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Consequences of Weinberg's postulative assumption requiring that rapidly growing pole
terms which contribute to the forward-scattering amplitude must cancel among themselves
and not with the continuum in order to preserve the Regge behavior are examined within the
framework of dispersion relations. Twice-subtracted dispersion relations with soft-meson
theorems as known subtraction constants are used to determine the transformation properties
of the SU(3) (SSU(3)-symmetry-breaking term in the mass spectrum of hadrons.

I. INTRODUCTION

Over the last few years a large amount of inter-
est has been devoted to the algebraic structure de-
rived from the sum of tree-graph contributions for
the forward meson-hadron scattering generated by
any chiral-invariant Lagrangians. In particular,
Weinberg' obtained algebraic relations involving
axial-vector-coupling matrices and masses of had-
rons. In the case of pion-hadron processes, these
relations take on the following elegant form:

[X ~, X8]=ze~8&l&',

[X"i [m'ix ]]=-'5 8[x&y [m' X&']] (1.2)

where a(p, X) and b(p', X') denote hadrons with the
masses m, and m„momenta p and p', and helic-
ities X and X', respectively. f, is the pion decay
amplitude, approximately equal to 95 MeV.

The algebraic relation (1.1) completed with the
commutators involving the isospin generator ma-
trices I forms the Lie algebra of the SU(2) SSU(2)
group. This implies that the hadron states which
Weinberg included in his tree graphs must for each

where n, P = 1, 2, 3 are pion isovector indices. The
meaning of the various symbols in these two equa-
tions is the following: I is the isospin-generator
matrix of the isospin group SU(2) and m ' is the
diagonal mass-squared matrix. X denotes the
matrix in the space of internal quantum numbers
of hadrons (like the spin, isospin, parity, etc. )
while its dependence on external quantum numbers
such as the helicity A, and momentum p has been
already singled out. The matrix element (X")„is
related to the invariant Feynman amplitude
M„(p', q, p) describing any collinear (helicity-con-
serving) transition process s(p, X)-x"(q)+b(p', 1')
of massless pions by

M,.(P', q, P) =2ff,-'(m. '-m, ')(X ),.a„,,

helicity be assigned to an irreducible or reducible
representation of the chiral SU(2) SSU(2) group.
The second algebraic structure (1.2) then specifies
that the squared-mass matrix m' behaves as the
sum of a chiral scalar and a component of a chiral
four-vector with respect to commutation relations
with I and X". One easily sees that the method
demonstrated by Weinberg provides a simple and
attractive scheme for calculating decay rates and
mass spectra of hadrons and that is why this pro-
gram became such a popular starting point for
several works. '

The essential assumptions leading to the deriva-
tion of the algebraic strucutres (1.1) and (1.2) are:

(i) Even if individual tree graphs do have a high-
energy behavior worse than that expected for the
actual scattering amplitude, their sum grows no
faster at high energy than the asymptotic behavior
prescribed by Regge-pole theory. This means that
rapidly growing pole terms contributed by tree
graphs must cancel among themselves and not with
the continuum in order to preserve the proper
Regge behavior at high energy.

(ii) There should be no exotic states. This im-
plies that intercepts of the Regge trajectories hav-
ing exotic quantum numbers must be less than
zero.

The truthfulness of the last assumption may be
checked directly with existing experimental data.
However, the first assumption, which is a most
crucial one, must be taken as a postulate. It may
be justified a posteriori by reasonable results
following from it. So far these two assumptions
have been systematically applied only to tree-
graph contributions for the forward scattering am-
plitude generated by the chiral-invariant Lagran-
gians. Their implications on the continuum part
of the scattering amplitude were always left out of
consideration.

The present work has the purpose to show that
Weinberg's algebraic structures (1.1) and (1.2)
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can be, in fact, rederived merely by assuming the

hypothesis of partial conservation of axial-vector
current (PCAC),

In order to carry out this purpose, use is made
of current-algebra hypotheses and dispersion rela-
tions for the forward-scattering amplitude. We
apply Weinberg's assumptions for twice-subtracted
dispersion relations, where soft-meson theorems
play the role of known subtraction constants.

Using the Lehmann-Symanzik-Zimmermann
(LSZ) reduction technique and current-algebra
hypotheses we present an expression for the scat-
tering amplitude of massless mesons with hadrons
in Sec. II, After the kinematical preliminaries of
Sec. III and a brief exposition in Sec. W in which
we derive twice-subtracted dispersion relations
for the forward scattering amplitude, we present
in Sec. V the details of the applications of Wein-
berg's assumptions which yield the algebra of the
axial-vector coupling matrices X and m'. Sec-
tion VI is devoted to a discussion of how the SU(3)
(8)SU(3) symmetry is broken.

=0. (2.3)

Our basic dynamical assumption is the PCAC hy-
pothesis, i.e.,

s "A„(x)=f m 'q) (x), (2.4)

where A (x) is the phenomenological axial-vector
current, q) (x) is the interpolating meson field,
m „ is the appropriate meson mass, and f„denotes
the decay amplitude of the n meson. In our nor-
malization of (2.4)

Feynman invariant amplitude M,", (p', q', p, q) de-
fined by

'""((i q', 8, p I ~, q, s, p &' '

=1+i(»)'~(p+q p' —-q')I(,.(p' q' p q}.
(2.2)

We shall calculate M„"(p', q', p, q) by adhering
throughout to the approximation of neglecting me-
son masses, so that

q2 qf2

II. CURRENT-ALGEBRA HYPOTHESES AND THE
SCATTERING AMPLITUDE f, =0.69m,

and

(2.5)

Consider a completely general meson-hadron
transition process, f» = 0.87m, , (2.6}

» (q)+s(p)-»'(q')+&(p'), (2.1)

where a(p) and b(p') denote hadrons with the re-
spective four-momenta p and p', » "(q) and» (q')
are mesons of momenta q and q', respectively,
and (» and P are meson SU(3) indices running over
1, 2, 3, . . . , 8. This process is described by the

(s, p I f, p'& = (2»)'2p. 6 6'(p -p'),

is used for both baryons and mesons.

(2.7)

which are the values corresponding to a Cabibbo
angle with tan6, =0.21. The covariant normaliza-
tion of states,

Our first step is in deriving the expression for the scattering amplitude by employing the LSZ reduction
formula along with (2.3) and (2.4). This yields the S matrix in the form

(y, y', y, )y)y-l), y, , y) (f f„) 'Jy' =-fy yy-e( y')-("("y*,-wy(, «)', x„(y),y) .
V

(2.8)

Next we express the reta. rded commutator entering (2.8) by the well-known identity

e(x.-y.) A „(x), A".(y) -={9(x.-y.)[A „(x),A.(y)l)

[6(x.-y.)[A'„( ), A".(y)/)--, [6(.-y.)[A.'( ), A:(y)1)

—yy(y. -y, ) Ay(*), a:(y) A:(y), Ay(*) I.8 ~ a a (2.9)

(2.10}

We employ in (2.9) the assumptions of Gell-Mann' about the equal-time commutators between axial-vector
currents and axial-vector divergences, namely,

5( ,x- y)[ A( )x, A( y]}=if &V"„(x)5'(x—y),
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8
6(x, -y, ) A22(x), A„(y) =-iZs (y)6'(x-y),

1I

(2.11)

where f 2 " are the SU(3) structure constants, Vt(x) is a conserved phenomenological vector current, and
Zs (x) is a symmetric SU(3) tensor. Since one does not want to admit operators of isospin or hypercharge
2 into the commutator (2.11), Zs (x) must not contain any part transforming like the 27 representation of
the SU(3) group. Making the substitutions (2.10) and (2.11) in (2.9) and then (2.9) in (2.8) one gets the invari-
ant Feynman amplitude in the form

i(f,'. ( p', q', p, q) = i(f ()f.) '(i &i, p'
I
~'"(0)

I ap& + (2q" + q' ")f""&f,p'
I
v" (o) I a, p&

+q'q'" I d'z e "*e( z,-)&f/, p'I rA'„(0), A"„(z)j la, p&} (2.12)

by integrating the divergences by parts and using the translation invariance of matrix elements. Introduc-
ing a complete set of states In, p„) between A„(0) and A„(z), integrating over z, and making judiciously
covariant groups of noncovariant terms, Eq. (2.12) becomes

M,:(b q', bq)='(, /e/ , ) 'I (b. ("Ib '(q-)(, b) ~ -*' (q" q'")/'' "(bq'I Ve(0)l,q, b)

&b,p'IA22(0) I n, p„)(n, p„l A"„(0)I a, p&

n

&f, p'IA". (o) I., p.&&n, p. lA'„(o) Ia, p&

P„-Q (2.13)

where s=(p+q)' and u=(p' —q)' are Mandelstam variables. A general sum over n represents the summa-
tion over pole terms and integration over the continuum. The last relation will be applied for the forward
scattering of massless mesons by hadrons in two intersecting storage rings.

III. TWO INTERSECTING BEAMS: KINEMATICS
AND PRELIMINARIES

(u' = (u+ (m, ' —m22) /2E, (3.5)

Consider the forward-scattering process of the

type (2.1) in two intersecting storage rings. By
"forward" is meant only that

t =(q- q')'

and the angular momentum conservation implies
that hadron helicities A., and A., are the same. The
invariant Mandelstam variables s and u become

s=m '+2Ero

q" =un", q'" = cu'n", (3.2a)

(3.1)

In such a process all momenta p, q, p', and q' are
collinear and can be defined as in Ref. 1,

= m~~+ 2E~',

u =m,2 —2Eu'

ma2 —2Eu .

(3.6a)

(3.6b)

p' = -n
I
O' I,

p (p2+m 2)1/2 pe (p(2+m 2)1/2

where

n, = Inl=1.

(3.2b)

(3.2c)

(3.3)

The conservation of total four-momentum yields

n "p„=p. + III
= n "P'

=p2+ lp'I

(3.4)

We will study the properties of the forward-
scattering amplitude Mt, deduced from (2.13) as
a function of the initial meson energy ~, with the
quantity E defined by (3.4) held fixed. Note that
for the forward scattering, where there is no spin
flip of hadrons, the term containing the matrix
element of the vector current V12(0) from (2.13) is
given by

(q'" +q")&f),p'I V)'(0)la, p) =2E((d'+())(E &)q2„

(3.7)

where E'/ is the SU(3) generator matrix. Next we
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n "(f(,P' ~A„(0)~a, P) =2iE(X )„, (3.8)

introduce the following abbreviations for matrix
elements of the operators A'„(0) and Z (0) taken
between single-particle states at t =0,

(&, P'I &'"(0)la, u) =(&' )...
where X~ and Z are independent on E or co.

Separating the pole terms and continuum contribu-
tions from (2.13}we get

(XB),„(X")„, (X"),„(X )„,
lM:( ) (fef.) 'I=f""(F"),.&(~ ~ '(-(&"),.~ 4&* 'I ~ ~ 2

~ ~ ~ 2z
n

D B (v) D, (v)

v —m, ' —2E+ v —m~2+ 2Eco

where

(3.10)

D,':(v) =n~n'(f, P')A'„(0)(n, P„)(n,P„[A"„(0)(a,p),
(3.11)

v=p'

and p(v) denotes an integration measure over multiparticle states. The dependence of M„((v) on the fixed
quantities E and X will be suppressed throughout. It is obvious from (3.10) that the forward-scattering am-
plitude M~8,"((v) is indeed an analytic function of (d and one is allowed to write down a dispersion relation
for it. It obeys the crossing symmetry between s and u channels,

M~, ((v) =M,",~(-(v'). (3.12)

The structure of (3.10) reminds a dispersion relation with two subtractions which fix the values of
M~8,"((v) at (v=0 and (v' =0. Relations determining these two values are referred to as soft-meson theorems
or low-energy theorems. These theorems will be used as the known subtraction. constants for writing down
the dispersion relation for the forward-scattering amplitude. One can ask if only two subtractions are suf-
ficient for writing down a fully meaningful dispersion relation in question. The answer is, of course, af-
firmative due to the Froissart bound~ and the work of Eden' who has shown from axiomatic field theory that
a scattering amplitude for fixed momentum transfer t grows no faster than s' ', where c is positive.

Instead of writing down the twice-subtracted dispersion relation for M~, ((v} it is more convenient to di-
vide M into antisymmetric and symmetric parts in the meson indices u and I3

'™ — "' ]

M„'((d) =-,'[M f, ((d)+M„((v)],

(3.13)

(3.14)

which obey the once-subtracted dispersion relations. Note that both parts M~ and M ' are due to cross-
ing symmetry (3.12) symmetric under interchange of (v with -&o',

M,'. '"(~)=M,'. '"(-(v'},
. and give the total scattering amplitude in the form:

Me ((d) =Ms '((v)+-,'E((d+(d')Me" ((d).

(3.15)

(3.16)

IV. SOFT-MESON THEOREMS AND SUBTRACTED DISPERSION RELATIONS

Our first step in this section is to write down the general soft-meson theorems, i.e., the values of Af~

and M~' at (v =0 (or (v' =0). Assume without loss of generality that m, ~ m, . To compute M~e," '(0) we
antisymmetrize M~, ((v) from (3.10) in c(( and (3, divide by the factor E((v+(v'), take the limit (v-0, and get
the following result:

Mg. ' '(0) =2(f8f ) ' if'""(E")g.+p"'(X )n.(X')..-p "(X')g.(X").. .
n n

(4.1)

where the sums with the superscripts (5) and (a) run over single-particle states with m„=m, and m„=m„
respectively. Similarly, M~, ~ ~(0) is calculated by symmetrizing Mt, ((d) in o. and P, dividing by two, and
taking the limit ~-0 which yields the result:
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Ms~i'l(0)=- —,'(fsf ) ' pi'l(2m '-m '-m ')(X ), (X~) +p"'(2m ' —m '-m ')(X") (Xs) +2(Zs")

(4 2)

It should be noted that if m, & m, then the formulas (4.1) and (4.2) hold for &u' =0. The equations (4.1) and

(4.2) represent the soft-meson theorems.
In order to proceed further we emphasize that M~, (~}from (3.10}is an analytic function in the complex

&u plane (except for poles and cuts). It obeys the dispersion relation

(X )~„(X")„,(m„2 —m~2)(m„2 —m,2) ~ (X")~„(X )„,(m„' —m~')(m„2 —m,~)

-n n m'a n mn -ma +

1 A„"(v)dv 1 Ag,s(v)dv
+ +-

@ v —m, '-2Eu m v -m,2+2E~' ' (4.3)

where A~s,"(v) is the imaginary part of M~s, (~) evaluated at s =v, i.e., at ~ =(v —m, ')/2E. Here the sums
with subscripts (a) and (5) run over single-particle. states with m„em, and m„em„respectively, for if
m„=m, and m„=m, , respectively, the expression (3.10) does not produce poles. It should be pointed out
that (4.3) without subtractions may be a meaningless formal expression exhibiting only the analytic struc-
ture of the forward-scattering amplitude M[, (&o). The same formal dispersion relations can be easily ob-
tained for Mi and M '

by inserting (4.3) in (3.13) and (3.14), respectively. To save space we do not write
these rather lengthy relations explicitly.

Next we pass to the soft-meson theorems (4.1) and (4.2} which fix the values of M' ' and M ' at ~ =0 and
use them as the known subtraction constants in the once-subtracted dispersion relations forM l and M ' l,

respectively. After some simple algebra we get

Ms"i l((o)=2(fs f ) '{if ~&(F"),—[X,X"],]
(m„—m, ')(m„' —m~')

and

v (v —m, ')(v —m, —2E&u} (v —mz }(v—m~'+ 2Eru ' ~' 2v —m, ~ —m&2
'

(4 4)

M'~"(&o)= '(f f ) '{[X-',[X,m']] +[X",[X,m']] —2(Zs") g

(2m „'—m, ' —m, ') (m „'—m, ') (m „' —m ~')
+ 2(f&~~) 'g

(
2 2 2E )( a 2 2E )

[( )an(X 4m+ ( 4n(X 4N]

E(d 1
(v —m.'}(v —m.' —2E(o} (v —m ')(v —m ' + 2E(o) ' " ' ' (4.5)

Perhaps it should be noted that the last factor in (4.4) is due to E(&a+ &a') entering the definition of M& l.
Here we have adopted the abbreviations

[X',X"]„-=P[(X'),„(X")„.—(X ),„(X')„.], (4.6)

[X, [X~, m2]], +[X~, [X,m~]], =——P(2m„' —m, ' —m )[(X ) „(X")„,+(X~}„(X )„,], (4.7)

and defined the diagonal mass-squared matrix m' by

(m'), „=m, '5,„. (4.8)

The sums (4.6) and (4.7) now run over all single-particle states, since the states n which are missing in
(4.1) and (4.2) are just those which come from the pole terms in (4.3) at &u =0.

The dispersion relations (4.4) and (4.5) will be used in Sec. V to derive constraints on the axial-vector
coupling matrices X and mass spectrum m'.
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V. HIGH-ENERGY THEOREMS

Consider a gedanken experiment studying the behavior of the forward-scattering amplitude of massless
mesons by baryons as the function of the initial meson energy co, while the quantity E is fixed. Suppose

that this scattering process takes place in two intersecting storage rings, where the baryon beam can have

as high energy as one pleases. This means that the fixed quantity E is, in principle, as large as we like.

If this is so, the Mandelstam variable s =m, '+ 2E~ is in the asymptotic region for any co from the interval

(e, ~), where e is positive. Consequently the scattering amplitude in question should exhibit the proper

high-energy behavior, (E&u)"~", prescribed by Regge pole theory, for any &u from the aforementioned in-

terval He. re o.(0}denotes an intercept of a dominant Regge trajectory exchanged in the t channel. Assume

that this scattering process may be described by the scattering amplitude M„(&u} given by (4.4) and (4.5)

when inserted in (3.16}. In view of what was said, the pole-term contributions from (4.4) and (4.5) exhibit-

ing the behavior (E~) are, in principle, as small as one pleases for E-~ and ve0. Consequently we

are allowed to rule them out from the consideration concerning the description of the above-mentioned

gedanken experiment. Then the dispersion relations (4.4) and (4.5) reduce to the forms:

M'"' '(~)=2(fsf ) '{if' "(F"),. [X', X-]&.]

s (v —m,2)(v —m,2 —2E&u) (v —m~')(v —m~'+2E&u) ~' ~' 2v-m, ' —m~'

(5.1)

and

M ~'l((u) = '(f f ) 'f [-X, [X™,m']], +[X~, [X,m']]„—2(Z'") j
Eco 1 1

I & t&1+ dv [A' v)+A '(v)]+a
w (v —m, ')(v- m,' —2E&o) (v —m, ')(v- m, '+2Eur) ' '4

(5 2)

As was pointed out above, the scattering amplitudes (5.1) and (5.2} must possess the proper high-energy
behavior for E-~ and ~ g0."

The amplitude M( has the Regge behavior

M'"( &((u)=(E(u) ~t'} ' (5.3)

(5.4)

and therefore M is represented by

where a, (0) is the intercept of the dominant Regge trajectory (exchanged in the t channel) which is allowed
to contribute to this part of the scattering amplitude and the extra term -1 is due to our normalization of
M~ '. As is well known, all Regge trajectories have n(0) & 1 except for the Pomeranchuk trajectory. Since
the Pomeranchuk trajectory is not allowed to contribute to Mt, c.,(0) is less than one, and the amplitude
Ml l vanishes for any &u x0 and E-~ Next we sh. all apply Weinberg's postulate to (5.1), which requires
that both pole terms and the continuum contributions from (5.1) must not violate the Regge behavior (5.3).
Hence we must demand that the constant term in (5.1}must be zero, i.e.,

[X,X~]=if ~&F&,

(5.5)

(5.6)

M„(~)= dvg~( ) 2E(d 1 1
A. 8~ v — B 2

'4
w (v-m, ')(v-m, ' —2E(u) (v-m, ')(v —m, '+2E~) [ "( } "("}]2v

N b

+0

In (5.4) we have suppressed the hadron indices a and 5 and that equation is meant as the matrix relation
among the axial-vector coupling matrices X and the SU(3) generator matrices F&. The application of the
SU(3) conservation to the defining formula (3.8) for X" gives us further the matrix relation

[F,X ] =if" "X".

The SU(3) generator matrices F fulfill, of course, the standard commutation relations

[F~, F ~ ] = if~ 8 r F~ . (5.7)
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M n "(o))=M~a ' ([o) ——'5 nM"" ' ([d) ——',d8a)'d"'aM'' '
([d)

where d8")' are the total symmetric structure constants of the SU(3) group. Accordingly M[ov) obeys the
following dispersion relation:

(5.8)

M Ba(27)(~) (f f ) 1([XB [Xa m2] ] 58n [X)& [X "f mo] ]
o d Ba) d ) r a[x r [X mo] ]

2E(d 1 1
w (v —m, ')(v —m, ' —2E[d) (v —mo')(v —mo')+2E[d)

Thus the matrix equations (5.4), (5.6), and (5.7) represent exactly the Lie algebra of the SU(3) [3) SU(3)
group and imply that the single particle states we have included in pole terms must for each helicity form
a basis for an irreducible or reducible representation of the group in question.

Next we turn out to consider the application of Weinberg's postulate for M~'~. The amplitude M ' has a
singlet, octet, and 27-piet exchanged in the t channel. The 27-piet part may be isolated as

&&[A"&'&( ) —-'&&"4"&&'&(») —-,'d" &d&"4'"( )[ 0 )
1

(5.9)

where we have used the notation

A,' "'(v) =-,'[A.':(v).A;.'(v)]

and the equality

(5.10)

M8a(2'[)([d) (E[d)n2(o) (5.12)

for E-~ and o) x0. n, (0} is the value of the domi-
nant 27-piet Regge trajectory at t=0. There are
several reasons to believe that

[).,(0}&0, (5.13)

mainly because of the absence of the so-called ex-
otic states in the nature. Granting this to be so
then M [27) given by (5.9) must vanish for any [d e0
if E-~. We apply once again Weinberg's postu-
late for (5.9). Consequently we require that neither
the pole-term contributions nor the continuum can
violate the Regge behavior of M„" "'(o)}given by
(5.12). Hence we demand that the constant term in
(5.9) be zero, i.e. ,

[X, [X",m ]]=—'5 [X)', [X)', m ]]
+ o [f 8 a)'d )'r a[x 7' [Xa mo] ]

(5.14)

where we have suppressed the hadron indices a
and b.

The last equation is a matrix relation among
eight matrices X" and one diagonal mass-squared
matrix m'. The matrices X are determined by

[x, [x' m']].=[x' [x;m']] (5.11)

which follows from the Jacobi identity applied for
X, Xs, and m' exploiting (5.4) along with the
commutativity of m' with E". Perhaps it should be
emphasized at this point that (5.9} is independent
of ZB, since, according to our assumption, Z 8

does not contain any part transforming like the 27-
representation of SU(3). The amplitude M " given
by (5.9) must exhibit the Regge behavior

the algebraic structures (5.4), (5.6), and (5.V) and
therefore Eq. (5.14) is the relation for an unknown
matrix m'. In the practical application of (5.14),
one might proceed as follows. Each single-parti-
cle state may be written, in general, as the sum
of unitary irreducible representations of the
SU(3)[8[SU(3) group. The matrices X are then
entirely determined by the unitary irreducible
representations of the group in question and by the
mixing angles which are defined by the unknown
coefficients of representations in the aforemen-
tioned sum. The known matrices X are then in-
serted in (5.14}and a nontrivial equation for the
unknown matrix m' is obtained. A solution to this
equation will represent the mass spectrum of had-
rons associated with the chosen reducible repre-
sentation of SU(3) [8[SU(3). The physical masses
will, of course, depend on the unknown mixing
angles and on internal quantum numbers. It is
very easy to imagine that such calculation of the
hadron mass spectrum is extremely tedious and
should be performed for each specific representa-
tion separately without any of the elegance normal-
ly associated with group theory. However a gen-
eral group-theoretical solution to (5.14) applicable
to any representation will be found in Sec. VI.

VI. NATURE OF SU(3)(SSU(3)-SYMMETRY
BREAKING

The purpose of this section is to find the tensor-
ial character of the mass-squared matrix m' with
respect to commutation relations with X and E .
The known tensorial character of this matrix will
provide us information on how the SU(3) [8[SU(3)
symmetry is broken down. To do this use is made
of the procedure developed by Weinberg' for the
chiral group SU(2) [8[SU(2).

We put Eq. (5.14) in group-theoretic terms by
defining SU(3) vectors v and u" and an SU(3)
scalar &u given by
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v ~ = i-[x~, m'],
u" =--.*id '&[X', v&],

u = — -[X, V ].W3 i
28

Then Eq. (5.14) gets the form

(6.1a}

(6.1b)

(6.1c)

[X v ]=i 6 u +id8 &u&. (6.2)

By using merely Jacobi identities and identities'
relating the structure constants f8 & and d8 & one
can show that (6.1}and (6.2) imply the following
commutation relations:

ly invariant Lagrangians, where an SU(3}-invari-
ant subgroup was realized linearly.

Next consider that the SU(3) symmetry is broken
down to SU(2) II U(1), the isospin and hypercharge
subgroup. Then we confine the range of indices
u, P to 1, 2, 3, and 8 in the algebraic s~ctures
(6.1)-(6.'f) and find that the sums m'+ (-,')'"u' and
m'+ v 3u' commute with all generators of the
SU(2)SSU(2)SU(1) group, i.e., with X, F", and

E, where n, P = 1, 2, 3. Since both of these sums
commute with the generator matrices in question,
so does their linear combination and consequently
the mass-squared matrix m' is represented by

[X' u']= i -v' (6.3)
m =m +k(u +cu ), (6.10)

[Xs u] = i-5 v' —id &v &,
~ v2 (6.4}

[x', v']=i (6.5}

where vo is another SU(3) scalar defined by

v =Sz~ [X,u ]. (6.6)

Since v and u are the SU(3) vectors while vo

and u0 are the SU(3} scalars by our definitions,
they obey the following algebraic structures:

[F;u']=if"~u~,

[F&, vs]=if+syv7,

[F"u']=[F v']

=0.

(6.7a)

(6.7b)

(6.7c)

Equations (6.2)-(6.7} show that u, v, u', and v

are members of the (3, 3) 8 (3, 3) representation of
SU(3}II SU(3).

We now complete our goal by noting from (6.1a)
and (6.3) that the sum m'+(2)" uo commutes with
all generators of SU(3) ISISU(3), i.e.,

v3
v'2X,m'+ u =0. (6.8)

Thus, (6.8) requires that this sum must behave as
an SU(3)CSISU(3) scalar m, ', which yields

~3 0m =mo- —u.42 (6.9)

This is the group-theoretic solution to the mass
spectrum condition (5.14) and implies that the
mass-squared matrix m' behaves as the sum of a
scalar and a component of the (3, 3) e(3, 3) repre-
sentation under SU(3) SSU(3) group transforma-
tions. This result and Eq. (5,4) were previously
derived by Sudbery' within the framework of chiral-

where k and c are arbitrary constants. Therefore
it behaves as the sum of an invariant and two com-
ponents of the (3, 3) $(3, 3) representation of the
SU(3)SSU(3}group. This result and Eq. (5.4) were
previously derived by Qgievetsky from tree graphs
generated by the SU(3}SU(3) chiral-invariant
Lagrangians, where the SU(2) SU(1)-invariant sub-
group was realized linearly. "

We would like to emphasize that (6.9}and (6.10)
are not approximations based on a free assumption
of weak chiral-symmetry breaking, but rather they
are exact consequences of Weinberg's postulate and
the asymptotic behavior of the forward-scattering
amplitude at high energy. There is no need to ex-
pect that the symmetry-breaking terms in (6.9)
and in (6.10) are smaller than m, '. The only per-
mitted symmetry breaking consistent with Wein-
berg's postulate is that proposed by Gell-Mann,
Qakes, and Renner" and is, in fact, independent
on whether Z term from (2.11}belongs to the
(3, 3)S(3,3) or (1, 8)8(8, 1) representation of
SU(3) SSU(3}.

Recently it has become popular to write the
strong Hamiltonian as the sum of SU(3) I8ISU(3)-
invariant piece Ho, plus a small correction term
H' breaking down the SU(3) SU(3) symmetry and
to discuss how this symmetry is broken. In the
model of Ref. 11, H'belongs to (3, 3)$ (3, 3).
Sugawara" has proposed that H' may transform
like (1, 8) t9 (8, 1) and more recently several
schemes" consider H' as a component of the (8, 8}
representation.

Starting from rather different approaches, many
authors have attempted to find out which of these
models is favored by existing experimental data.
The analysis performed by a quite large group of
authors" supports strongly the (3, 3) (3, 3)-sym-
metry breaking scheme. This analysis is to be
contrasted with estimates of Cheng and Dashen"
which are in serious disagreement with the
(3, 3}$(3, 3) model. Recently a very comprehen-
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sive analysis of meson-baryon scattering and elec-
troproduction in the (8, 8) model was done by Genz,

Katz, and Steiner. " They have found good agree-
ment with experimental data, except for cases
where experimental values are not reliable.

The purpose of this short discussion is to indi-
cate an existing controversial situation in experi-
mental evidence for supporting or abandoning the
chiral-symmetry-breaking models" '~ which had

been proposed on the basis of intuition. The value
of the results concerning chiral symmetry break-
ing derived by Ogievetsky, ' Sudbery, ' and in this
paper lies mainly in that they are exact conse-
quences of a simple assumption about the high-en-

ergy behavior of tree-graph contributions to the
forward-scattering amplitude.

growing pole terms among themselves and not with

the continuum in order to preserve the high-energy
behavior of the scattering amplitude is a useful
one. In its consequences it predicts the transfor-
mation properties of the SU(3) SSU(3)-symmetry-
breaking term in the mass spectrum of hadrons.
The representation (3, 3)+(3, 3) is the only one

which is permitted to break the symmetry.
Note added in proof It ha. s been pointed out to

me that the subtracted dispersion relation (5.1) is
not consistent with the corresponding unsubtracted
dispersion relation given by Weinberg. ' It should
be noted that Eq. (AV) of Ref. 1 contains a printing
error. If this is corrected, one obtains the result
given by (5.1).

VII. CONCLUSIONS

We have presented evidence here that Weinberg's
postulate demanding the cancellation of rapidly
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