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A Faddeev formalism and two-body S-wave central separable potentials are used to calculate ~ d

quartet elastic and reaction cross sections for X d lab momentum in the range 30—150 MeV/c. A
three-channel (X p, X'n, An) hyperon-nucleon potential is used, X d cross sections being calculated
with both an explicit and an implicit treatment of the A channel. The implicit A channel

approximation is found to be excellent when the X n interaction is repulsive, but breaks down in part
for an attractive X n interaction.

I. INTRODUCTION

In an earlier work' low-energy quartet Z d cross
sections were calculated in a crude model that
incorporated the assumption that the A channel
could be treated implicitly. In this paper the va-
lidity of the implicit A -channel approximation
(ILCA) for this model is demonstrated.

The basic model used here is the same as that
of Ref. 1, but more recent experimental data and
theoretical analysis of the hyperon-nucleon inter-
action are used here. The original motivation for
Ref. 1 was an interest in the sensitivity of low-
energy Z d scattering to the existence of a spin-1
An resonance just below the Z n threshold. To
make the most of this sensitivity, only quartet Z d
cross sections were calculated. Here too only
spin-& Z d interactions are considered so that
only spin-triplet two-body interactions are needed.
The two-body interactions are all taken to be 'S,
central potentials. The single -channel nP and
Z n interactions and each matrix element of the
three-cha, nnel (Z P, Z n, An} interaction are rep-
resented by an S-wave nonlocal separable (NLS)
potential. Coulomb forces are neglected. Z d
elastic and reaction cross sections are calculated
from the elastic scattering amplitude for incident
Z lab momentum P =30, 60, 90, 120, 150 MeV/c
(the threshold for deuteron breakup being P =93.4
MeV/c) using a Faddeev type of formalism. Most
of these cross sections are calculated both with
an explicit A channel and with the ILCA.

If the A channel is treated correctly (i.e. , ex-
plicitly) then terms must be included in the Z d
elastic amplitude for which, after the A is pro-
duced via (Z P)n- (An)n or (Z P)n- (Zan)n-(An)n,
the A scatters off of the other neutron and/or
converts back and forth to either Z (which them-
selves may scatter off the nucleons) before finally
converting back to a Z . Because the A produced
in ZN-An is quite energetic (i.e. , Mz-MA= 80

MeV) the A should leave the interaction volume
too quickly for such An interactions to play much
of a role. In the ILCA all such terms involving
A scatterings and conversions that result in a link-
ing of the two nucleons are dropped from consider-
ation. Thus the only role played by the An channel
in the (Z P, Zan, An) interaction is as an absorptive
energy-dependent contribution to the Z P —Z P,
Z P—Z'n, and Z'n —Z'n amplitudes. In the de-
termination of the potential parameters of the
(Z p, Z n, An) interaction from experimental re-
sults a full 3-channel formalism is used, but in
employing this interaction in the Z d problem all
exPlicit reference to the A channel is dropped and
only the two-channel (Z p, Zon) interaction appears.
For quartet Z d scattering described here the
number of coupled integral equations to be solved
is one less than in the exact treatment. For
doublet Z d scattering, in which both spin-zero
and spin-one S-wave two-body interactions are
needed, if both An channels could be treated with
the ILCA, there would be a saving of two coupled
integral equations; i.e. , there would be a reduc-
tion in the number of equations from 12 to 10.
Based on a need for at least 24 points on a mesh
side per integral equation for an adequate rep-
resentation of the functions involved, ~ in the
doublet scattering case with only S -wave inter-
actions this reduction already means a saving of
more than 25000 words of computer storage. The
validity of the ILCA from this very practical point
of view is therefore certainly of great interest.

In Sec. II the details of the NLS two-body poten-
tials are given and the determination of their
parameters is described. Section III contains the
results obtained for the Z d cross sections. These
indicate that when the Z n interaction is repulsive,
the ILCA is very good indeed, but when the Z n
interaction is attractive, the ILCA breaks down in
calculations of the reaction cross section at very
low values of the incident E momentum. The
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dependence of the size of the Z d cross sections
on the An resonance parameters and the sign of
the Z n interaction is also covered.

II. TWO-BODY POTENTIALS

The nP potential was taken to have the same NLS
form as that of Ref. 1. In a relative momentum-

space representation, the matrix element of the

nP potential-energy operation is

Since the sign of the low-energy Z'p amplitude

has not yet been definitely determined directly from
experiment, ' a second value for A. , was determined.
Using the values of X, and P given in Egs. (7) and

(8), the 'S, Z'P cross section was calculated for
a lab momentum of 170 Mev/c. The parameter

P was kept fixed and a new X, & 0 was determined

by the condition that it yield this same cross
section. 6 The result was

5'
l V„ l%) = x„v„(k' }v„(k)

where

X, = -24.6995x(2v/10)' F ',
which with the value of P from Eq. (8) yields

(9)

v„(k) = 1/(k'+ P„') . (2)
a+ =-0.75 F, ra+ =4.25 F . (10)

X„=-84.3957 x (2w/10) F

1/P» =0.698342 F .

(3)

(4)

For the Z n potential the same basic form as
that of the nP potential was used:

From the deuteron binding energy a =2.226 MeV,
the neutron and proton masses M„=939.5527 MeV
and M& = 938.259 MeV, and the triplet scattering
length a„=5.39 F, it follows that

As shown in Table I, four different E p potentials
were constructed for both the repulsive and

attractive Z'p interactions.
The 3-channel Z P NLS potential was given a

simple form by the assumptions that the Z p,
Z n, and Z'p shapes and range parameters were
the same an& that the strengths of the potentials
involved were just those that would occur if the
Z and N mass multiplets were each degenerate.
In a relative momentum-space representation, the
matrix elements of this potential could then be
written as

&k lv l%)=qv(k)v (k),

v (k) = 1/(k'+P ') .

(5)
&%~'IV~ql&g&=X&z v&(k&')v&(kz),

i, j=1, 2, 3. (11)

This potential was assumed to be a pure iso-
spin-& interaction, the same as the nuclear part
of the Z'P interaction. The parameters X, and P
were determined by fitting the 'S, Z'P nuclear scat-
tering length a+ and effective range r„values
obtained by Nagels et a/. 4; namely a, = 0.63 F and
r„=—O.V6 F. The results were

Pg=P2=P-=-Pz y

&iz = s (2&z+ &s)~ A2~ = ~ v2 (X~- Xg)

With channel 1 the Z p channel, channel 2 the
Z n channel, and channel 3 the An channel,

(12)

(13)

A. , = 62.7456 x(2s/10)' F~,

P = 1.52627 F ' .

(7)

(8}

X~2=3(Xr+2A~}, X~, =(s) X~, (14)

(15)

TABLE I. FN input parameters and the resulting Z p scattering lengths. For all cases the
additional inputs ah =-1.02 F and ro& =2.55 F were used.

Potential
No. (F)

r0+ go
(MeV)

r
(Mev)

A
(F)

0.63
0.63
0.63
0.63

-0.75
-0.75
-0,75
-0.75

-0.76
-0.76
-0.76
-0.76

4.25
4.25
4.25
4.25

70.92
70.92
73,92
73.92
70.92
70.92
73,92
73,92

10.0
5.0

10,0
5,0

10.0
5.0

10,0
5.0

2.0437 —$0.7355
2.1769—$0.6087
2,0128 —$1.0601
2.3299 —i0.9436
1.6541 —i1.3735
1.8621 —i 1.2528
1.4943 -i1.7736
1.9496 —i 1.7405
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Here X~, g, and X~ are the T = ~ ZN —ZN,
ZN —AN, and AN —AN strength parameters, re-
spectively. The sign of X„ is of course arbitrary.

For this Z p potential there are 6 potential pa-
rameters, A, ~, A» A~, A. » Pz, and Pz, of which
two, X, and P~, have already been determined.
The other four parameters were fixed by the
requirements that this potential yield the 'S, An

scattering length az and effective range roz given
in Ref. 4, namely a&=-1.02 F and xo&=2.55 F,
and that a An resonance exist at a c.m. energy
Eo with width I', the values of Eo and I' being just
those given in Table I. The existence, or non-
existence, of such a resonance again has not been
completely determined by experiment, but, if it
does exist, the values of E, (lying 3 and 6 MeV
below the Z'n threshold, respectively) and I'used
here are certainly reasonable. '

With the use of the expressions given in the
Appendix, the 8 sets of input parameters given
in Table I were found to yield the corresponding 8
sets of potential parameters given in Table II as
well as the corresponding values for the '~, Z p
scattering length A shown in the last column of
Table I. It should be noted that for corresponding
cases (i.e., potentials 1 and 5, 3 and 6, 3 and 7,
4 and 8) the values obtained in Table II for Pz, Xz,
A.„, and A, z are almost completely independent of

As shown in the Appendix, this is a result of
the almost degenerate Z p and Z'n thresholds.
For these corresponding cases, however, Eqs.
(13) through (15) indicate that the Z P —Z P,
Z P —Z'n, and Z n Z'n strengths do change
quite radically as A. , is changed from its repulsive
to its attractive value. In particular Table I shows
that A becomes much more absorptive.

III. Z d CALCULATIONS

As in Ref. 1 the application of the Faddeev for-
malism paralleled that used by Hetherington and
Schick' in their treatment of E d elastic scattering.
Here, however, the Achannel was treated both

implicitly and explicitly. In the former case four
coupled one-dimensional integral equations were
obtained and in the latter five such equations were
obtained. These equations were solved numerically
on the University of Wyoming SDS Z7 using a mesh
size of 24Nx 24N points, where N was the number
of coupled equations. The Z d elastic cross
section o„was calculated directly from the elas-
tic scattering amplitude f ~(e). The total cross
section was obtained from f, (e) using the optical
theorem. The reaction cross section a„was then
obtained by subtraction.

The Z d cross sections were calculated at
incident Z lab momentaP of 30, 60, 90, 120,
and 150 MeV/c for which the relative Z d mo-
menta are 18.31, 36.62, 54.93, 73.24, and 91.55
MeV/c, respectively. The corresponding energies
available in the Z d and Z'nn systems are -2.00
and 1.56 MeV, -1.30 and 2.26 MeV, -1.62 and
3.40 MeV, 1.44 and 5.01 MeV, and 3.51 and 7.08
MeV, respectively. The higher two P values lie
above the threshold for deuteron breakup, whereas
for the lower three values of p, 0,. includes only
the processes Z d-Z'nn and Z d-Ann.

Table III contains the results obtained for o,l

and o„with the use of the YN potentials 1-4,
while Table IV contains these same results for
potentials 5-8. In both Tables III and IV, the col-
umn labeled im show the results using the implicit
A channel approximation whereas those columns
headed ex show the results obtained with an ex-
plicit A channel. In the latter case, because of the
longer computer time needed to complete each
calculation, cross sections were calculated only
for p = 30, 90, and 150 MeV/c.

From Table III it is immediately obvious that the
implicit A channel approximation is extremely
good when the Z n potential is repulsive. In all
cases a,e calculated with this approximation lies
within 1% of the result obtained when the A channel
is treated explicitly. Similarly, the results ob-
tained for o,~ using this approximation are also very
close to the exact results, the error being less

TABLK II. FN potential parameters for the potentials of Table I. For all potentials
Pg =1.52627 F

Potential
No. (F )

/(-7t)
(F )

-A,g/(- 7r)
3

(F-2)
m, /&$ v) 3

(F )

1.708 63
1.832 65
1.685 58
1,821 35
1.706 94
1.831 80
1.680 42
1.818 77

62.7456
62.7456
62.7456
62.7456

-24.6995
-24.6995
-24.6995
-24.6995

29.1527
48.9613
24.6015
46.2080
28.8918
48.7998
23.8418
45.7255

112.3833
113.6106
101.0973
102.2253
112.1803
113.4076
100.7234
101.8327

49.0518
36.8598
54.5268
41.2338
49.2363
37.0151
55.0116
41.6619
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TABLE III. Z d elastic and reaction cross sections using implicit (im) and explicit (ex) h-
channel calculations for potentials 1-4.

P
(Me V/f. )

Potential 1
im ex

Potential 2

im ex
Potential 3

im ex
Potential 4

im ex

Oel (mb)

30
60
90

120
150

901
661
486
361
269

923

489

275

1116
819
598
438
321

1127

605

324

0'fe (mb)

738
542
383
278
205

817

212

1200
781
524
364
258

1221

534

263

30
60
90

120
150

1640
777
523
394
314

1630

520

1553
759
520
396
318

1541

518

317

2035
900
583
429
334

2048

582

332

2273
995
642
468
361

2266

640

than 5% in all cases. Prom Table IV, when the
Z n potential is attractive, although the ILCA is
very good for p ~ 90 MeV/c —errors in the
cross sections s IOQ being typical —for g at p
= 30 MeV/c the errors range up to 40%. Further-
more, it is now a„ for which the discrepancies
are generally smaller rather than O„as was the
case for the results shown in Table III. An argu-
ment can be made that an attractive Z n potential
pulls the neutron closer to the proton while a
repulsive Z n potential breaks up the bound nP
system. Thus, when Z P-An occurs, a rescat-
tering of the A by the original neutron is more
likely in the former case than it is in the latter.
As it is just these An rescatterings which are
neglected in the implicit A-channel approximation,

it makes sense that this approximation works
better for a repulsive Z n potential (Table III re-
sults) than it does with an attractive Z n potential
(Table IV results}. However, why this approxi-
mation is so very good for the cases shown in
Table III and why it tends to break down for some
particular calculations of o„shown in Table IV
still remain to be explained.

To check that the validity of the implicit A-chan-
nel approximation for a repulsive Z n potential
was not confined to cases for which a An resonance
was present close to but below the Z'n threshold,
a„and o,~ were calculated for 3 further cases. In
all three of these, aA, r,A, a„and r„were kept
the same as the value used to determine potentials
I-4. In the first, however, the additional param-

TABLE IV. Z d elastic and reaction cross sections using implicit (im) and explicit (ex) h-
channel calculations for potentials 5-8.

P
(Me V/c)

Potential 5
im ex

Potential 6
im ex

Potential 7

lm ex
Potential 8

im ex

Oe) (mb)

30
60
90

120
150

986
810
638
481
354

974

659

374

1061
897
719
547
404

1043

411

1112
860
645
469
336

1131

699

373

1299
1035

786
572
407

1276

803

425

30
60
90

120
150

681
412
334
290
257

493

291

242

416
317
293
273
254

cTre (mb)

334

273

246

1045
549
403
327
276

723

339

254

685
451
379
327
284

523

344

273
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eters' fit were the real and imaginary parts of the
Z p scattering

lengthen

at the value A =(1.25
—f 1.00) F. With these input parameters the real
part of the An phase shift passes through ~ w be-
tween the Z n and Z P thresholds. Similarly, the
values' =(0.50- i1.00) F andA =(-1.00 —i1.00)
F were also used, both of these yielding potentials
with nonresonant An amplitudes. For aQ three of
these further cases, the values obtained for 0„
and a„with Z incident lab momentum in the
range 30 & p &150 MeV/c using the ILCA were in
excellent agreement with the values obtained treat-
ing the A channel correctly. The percentage
errors in these Z d cross sections were never
greater than 7g for P = 30 MeV/c, while for P
= 90 or 150 MeV/c the errors varied from 4$
down to less than 1%.

To a large degree the sensitivity of the Z d
cross sections calculated here to the resonance
parameters is greater than, but parallels, the
sensitivity obtained in Ref. 1, where the method
of determining the potential parameters was
somewhat different. If the resonance width is
fixed and its position is varied from 3 MeV to
6 MeV below the Z n threshold, variations of up
to 30$ in o„and up to 50% in o„are obtained,
with most of the larger variations occurring at the
lowest values of P . It is clear from Tables III
and IV that because of the interplay between the
effects of changing Ep and the effects of changing
I', if a An resonance near the Z'n threshold exists,
low-energy Z d experimental cross sections (even
the S = —,

' cross sections calculated here) could not
be used to determine both of these parameters.
Even determining one of the resonance parameters
given the other might be very difficult when the
effects of doublet Z d scattering are included in
the theoretical calculations.

On the other hand, as pointed out by Schick, '
the Z d reaction cross sections are very sensitive
in a systematic way to the sign of the Z n inter-
action; the lower the energy the greater the dif-
ference in o„obtained from Tables III and IV at
the same values of Ep, I', and P . Calculations of
o„performed with Z P potentials adjusted to give
the same values of A, rather than the same values
of Ep and I', confirm that this sensitivity is not
due to the difference in the values of A of poten-
tials 1 and 5, 2 and 6, 3 and 7, or 4 and 8. It
might be possible to use low-energy Z d reaction
cross sections, rather than Coulomb interference
in low-energy Z'P angular distributions, to deter-
mine the sign of the low-energy isospin-~ ZN
potential. Whether the Z d reaction cross section
remains sensitive to the sign of the spin-1 iso-
spin-~ ZN potential when Z d doublet scattering
is included in the theoretical calculations is pres-

ently under investxgatxon.

APPENDIX

2 v(-gs'+ I/r. )
3 A ~ cR(k) t (A1)

where

r, =~~+~„'g&l(I ~& g&), (A2)

p, ~ is the reduced mass in channel j, and k, is the
relative momentum in channel 3; i.e., the An
channel. Here, however, because the isospin-~
contribution to the ZN interaction is included,

3 (2gl g2) ~ Slfigm
1--', z,(g, +2g, )

where

(A4)

and g& is the principal part of g~. In the limit as
X, -O, Eg. (A3) reduces to the result obtained in
Ref. 1.

From Eq. (A1) the condition for the existence of
a An resonance at a An-channel energy E, =E, is

1-g,'y, =O, (A5)

where the left-hand side is evaluated at E, = k, '/2 p,,:Ep The width F of such a resonanc e is given
by'

r=-(k, /i, ) „k,(k, cot5, )
d

3
, A3 =Op

(A6)

i.e., k, is the value of k, at the resonance.
In the limit k, -0, Eg. (Al) becomes identical

with

k, cot5& ———I/a&+ ~ roz k, ' . (A7)

The equations in this appendix together with the
equations and input parameters given in Sec. 0 are
sufficient to determine the hyperon-nucleon poten-
tial parameters.

Now consider Eq. (A3) for the case used in the
text; namely, the only difference between g, and

The calcuation of the An phase shift 5& proceeds
in the manner of the analogous calculation in Ref. 1.
The results presented below are given for the sake
of completeness.

As in Ref. 1, the 3-channel hyperon-nucleon NLS
potential discussed in Sec. II leads to
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g, as given by Eq. (A4) is in the reduced mass

p/, j =1, 2. Because the channel-1 (Z P) and
channel-2 (Z'n) reduced masses are so close, in
order to look at the dependence of gz on A. , it
makes sense to write

g2 =gz+ &g (AS)

and consider ~5g~«[g, ~. Substitution of Eq. (A6)
into the right-hand side of Eq. (A3) and expansion
of the result in powers of 5g yields

gz =8, +-,' 5l-9 (1
', (5g)'+O(5g')+ ~ ~ ~ .

9 1-x~, )

Thus terms that depend on A, , give at most a
second-order change in gz compared to the value
it would have if only isospin--, ' parts of the ZN
interaction were used; i.e., if ~, were zero.
Since, from Eqs. (A1) through (A6), it is only
through g~ that A. , affects the determination of the
parameters PA, A.„, A.~, and A, these parameters
also are very insensitive to the value of A,
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A method of analysis is proposed which may provide a better limit for the neutrino mass when
analyzing Kurie plots of the beta spectrum from tritium beta decay near the end-point energy. By
determining the sign of the second derivative of the Kurie plot, it is possible to place an upper or
lower limit to the neutrino mass of about 35 eV. However, the method demands data of sufficient
accuracy.

The most favored method to detect the presence
of a finite neutrino rest mass v (we shall not dis-
tinguish between v and v) seems to be to study the
behavior of a P spectrum in the vicinity of the end
point. In fact, a most recent exhaustive study by
Bergkvist' on the P spectrum from tritium decay
places an upper limit of v =60 eV after taking into
account various corrections.

Essentially, for an allowed P decay of the bare
tritium nucleus, the spectrum shape is given by

N(p)dp~F(z, E)p*(EO-E)[(EO-E)*-v']"'dp

SC(E) = [N//P' F]"'
—((E E}[(E E)R P] 1/R}1/1 (2)

for an assumed V-A form. ' E, is the end-point
energy corresponding to the case v =0. Usually
the Kurie plot is used,


