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Upper bounds are found for the masses of most of the new, unobserved particles in unified gauge theories
by requiring that the partial-wave amplitudes satisfy unitarity bounds.

It is well known that in the usual description of
weak interactions by an unrenormalizable theory,
there exists a unitarity cutoff, A„; otherwise, at
least some partial-wave amplitudes would grow
indefinitely with energy, contradicting unitarity.
The numerical value of the cutoff A„depends on
the process one is considering and the particular
theory being used. For the intermediate-vector-
boson (IVB) theory (with W' vector bosons), the
process v+ v- W'+IV in lowest-order perturba-
tion theory leads to A„'=24r/0; in general, A„ is
typically of the order of a few thousand Gev. It
has been argued by Gell-Mann et al. ' that there
must exist another, much lower cutoff in the theo-
ry (the effective cutoff, A„f) so that the violations
of strong selection rules, weak selection rules,
and universality arising from higher-order weak
effects stay small. For, if A,~ does not exist,
the higher-order weak interactions would produce
a correction of order GA„2j16v'-3 j2w. In fact
estimates based on the K~-K~ mass difference,
and the upper bound on K - gp decay do indicate
the existence of a substantially lower cutoff than
A„.

In this note, we seek an interpretation of these
cutoffs in the renormalizable, unified gauge theo-
ries of weak and electromagnetic interactions. '
The smaller bound A,ff, which makes perturbation
theory a valid procedure, is clearly the one of in-
terest, but we do not know of any method, short of
explicitly calculating higher-order terms for many
processes, to determine it. We can, however,
find unitarity bounds by calculating in lowest or-
der. Later we shall show how the effective bounds

can be estimated from the unitarity bounds. Wein-
berg4 has shown, by considering explicit examples,
how the large energy dependence of the amplitudes
cancels between graphs in the SU~(2)x Y~ gauge
theory, so that there is no need for a unitarity cut-
off in the energy. The amplitude then goes as GM'
where |"is the Fermi coupling constant and M is
some effective mass in the process. Thus, even
though the amplitude is finite, it may violate uni-
tarity unless there are constraints on the masses
of the particles. In particular, the form GIVE' sug-
gests an upper bound on the mass M.' In the gauge
theories, therefore, these bounds on the masses
are the analog of the unitarity cutoff.

New, unobserved, particles are required in the
construction of unified gauge theories. In some of
these theories, theoretical and experimental con-
straints already exist on the masses of some of
these particles; for example, in Weinberg's
theory' the 8' and Z bosons possess theoretical
lower bounds m~) 37.3 GeV, and m~) 74.6 GeV,
whereas the electron-neutrino scattering data re-
quire that m~ be larger than 65 GeV. ' Thus it is
also of interest to check if these and similar con-
straints in other gauge theories are compatible
with the constraints arising from unitarity and
especially from the considerations that perturba-
tion theory makes sense.

We now turn our attention to calculating the uni-
tarity bounds, and consider the three popular the-
ories of Weinberg, Lee, Prentki, and Zumino'
(LPZ), and Georgi and Glashow. ' We treat only
two-particle-to-two-particle reactions and deal
only with the lepton, c pay't of the theory. The only
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masses (see, for example, Fig. l) from which ab-
solute bounds may be read off.

In the Weinberg theory, ' we consider the pro-
cesses vv-WW, ZZ-ZZ, v, v, - v„v„, WZ-WZ,
and e'e -g'p, . The bestbounds come from the
process ZZ- ZZ with all the Z longitudinal. We
find

10—2

10—

0 200 400 600
I

800 K%0 1200 1400 1600

FIG. 1. The allowed values for the masses of m~ and

mz in Weinberg's theory. The bounds come from the
process ZZ-ZZ, with all Z longitudinally polarized.

concession we make to hadrons is to allow two
scalars with nonzero vacuum expectation values in
the LPZ theory. Lacking a clear-cut criterion for
deciding which reaction would yield the best bound,
we consider several different reactions in each
theory (but clearly not all possible reactions), and,
where warranted, consider different helicity am-
plitudes of a given process. We assume, as usual,
that perturbation theory makes sense and impose
the unitarity requirement, so that the partial-wave
amplitude, in the lowest order of perturbation, is
bounded by unity. Note that the lowest-order par-
tial-wave amplitude for some special processes
diverges like in(E/M). " This is presumably not
inconsistent with renormalizability, and indeed one
encounters such a behavior in quantum electrody-
namics. However, for sufficiently large E, it
would invalidate the perturbation expansion. We
do not make use of the particular processes which
lead to such a behavior. The unitarity bounds on
masses are then obtained by maximizing the par-
tial-wave amplitude with respect to energy. In
many reactions, the amplitudes contain two or
more unknown masses. In those cases where two
unknown masses appear, the unitarity bound leads
to a two-dimensional region of allowed values of

m &1550 QeV,

m && 1020 QeV.

m ~ is also bounded by 1550 QeV since, for mass
values this large, it is approximately equal to mz.
For some values of mz there is also a lower bound
on m +, the allowed values of mz and m & are
shown in Fig. i.

The fact that some of the processes, which de-
pend on more than one unknown mass (like, for
example, ZZ- ZZ) give absolute bounds is inter-
esting. It could have given, instead of Fig. 1, a
curve which ran from small mz, small mz, to
large m+, large mz, without ever closing. The
process ZZ- ZZ with some of the helicities trans-
verse does give such a curve.

The process WZ- WZ is interesting for quite
another reason besides providing bounds on the
masses. The relevant diagrams are 8' exchange
in the s and t channels, (I) exchange in the t chan-
nel, and a contact term. For all helicities zero
the W-exchange terms and the contact term go as
E4 for large E. When these three diagrams are
added together, the result goes as E' and it is only
when the fIt term is included that the total ampli-
tude does not violate unitarity. This shows, in a
simple way, that the p plays an essential role in
making the theory finite.

In the LPZ' theory the reaction vv- WW establishes
a bound on the mass of the heavy lepton l. The pro-
cess e'e - p. 'p. bounds the mass of the Z, and
ZZ- ZZ gives a bound on m ~:

m, & 1475 QeV,

m~& 1100 GeV,

mz& 2640 QeV.

We did not consider any processes that would put
bounds on any of the physical scalars in this theory
although the ratio of m„o to mz is related to m~ as
shown in Fig. 2, go is the neutral member of the
physical triplet.

In the Georgi-Glashow theory' we consider the
processes e'e - p, 'g, vv- WW, and l l - l l,
where I,' is the neutral heavy lepton. The neutrino-
W process limits the mass of the charged heavy
lepton

m, + & 1475 GeV.
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where pn0=53 QeV is the maximum value of m ~.
These bounds hold for both electron-type heavy
leptons (usually denoted X', X') and muon-type

FIG. 2. The allowed values of the W-meson mass and
the ratio of the mass of the scalar x to the mass of the
Z in the LPZ theory. The bounds come from the process
ZZ ZZ, with all Z longitudinal.

(I",I"). In the reactions considered here we do
not find a bound on the mass of the physical scalar.

By considering a limited number of processes,
we have found upper bounds on the masses of all
the particles in the three theories, except for
some of the scalars. There is, however, no rea-
son to expect that any particle might escape the
unitarity bound altogether; presumably, one has
simply to consider more reaction processes. It is
clear, however, that the bounds are typically
around 1500 QeV, and, as discussed before, re-
place the bound on the energy in the old IVB the-
ory. These bounds are rather generous and not
very useful by themselves, from an experimental
point of view. However, the fact that bounds of
any value exist, especially for the scalars, is in-
teresting, since it shows that these particles can-
not be effectively eliminated from the theory by
taking their mass to be arbitrarily large.

More interesting perhaps is the impact of these
bounds on the validity of the perturbation approxi-
mation. It is clear from our comments on the old
IVB theory that when the masses of the particles
attain their upper bound in the gauge theories, the
higher-order weak interactions would, in general,
produce a correction of order unity. Thus for pre-
cisely the same reasons which led Gell-Mann
et aL. ' to propose the effective cutoff in the IVB
theory, the masses of the various particles in the
gauge theories should actually never exceed a frac-
tion of their unitarity bounds. As a rough esti-
mate, if one requires that the correction to the
lowest-order perturbation result should be no
more than 1%, the effective upper bound on the
masses should be an order of magnitude smaller
than the unitarity bound, "or typically around 150
GeV." Bounds of this order of magnitude may
play an important role in the phenomenological
search for effects typical to gauge theories.

*Research supported by the U. S. Atomic Energy
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Examples of processes whose partial-wave amplitudes
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have lnE behavior are i + v i + v and, if all particles
have zero helicity, WZ- WZ.

ttThis statement may not apply to the masses of the
scalars since they never seem to appear in the coupling
constants.

Processes like K—pP probably require even further
suppression; the effective cutoff estimated in Refs. 1 and
2 was around 5 GeV. In the quark model, for any process
involving hadrons, this may come about if the matrix
element depends on the quark mass difference.
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The connection between Zwanziger's prescription for asymptotic fields for charged particles and the

Dollard-Kulish-Faddeev formalism is pointed out.

The work of Chung' and Kulish and Faddeev' has
stimulated renewed interest in the problem of in-
frared and Coulomb phase divergences in quan-
tum electrodynamics. "' In particular, Zwan-
ziger' has proposed a weak asymptotic limit for
a charged field which yields a perturbative Feyn-
man calculus that is free of Coulomb divergences
order by order. The purpose of this paper is to
point out that Zwanziger's definition of the asymp-
totic field for the charged particles is precisely
the one that would be obtained when adapting the
Dollard'-Kulish-Faddeev ' approach to the formal
definition of asymptotic field as

q..„,(q) =Q, y(q)Q, ',
where Q, are the Mt(lier wave operators. ' We out-
line here the procedure for the case of nonrelativ-
istic particles interacting through Coulomb forces.
For that system the interaction Hamiltonian is
given by

d'k«, (O :.fs sf s s=„-' *",
—,',

x expl i(E(p+k) +E(q -k) —E(p) -E(tt))t]

t d'k .- t
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The Mt(lier matrix as defined by Dollard' is

Q, = lim e'"'Uc'(t, t,),

(Sb)

(4)

t
eilttQc Qc e-iHot exp' t a as(t&)dtsI

tp

(6)

where H is the full Hamiltonian, H =Hp+HI.
The definition given in Ref. 7 for the in-field is

formally equivalent to defining this asymptotic
operator as the solution of the equation

where Uc*(t, t, ) is the propagator for the asymptotic
motion

t
U,-(t, t,)=e '""exp t-a (t')dt' . - (5)

tp

It can be shown-at least formally -that Qc are
isometric operators which satisfy the intertwining
relations

x tt *(5+k))t *(q -k) 0(C))I (p),

where E(p) =p'/2m. In the limit t-~~, there is
a contribution of order I/t to H, (t) coming from the
k-0 range of k values for all values of p and q.
This contribution defines the asymptotic Hamil-
tonian

titd, )t) ()t, t) =))a, +a,"(t), )t, (it, t)].
=E(it)g (q, t)

If l sls, ( )s'( ))():
a, (s) fs lf d s"a(=l p-. *al —*)'—

x )t *(p)it*(q))I (q))t(p),

with'

(2)

This equation is, of course, valid only asymptoti-
cally for t- —~. The time independence of )t)*,(p, t)
x)t). (pt) which is rea-dily deduced from the defining
equation (7) —allows one to write the solution of
(I) as


