation errs in
opposite directions for inelastic collisions to the
left and right of z =0, we expect the final result to
be insensitive to the approximation. Numerical in-
vestigation indicates that this is so.

We can now integrate Eq. (3.1}over xX to obtain

dg2e-NB ((aiyi+R )

(3.4)

(within an over-all constant), where y =-cr/4wu„.
It should be noted that making the rim approxima-
tion has enabled us to separate jd'd. ckr/drd&' I( }
into an (averaged) factor dn/dr l(~} pertaining only
to the structure of the sequence {a } as in Sec. II,
and a factor containing nuclear physics whose only
contact with the specific sequence {a } is in the
numbers N and n.

We can now calculate the net (average) dn/dr for
process II; it is

I;-f.,".;, ,
-

(3 5)

Recall also that the sum over sequences P(„}can
be written as Q„Q( „},where {a„}contains the
N-vertex sequences. Here o~ ~

is the production
cross section for sequence S~~~ on the nucleus:

do'

d de dud

Computation of the integral leading to Eq. (3.4) is
facilitated by replacing b and b' of Eq. (3.1) by
B = (b+ b'}/2 and g =b —b', then the Z and P inte-
grals in Eq. (3.5) [and Eq. (3.1)] can be evaluated
immediately.

We turn now to a presentation and discussion of
results.
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IV. RESULTS

In Fig. 5 we show the theoretical particle distri-
butions for a typical emulsion nucleus using the
idealized h, of Sec. IIC [Fig. 4(a)] with P = 10
(which is appropriate in the TeV range), and taking
tyr=26 mb and &r =22 mb, and a„=a =9 (GeV) '.
These cross sections are appropriate for pions,
which constitute most of the produced particles;
but if we used numbers corresponding to incident
protons, the results would be indistinguishable
from those shown in the figure. As expected, the
distribution is quite different from that of an indi-
vidual nucleon, and shows a marked buildup at
small rapidities.

Also shown in Fig. 5 are the results of a recent
analysis'" of nuclear emulsion data at E =10~
GeV. These were originally used to argue against
a flat pionization region. However, it is clear
from Fig. 5 that the experimental results are ac-
tually compatible with a flat pionization region if
proper care is taken in handling the nuclear phys-
ics, and if the following remarks are noted. The
difference between theory and experiment at small
rapidities can be attributed to the facts that (i)
in Ref. 9, low rapidity events were excluded by
hand, so the experimental numbers underestimate
the true distribution in that region, and (ii) the as-
sumptions that scaling holds to low energies and

4.0

that energy conservation can be neglected lead to
a theoretical overestimate of small rapidity
events. In particular, if we assume for illustra-
tive purposes that these assumptions fail at E =10
GeV, then we can compute the rapidity cutoff. By
the definition of rapidity, the upper fraction $ of a
rapidity distribution corresponds to the upper frac-
tion (1 —e @) of the corresponding momentum dis-
tribution. The upper momentum fraction in our ex-
ample is (10' —10)/10~, giving for $ = 10 an upper
rapidity fraction ( =0.'I in which our assumptions
do not fail. This is the cutoff line shown in Fig. 5.

In order to check our method, we have explicitly
calculated multiplicities s =f(dn/dr)dr for parti-
cle-nucleus interactions and compared the results
to experiment. In Fig. 6 we show the expected
multiplicities from various nuclei, as a function of

P, together with the experimental points of Ref. 11
scaled up by a factor of —', to take rough account of
the production of neutrals and then suitably nor-
malized (see first paragraph, Sec. IIC) to the hy-
drogen data. We see that the agreement is quite
good, a check which gives confidence that other
features of intranuclear cascades will be correct-
ly explained by our results. It is also interesting
that, according to Fig. 6, if the input multiplicity
(i.e., on a single nucleon, n = jh,dr) increases as
In(s) then the multiplicity on a nuclear target in-
creases faster than In(s). (The larger the nuclear
target, the faster the multiplicity increases, al-
though the A dependence is relatively weak. )
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FIG~ 5. The solid line in this figure illustrates the
theoretical single-particle inclusive buildup at lower
rapidities due to intranuclear cascading. The nucleus
is Br, and the incident proton's rapidity was taken as
P =10, corresponding to -20 GeV. Shown as a dashed
line is the step function distribution assumed for p + H

n+X. The data of Ref. 3 are normalized and super-
imposed. The disagreement of theory and experiment
at low r is discussed in the text.

I

IO 15

FIG. 6. The solid lines represent pion multiplicities
on H, C, and 208Pb as a function of incident pion rapid-
ity, using the single-particle distribution discussed in
the text. The experimental points for H and C are
from Ref. 10, normalized to match the theory at the
200-GeV (lowest point) hydrogen point.
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V. DISCUSSION AND SUMMARY

Although our original multiperipheral-model
(MPM) distribution in Fig. 4(a) is flat as a function
of r, we have seen that the distribution expected
from a nucleus is strongly skewed toward small r.
The reason for this is quite simple, and has to do
with the fact that a particle cannot produce off-
spring whose energies exceed its own. Thus par-
ticles to the right in the chain in Fig. 2 will pro-
duce lower-rapidity offspring, and only the leading
particle can produce the highest rapidity.

One important point regarding the skewing of the
nuclear distribution should be noted. Although the
nucleon and nuclear distributions differ markedly
at small r, they are quite similar at large r.
Therefore, one way of using these results might
be as an indication of when the nuclear effects are
important, looking only at high-rapidity particles
in emulsions. For example, if we wish to work in
a region where the effect of the nucleus is less
than 10%%u&, we should confine ourselves to the upper
20%%u&& of the rapidity plot (see Fig. 5). The upper
20%%uo of our rapidity plot in Fig. 5 —in which p
=10 —corresponds to the upper 86%%u() of the longi-

tudinal-momentum range. Future experiments
could be analyzed in this way, which has the virtue
of being largely independent of the nuclear phys-
ics.

The discussion in the preceding paragraph, in-
cidentally, shows why the slight energy noncon-
servation implicit in Eq. (2.12) —Fig. 4(a) -for k,
is an insignificant problem. In fact, we could re-
place it with

where e is small; this would have the effect of en-
suring that energy conservation was not violated,
and yet the results after folding would be almost
indistinguishable from those reported in Sec. IV,
Figs. 5 and 6.

In summary, inclusive cross-section experi-
ments on nuclei" can provide useful information
on the corresponding quantities with nucleon tar-
gets. This offers a decided advantage to the ex-
perimentalist who wishes to use cosmic rays to
study very high energies.
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