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g, as given by Eq. (A4) is in the reduced mass

p/, j =1, 2. Because the channel-1 (Z P) and
channel-2 (Z'n) reduced masses are so close, in
order to look at the dependence of gz on A. , it
makes sense to write

g2 =gz+ &g (AS)

and consider ~5g~«[g, ~. Substitution of Eq. (A6)
into the right-hand side of Eq. (A3) and expansion
of the result in powers of 5g yields

gz =8, +-,' 5l-9 (1
', (5g)'+O(5g')+ ~ ~ ~ .

9 1-x~, )

Thus terms that depend on A, , give at most a
second-order change in gz compared to the value
it would have if only isospin--, ' parts of the ZN
interaction were used; i.e., if ~, were zero.
Since, from Eqs. (A1) through (A6), it is only
through g~ that A. , affects the determination of the
parameters PA, A.„, A.~, and A, these parameters
also are very insensitive to the value of A,
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A method of analysis is proposed which may provide a better limit for the neutrino mass when
analyzing Kurie plots of the beta spectrum from tritium beta decay near the end-point energy. By
determining the sign of the second derivative of the Kurie plot, it is possible to place an upper or
lower limit to the neutrino mass of about 35 eV. However, the method demands data of sufficient
accuracy.

The most favored method to detect the presence
of a finite neutrino rest mass v (we shall not dis-
tinguish between v and v) seems to be to study the
behavior of a P spectrum in the vicinity of the end
point. In fact, a most recent exhaustive study by
Bergkvist' on the P spectrum from tritium decay
places an upper limit of v =60 eV after taking into
account various corrections.

Essentially, for an allowed P decay of the bare
tritium nucleus, the spectrum shape is given by

N(p)dp~F(z, E)p*(EO-E)[(EO-E)*-v']"'dp

SC(E) = [N//P' F]"'
—((E E}[(E E)R P] 1/R}1/1 (2)

for an assumed V-A form. ' E, is the end-point
energy corresponding to the case v =0. Usually
the Kurie plot is used,
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v [v +2(E~ —E)
4''(E, E)[-(E, E)*-v']-"' (3)

is zero for v =0 and negative for v+0. Thus a de-
termination of the sign of C will tell us whether
the mass v is zero or not. However, this will not

and the data are fitted as well as possible for dif-
ferent values of v near the end point. However,
an alternative method suggests itself. The plot
deviates from a straight line near the end point if
v40; in fact

1 dK
K(E) dE'

give a quantitative limit to v.
Most experiments are performed with the tritium

atom, where atomic effects tend to obscure the
simplicity of Eq. (1). Surprisingly, this has its
compensations, as we shall show below, as it al-
lows one to give a quantitative upper limit to v.

For P decay of a free tritium atom, we can build
up the composite p spectrum (neglecting recoil and
nuclear effects) using the formalism developed for
autoionization. ' In the P decay of the tritium atom
in its ground state, the atomic electron can find
itself in any of the nS states of the final He' ion.
The formalism in Ref. 3 gives the p spectrum for
this process as (in units of g = c =m =1}

N (p)dp~ p'dp p ((W, —I -W, —~ „)[(W,—1-W, —a„)' —v']"' g(e„'~ er&)'F(Z', W,) + ((e,'~ er)]'(Z'a)'/n'w

—((e„'(e,)(e, ( e,')][F(z',w, )(z')'/n'w]"'}),

(4)
where W~ is the electron energy, and

b,„=Br (He') (1 —I/n'), Wo =W 8 ~ + 1 + p, Z' = 2 .
The overlap integrals (e„')er& and (e~~ er& are evaluated in Ref. 3 for Dirac wave functions. We will use
their nonrelativistic forms, however.

To Eq. (4) we must add another contribution, namely, that in which both electrons are ejected into the
continuum. This shakeoff spectrum is given by

'()'" s'ds
N (p)dp~p dp (W —r „—W~ —W,}[(W —n„—Wq —W,}~ —p~]'~~

0

x [l(ej I er) I'F(Z', W,) +
(
(e'

I &r & )'F(Z', W, ) —
[ (e~ I er& &er I ep& I [F (Z', W~)F (Z', W,)]"'},

'(5)

with

s,(p) =[(W, —~„-W, —v)'-1]"*.
In the above expressions, Br(He') is the If-shell
binding energy of the He' ion (0.054 keV). These
expressions neglect final-state interactions be-
tween the two electrons. One could crudely allow
for this by reducing Br(He'), since the interaction
would, to a first approximation, reduce the bind-
ing energy. Furthermore, since we are interested
in the spectrum near the end point, we expect the
distortion due to final-state interaction to be small.

A Kurie plot of the composite spectrum in the
vicinity of the end point is shown in Fig. 1, using
W, —2 =18.61 keV, Br (He') = 0.054 keV, and v = 0,
60 eV. It shows generally that for v =0 the almost
straight portion turns upward to meet the end point
at 18.61 keV, while the v =60 eV case turns down-
ward to meet the end point at 18.55 keV. If a
straight line were extrapolated from the almost
straight portion, it would intercept the energy axis
at about 12 eV below the end point for the v =0 case.
In other words, if v =0, the linear extrapolation

causes a systematic error of 12 eV, as was first
pointed out by Scott.4

Let us consider fitting a polynomial to the theo-
retical curves of the form

P„(E)= P C(n)Ei

for the energy range 17.6-18.5 keV. In Fig. 2, we
depict the coefficients C',", C',", C',"versus the neu-
trino mass. The interesting feature that emerges
is that the coefficients C's change sign for a par-
ticular value of v. In fact, for a quadratic fit, C,"'
is positive for v& 35 eV and negative for v& 35 eV.
The cubic fit shows a similar behavior, the coeffi-
cients C", ', C'," crossing at the point v =34 eV. The
curves labeled 1, 2, and 3 correspond to a choice
of Br (He') of 0.054 keV, while those labeled 4 and
5 correspond to 0.025 and 0.100 keV, respectively.
Furthermore, a shift of 100 eV in the value of W,
produced less than 1 eV shift in the crossover
points. Curve 4 represents the crude way of tak-
ing final-state interaction between the electrons
into account, and it shifts the crossover point to
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FIG. 1. Kurie plot of composite P spectrum in the vicinity of the end point. ——v =0; —v =60 eV. Ordinate in
arbitrary units.

a lower value (-23 eV). Curve 5 indicates that the
crossover point shifts to larger values (-58 eV) if
we assume an unrealistic value for the binding en-
ergy. For reasonable parameters, one would ex-
pect the crossover point to be 35 eV or lower.

Thus if any qdadratic energy fit to the experi-
mental data produces a positive sign for C, ', it
would automatically place an upper limit of 35 eV
on the neutrino mass. Conversely, it would also
place a lower limit on the neutrino mass if C, '

turned out to be negative. Similar results are ob-
tained for the cubic and higher-order fits, where
the uncyrtainty in the crossover point for these
higher-order fits is about 1 eV.

Although the method seems very attractive, one
has to approach it with caution. Even assuming
the above model to be free from defects, the ex-
perimental situation is not clear-cut. In the re-
sults of Langer and Moffat, ' it is found that the P
spectrum is distorted due to surface effects. This
distortion creeps towards the end point, depending
on the experimental setup.

Our choice of the energy range is not arbitrary.
It corresponds to the data range of Bergkvist. '
Furthermore, it avoids the region net the end
point where the statistics are poor and hopefully
also avoids the region where spectrum distortion
due to extraneous effects is large. It appears that
even in the case of Bergkvist's data, the curvature
may be attributed to extraneous effects. ' In fact,
Bergkvist linearizes the Kurie plot by applying a
function

to his data over the energy ra~e 1V.9-18 5 keV

(4'l0g-480@ in his notation), which produces a
value

c =-8%(keV) '.
12-
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FIG. 2. Polynomial coegfie jents versus neutrino mass.
1: C&t, Bz(He+) =0.054 keV; 2: C(@, Br(He+) =0.054 keV;

2: C(@, Br(He+) =0.054 keV. 4: Cp, Bz(He+) =0.025 keV;

5: Ctn, Bz(He') =0.100 keV. Ordinate in arbitrary units.
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He finds that this correction for the energy range
475Q-4800, which he then uses for the neutrino-
mass hypothesis with Eq. (1), is very minor. If
one could take the sign of his c with confidence and
if it can be shown that the distortion is not all due
to extraneous effects, then one could put an uPPer
limit of 35 eV on the neutrino mass. However,
one must be very cautious, as surface effects
which distort the P spectrum in this region are not
known.

To take full advantage of the method, a way of
minimizing distortion effects on the P spectrum
by using different experimental arrangements will

have to be found. The chief advantage of the meth-
od proposed seems to be that one can use data
away from the end point, where statistics are
better.

Of course, a traditional fit of W„v, Br(He') as
parameters which may be varied to fit the data di-
rectly as well as possible is not ruled out. This
method will supply, in addition to the neutrino
mass, the end-point energy.
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We construct a simple coupled-channel multiperipheral model of mesons and baryons in order to calculate
their respective multiplicities at high energy. Requiring total cross sections to have their usual Regge
behavior constrains the baryon multiplicity to be small, with an upper bound not far from the
experimental value. More precise results are difficult to obtain in this context. Arguments are given that this
result will be valid in more realistic models.

I. INTRODUCTION

One striking feature of the CERN Intersecting
Storage Rings data is the small magnitude and
steep rise with energy of the multiplicity of
baryons with respect to mesons (see Fig. 1 and
Refs. 1 and 2). The increase with energy can be
understood intuitively in terms of the large ratio
of masses: The multiplicity is expected to become
appreciable only when the energy is high enough
to produce many particles, and much more energy
is seeded to create baryons —especially via BB
pairs —than mesons. In the framework of multi-
peripheral models, one can be more specific and
say that the limiting lns behavior of the average
multiplicity will occur only when lns is large
enough for many partial cross sections to con-
tribute, and at a given energy more of these are
accessible to lower-mass particles. In this paper

we will be more concerned with the small limiting
ratio, which may also be anticipated in this con-
text for two reasons. First, it is a characteristic
of multiperipheral models that the average rapidity
interval between clusters of produced particles
increases with the mass of the cluster. In the
ABFST (Amati-Bertocchi -Fubini -Stanghellini-
Tonin) model, for example, it is found~'8 that
the average interval, ze, in lns between links in
the multiperipheral chain is roughly given by

coeh w = 1 + s,/2 i t max i,
where (s,)'~' is the mass emitted at each link and

is the effective upper limit of momentum
transfer. Since baryons are likely to be emitted
from more massive clusters than mesons, these
clusters will be more widely spaced in rapidity,
and thus have a smaller average multiplicity. By
cluster, we mean, for example, the 6(1236) and


