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B,=m+mp[1+-,'(x, '- 1)]'~' . (10)

Closed timelike curves will occur where the

norm of 8@changes sign. Using the components
of Eq. (1), the norm is given by

g~~=m'(1 —y )(4AB) '[16q'C'(1 —y')

—p'(x' - 1)B'].
There is one root in the equatorial plane, y =0,
lying in the ergosphere. In the region where the
norm became positive, the circles t=const, A

=const, and 9 =-,'m are closed timelike lines.

Finally, we note that the T-S solution is of
Petrov type I by the theorem of Lind, "which

states that any nonradiative asymptotically flat
vacuum solution (with singularities bounded away
from infinity) is either Kerr-Newman or type f.
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We discuss weak and electromagnetic mass diA'erences of pions in the framework of (I) current
algebra and (II) a renorrnalizable Lagrangian model.

I. CURRENT-ALGEBRA FRAMEWORK

If one hypothesizes that weak interactions are mediated by massive intermediate vector bosons, the
electromagnetic and weak mass differences can be written as

Sm, ' =II„+IIz+a
where

2 E g/jvH„=e' ' d4k, . d4xe' "(v' (T*(j~™(x)j„'(0))~x') —(v'- xo) (2)

2E„,(g"' —k"k'/m ')
&w =gw'

4
" "'k

g . " d'xe"*& &' IT*(j'„(x)j.(o)+ j„(x)j:(o))I
v'& —(&'- v')

, 2E„,(g""-k"k"/m ')
He =g, ' " d'k, , J

d'xe'"*(v'
~
T*(j e(x)j x(0))

~

w') —(w'- v')2—
where the following three massive vector bosons are considered'. charged vector bosons W of mass mli
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coupled to the charged hadronic current j'„=(V-A)'„with coupling constant g„,and a neutral vector boson
Z of mass m z coupled to the neutral hadronic current j z (defined below) with coupling constant gz. The

electromagnetic current is related to the hadronic current via j™= V'+(I/WS)V'. By assuming the above
form, we can discuss the divergence problem if certain properties of the hadronic two-point functions are
known.

Electromagnetic mass differences have been widely discussed in the literature. " The on-mass-shell
amplitude has been found to be divergent in model calculations. ' One hopes that the weak mass-difference
divergence will cancel the electromagnetic mass-difference divergence. In forms (1)-(4), one assumes
equal bare masses for the pion multiplet.

The hadronic symmetry is usefully discussed in terms of SU(2)(8)SU(2) symmetry-breaking parameters;
thus we assume that it makes sense to talk about first-order and higher-order corrections in the symme-
try-breaking parameter e I O(e) =O(m„')].

(a} First, in the Eeroth-order approximation of SU(2}(8)SU(2}symmetry breaking, we can treat s„j'„=0,
8„j„'=0,and m„'=0. Assuming also e„j„"=0,we have the logarithmically divergent part'.

d4k(~~')~ = ' Re, . d' x"e'g""[ e& vlT*(j; (z)jo (o))Iv'&

+g '&z'IT*(j'„(z)j.(o)+ j (z) j:(o))lz'&

+g '& 'IT'(j„'()j'(o)}I '&-( '- ')j+o( .') (5)

In this approximation, one can justifiably use the soft-pion method. What is calculated is usually re-
ferred to as an off-shell amplitude. Since all the currents are conserved, one can replace the covariant
T* product by the T product if one consistently neglects Schwinger terms. One has'

(c *),„= Ro J„, , o""(s'+o,'(a'-o')](o"„„(o)-o„"„(o)]+o(,*),

where

o„'„(o)=io'* '"'(olo'(p( )(.-(o))lo)*,

where

2 /2

j z (V A)o
g'

Vem
+8

e' = -gz'(a' —b') . (7)

This relation is interesting, for it is satisfied in
Weinberg's unified model of weak and electromag-
netic interactions' as summarized in the following
semileptonic Lagrangian:

~2 (Wqj q+ Wq j„)
+ ) (g& +gi 2)o/2Z j z eA Vem (8)

j = a V'+b A' +hypercharge current (j '}
+ singlet current (j o) .

If an unsubtracted dispersion relation is as-
sumed for the two-point spectral functions, and
use is made of the first and second sum rules of
Weinberg, it is found' that the electromagnetic
mass difference is finite by itself. It is evident
from (6) that the same conclusion can be drawn
for the weak contributions. ' If the second Wein-
berg sum rule is not assumed, then one can see
that the requirement of no divergence in the mass
difference reads

, V'-A'- 4
+4" 8' +8

and where e=gg'(g'+g") '", and

VP =IN y„(t'+ ,')H, —

V =iNt yN
1

J~ =—2iN yqN.

A&
—- -iNt y5N,

We find that gz =-,'(g'+g" }'", a = (g' —g")j
(g'+g"), and b =-1; thus (7) is satisfied. (For the
Lagrangian model of the pion, see Sec. II.)

(b) Next, we include first-order terms in e (thus
on the mass shell). We work with the following
two assumptions (this section has nothing to do
with the soft pion; it can equally deal with the pro-
ton-neutron mass difference):

(1) The a term is an isoscalar up to second or-
der of c.

(2} The light-cone region (or deep-inelastic re-
gion of current-pion scattering) is relevant for the
divergence in the mass difference. In this region,
we can use the bilocal algebra of Fritzsch and
Gell-Mann. '

By assumption (1), one can see that quadratically
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divergent contribution to the mass difference van-
ishes: Using a Ward identity, ' k"k" terms [in (3)
and (4)] can be reduced to the sum of the time-or-
dered product of two divergences of currents,
which is of second order in ~, plus the o term,
which cancels between m' and ~' states, and plus

an equal-time commutator term, k" ( v~ e„,V'„~w)
=k pE(0), which is linearly divergent.

Next, consider the logarithmically divergent
part from g"" terms. Since currents are not con-
served in this order approximation, one can write
five invariant amplitudes for the two-point function

d xe' *(p~T*(j'„(x)j'„(0))(p)=Ap„p„+B(p„k,+p, k„)+Ckk, +Dg „+Ee„,k'pp4 S
~

k X ~ Ia
~

~

V

b ~~
~ V u V V ~ ~ V ~ V ~ V a P

~ P
t

where j is a vector or axial-vector current. Using the Ward identity

kv$4XekkxpTjQXjbppd+ekkxpTjQ+gjbpp+~d4+elkxpjbp)Q+g+p
we obtain

A v+ Bk2 = Q+E,
Bv +Ck2+ D = L,

where v = k P and Q, L, E are invariant amplitudes defined by

(10)

d'~ ""
p T* j'„xe„j,'0) p =qp„+Lk„

i d &e' "
P j0 0 j ~ X 5 x0 P =e b P j' 0 P +ST.

=E(0)p&+S.T. ,

where S.T. stands for Schwinger terms. Using (10), Eq. (9) can be written

I d * "'(P 1('"{j„()k)(D))( P)'= (P —,k P —,k A(, k )d„,— "', ')D(, k')
V

kv+~vkp k ' jb+ " "
2

" " —
d k~k„(Q+E)+ "2 "L+Eeq„,pk PPp

and thus

k P2g"" ~ xe'"" P T* j'„xj„p) P =A P'- +3D+E, + L+Q (12)

The third term on the right-hand side of (12) is
linearly divergent and presumably one does not
have to worry about it. We can see that the last
term cancels between m' and m' states, and thus
does not contribute to the mass difference. To
see this, we multiply (11)by k„;the left-hand side
by the Ward identity reduces to the o term plus
O(e'); on the right-hand side we find that Q(k p/
k') +L-O(e') for the difference between v' and ){'
states by assumption (1). Thus one has

dispersion relations. Consider the contribution of
T, to the mass difference'

1 " W(k' v{&
T (jP v) = — dv'2

2r V —V0

2uP ', F,(&u', k')
mk &' -uP '

0

where ~ = -k'/2 v —= -k'/2kP and E,(~, k')
= vW, (k2, v); thus

gpv d4xefkx ~+ p Tg(j ~ jv 0 ) ~+ p

-(v -v'))

k '
0 E 0

x T,"(-ks', km, k, )

P —
~ T2 (k, v) + 3T; (k, v) +O(e ) .2 k!
2

2

2
Q b 2
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~
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T, and T, are the differences of A and D betweenr' and w' states, thus both satisfy unsubtracted

"dk '- m, ' s2 (dv E( (vk ')
0 g 0

k 2

xf 2 2, (13)4m„u2
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where

I (1 z)$/2
&(x)=x I dz, = const.

X+8 x ~ac

Now, by assumption (2), we know' that F, scales
in the Bjorken limit:

F (&u, -kz'), = F (~)~ aaE
u fixed

F (~) ,'(u=(-if.„S'.,(cv)+d.„ff:,((u}] (w-'- w'),

(14)

e' = -gz'(ac +bd) . (16)

We should note that (16) cannot be checked in
Weinberg's semileptonic Lagrangian (8), because
(8) is based on the group SU(2)~ U(1), and hence

where S and 8 are Fourier transforms defined in
Ref. 10. From (1), (13), and (14), the logarithmic
divergent part becomes"

OQ 2 oo

Ibm~]~„. - m, ' 2 u& du —',
I e2+gz'(ac+bd)]

0 E 0

x (8„—8,0) + 0(e ),
(15)

where a, b, c, d are the constants in the neutral
current

j z =aV'+b A'+,'-(cV'+dA')

+ singlet current.

A similar calculation can be done for (6m, )d„.
Note that F,(w) =2&uF, (~) by bilocal algebra. It
turns out that 5m, does not contribute to the loga-
rithmic divergence. Thus, from (15), there will
be no logarithmic divergence if

one does not know the SU(3) classification of the
current 8„,which can be an arbitrary mixture of
Vo and V'. If one makes the SU(3) assumption
j' = V'+(I/W3)V' and writes

then

1
e'+gz'(ac +bd) =, e',

2cos ~w

where e, g~, a, and 5 were given before, and c
=-2g"/(g2+g'2), tanaw =g'/g. One finds that the
total mass difference is still logarithmically di-
vergent, differing in magnitude by a factor
(2cos'aw} ' from the electromagnetic mass-differ-
ence divergence. Such a conclusion" is actually a
result of the classification of the current g„.

In summary, we have discussed the convergence
property of the lowest-order contribution in the
weak and electromagnetic couplings to the mass
difference. For the hadronic two-point function,
we assume that perturbation series in the SU(2)
SSU(2} symmetry-breaking parameter e make
sense, at least for practical purposes. Two com-
pletely independent methods are applied: The
light-cone analysis agrees with the soft-pion re-
sult" that the off-mass-shell electromagnetic
mass difference is divergence-free, but the on-
mass-shell mass difference is found finite only if
(16) is true in the first order of e approximation.
Equation (13) is the basis for assuming that the
light cone is relevant in the divergence problem
of mass differences. This may not be true. With-
in the framework of soft-pion technique alone, one
also notes that a semileptonic Lagrangian like (8)
ensures a finite mass difference even if the second
Weinberg sum rule is invalid.

II. RENORMALIZABLE LAGRANGIAN MODEL

A Lagrangian model for the pion with spontaneous symmetry breakdown can be constructed: We use the
SU(2)~ SU(1) group of Weinberg. ' After spontaneous symmetry breakdown, the neutral vector bosons are

&„=(g'+g")'"(g&'„+g'&„),
&„=(g' g"+) '"( g'&'„+g&„-).

We assign'~ p=Z+w to an SU(2) triplet with Y~ =(T, —Q)~ =0. (Z —w)', (Z —w)', and (Z —w) are thenthree
singlets, with Ye=-Qz taken to be -1, 0, and+1, respectively (T,z=0}. The Lagrangian for Z and w is

--,'
I a„(z+w) —igAx (z+ w} I' ——,

'
I
a„(z'—w'} ig'&„(z'——w') I'

--'la„(z'-w')I'--'la„(z —w )+ig'&„(z —w )I'.

The interaction for the neutral vector boson is then
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—'gA'„[(z+v) a„(z+v)'-(z+v)'a„(z+v)]+-,'g'&„[(z—v) a„(z—&)'+(z —&)'a (z —v) ]

(18}

where

=—(w a„v'—v'a„v )+(v-Z),
z"„=(z-a„v'- z'a„v-)+(z= v).

The semileptonic Lagrangian agrees with (8),
but in addition there are seagull terms. By the
representation content of the pion, we have equal
bare masses for pions, since the scalar meson Q

of Weinberg does not couple to pions. From the
Feynman diagrams and seagull terms, we find

that quadratic divergence is not present in the
lowest-order g', g",gg' calculation; this obser-
vation was made in a more general context by

steinberg. " Noted for the mechanism of sponta-
neous symmetry breaking, the above Lagrangian
is believed to be renormalizable in all orders of

g and g'. However, in such models the hadrons in-
teract in a pointlike fashion. How to incorporate
the strong interaction and still be able to renor-
malize is a difficult problem. The difficulty can
be seen in (18), where in order to have a two-body
pion semileptonic decay Z must develop a vacuum
expectation value, raising doubts about renormal-
izability.

One customarily divides the Hamiltonian into
four parts:

X=X„„+X',",'(c) + 3C'"'(g, g') + 3C',"' (g, g'),

where X',",' breaks SU(2)SSU(2) symmetry [e.g. ,
by the (-,', —,') representation], and X"',X',"' also
break SU(2) I81 SU(2) symmetry but probably in a
different fashion [for example, X'"', 3C,"' of (8) are
only SU(2)~-invariant, but not SU(2)n-invariant in
the usual sense]. Thus perturbation series in e
and in g, g' are completely independent series, al-
though both contribute to symmetry breaking.
Taking this point of view, the (renormalizable) La-
grangian model provides a perturbation series in

g, g, but since the strong interaction is absent, it
can be classified as zeroth-order in e, for exam-
ple a„j„=O(g,g'}. On the other hand, in the cur-
rent-algebra formalism, one makes some assump-
tion on the nature of weak and electromagnetic in-
teractions. The defect is that the theory is not
guaranteed to be renormalizable in orders of g, g',
unless relations between coupling constants and
masses are imposed. For each order in g, g' to

be finite, one wi11 expect the corresponding con-
straints. The total number of constraints is hope-
fully finite in view of the Lagrangian model. Thus
in form (1) we are calculating only the lowest-or-
der contributions in e', ger and gz', The advan-

tage is that perturbation series in c can be studied
in principle. We learned from the light-cone anal-
ysis, for example, that the strong interaction im-
poses in first order of e calculation a relation (16)
which does not seem to be required in the zeroth
order of e calculation.

ln the (renormalizable) Lagrangian model (where
3C&' =0) one talks about symmetry group of
X'"', X',"' [for example, SU(2)~ 13U(1)], while in
current-algebra formalism one talks about sym-
metry of the strong interaction. Can one put those
two pictures together? A workable way is to start
with the renormalizable Lagrangian, for example
(17), where we know the mass difference is finite"
in all orders of g, g' and to zeroth order in e.
Next, we introduce the strong interaction by re-
placing the pointlike interaction by currents which
manifest the strong interaction in form factors.
The third step is to ask, in each order of g, g' and

e, what the condition is for it to be renormal-
izable. This program is not guaranteed to suc-
ceed, but we learned from the above calcula-
tions that if we start with a renormalizable La-
grangian where (16) is generated by way of spon-
taneous symmetry breaking, then we find that in
first-order e and g', g",gg' the mass difference
is finite if assumptions (1) and (2) are assumed
for the strong-interaction part Unfort. unately (16)
cannot be checked in Weinberg's model, since the
SU(3) property of the current g„is not known, as
we discussed before. It will be interesting to
learn whether (16) is satisfied in a more complete
(renormalizable) model. The fact that (7) is satis-
fied in Weinberg's semileptonic Lagrangian (8) is
very encouraging.

It is also possible that a renormalizable theory
for strong, weak, and electromagnetic interactions
should come purely from spontaneous symmetry
breaking. One presumably writes down a Lagran-
gian including strong, weak, and electromagnetic
interactions, and then spontaneously breaks the
given symmetry. In order for this theory to be
renormalizable, all symmetry breaking must be
completely due to a spontaneous symmetry-break-
ing mechanism because any added term will de-
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stroy the renormalizability. It might happen then
that the perturbation series in g, g' and e are not
two independent series, but one series. In that
case, the above discussion may not be very use-
ful. In this kind of theory, in order to incorporate
strong interaction, the smallest group to start
with will be SU(2)z SSU(2)s SU(1)SU(1). After
symmetry breaking, the SU(2)~ I21 U(1) group will
presumably be broken as, for example, pre-
scribed by Weinberg's model. What about SU(2)„
SU(1)? What is the particle representation?
These questions will have to be answered.

After the paper was completed, we received a
preprint by Dicus and Mathur" who have made the
same observation on the soft-pion mass difference.
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