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If the interaction kernel is energy-independent, the Bethe-Salpeter equation can be trans-
formed to a version wherein the kernel is replaced by the zero-energy scattering amplitude.
This transformed equation is then used in order to unitarize lepton-lepton scattering pro-
cesses. Quadratic divergences are eliminated in this approach. All lepton-lepton scattering
amplitudes and other higher-order weak phenomena, e.g. , the neutrino charge radius, can
be described in terms of a single unknown parameter.

I. INTRODUCTION

The correct prescription for the calculation of
high-energy and higher-order weak-interaction
processes has long been one of the major un-
solved problems in theoretical physics. The cur-
rent-current interaction Hamiltonian, originally
suggested by Fermi, '

G
+w 2~2 IX&~X ) ~

where

~1 = 0 &x~~+ 'Y ~4, +Op'Yx~&+ l' ~4

is known to provide a good first-order description

of weak leptonic and semileptonic processes at
low energies and momentum transfers. ' However,
it cannot be correct at all energies, since it pre-
dicts leptonic cross sections for certain reactions
which are proportional to E', E being the c.m.
energy. These cross sections are known to vio-
late unitarity for E o 300 GeV. Moreover, if the
Hamiltonian in (1) is used to calculate higher-
order weak processes according to standard field-
theory procedures, serious divergences are en-
countered. ' Second-order diagrams diverge quad-
ratically. Third- and higher-order diagrams
have stronger divergences. These divergences
are, of course, a reflection of the fact that the
field theory defined by the current-current inter-
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V '=T '+G8 E

= To '+Go, (3)

where we have used the energy independence of
V to write the second equality. From (3) we have

Ts= T +T,(Gs —G )Ts. (4)

This expression for T~ constitutes our basic
working equation. Its virtues are readily appar-
ent. It involves T„which is at least approxi-
mately known, rather than the unknown interac-

action is not renormalizable. To put the problem
another way, an infinite number of phenomeno-
logical constants must be introduced into the
theory in order to obtain finite results.

Recently Weinberg and others have proposed
models for weak interactions which may be re-
normalizable and would then eliminate the prob-
lems mentioned above. 4 However, in this. paper
we examine an alternate approach which does not
involve the introduction of hitherto unobserved
particles and currents. Our basic philosophy is
closer to that of Appelquist and Bjorken, who used
unitarity to estimate higher-order weak pro-
cesses. ' Like them we restrict ourselves to
purely leptonic processes. Our attitude is that
the current-current Hamiltonian is properly
viewed as an effective Hamiltonian and, as such,
represents the exact low-energy weak-interaction
amplitude. We then develop a calculational tech-
nique which unitarizes the zero-energy amplitude
Tp to yield an amplitude T~ which is valid at all
energies.

Connell has described a reformulation of the
Bethe-Salpeter equation in which the interaction
kernel is replaced by the scattering amplitude at
zero energy. ' This transformed Bethe-Salpeter
equation is ideally suited to situations in which
the low-energy amplitude is known, but the fun-
damental interaction is not. In this context the
Bethe-Salpeter equation should be viewed as a
convenient method for unitarizing a zero-energy
amplitude. Undoubted1y it would be possible to
develop an equivalent approach based on disper-
sion relations. Following Connell, we write the
integral equation for TE in the form

T~ = V+ VG~T~ .

The exact interaction kernel V is the sum of all
two-particle irreducible diagrams, and Gz is the
exact propagator for two particles. In general V
will depend on the c.m. energy E. We make the
admittedly strong assumption that V is indepen-
dent of energy. The effect of including energy-
dependent terms in V will be discussed briefly.
Formally (2) can be rewritten in the form

tion V. Secondly, the subtracted Green's function
removes quadratic divergences from the theory,
leaving only logarithmic ones. If the assumption
that V is energy-independent is relaxed, Eq. (4)
is replaced by

Ts = To+ To(Gs —Go)Ts —TOAVsTs, (5)

where ~V~= V~
' —V, '. To use this equation we

need information about LV~ which is unavailable.
However, for a reasonable VE, the integrals that
appear in an iterative solution of (5) are more
convergent than those encountered in convention-
al weak-interaction calculations.

The basic program of this paper is as follows.
We assume that the exact zero-energy scattering
amplitude is given by the matrix elements of (l).
In other words, there are no neutral currents or
intermediate vector bosons in our model. In ad-
dition the Fermi term is presumed to include the
effects of all internal electromagnetic interac-
tions. Free particle propagators are used for G~.
The use of physical masses for the particles
takes into account a large class of higher-order
effects.

Equation (4) is solved with T, given by the Fermi
interaction for all possible leptonic interactions.
Except for complications due to spin, solutions
are trivial since the equation with constant T, is
separable. Two approximations are involved in
using the current-current amplitude for Tp. First
there is the assumption that this amplitude, al-
though experimentally determined with all parti-
cles on the mass shell, represents To with a pair
of particles off shell, since the Bethe-Salpeter
equation requires a knowledge of T, with two legs
off the mass shell. This assumption is justified
a Posteriori by the fact that the solutions of (4)
have the same decomposition into invariant am-
plitudes as T, . The other approximation involves
the fact that T, in (4) is really T(E'=0, t), where
t is the momentum transfer, while the Fermi
term is T(E' =0, t = 0). This deficiency is cor
rected in the third section of the paper by cross-
ing the solutions obtained with Fermi input in or-
der to generate a better approximation to T,. The
resulting integral equations are of the Fredholm
type and are, in principle, soluble. Rather than
actually solve these equations with crossed input,
we use them to derive a crossing-symmetric am-
plitude T(s, t, u) which vanishes for large values
of any of its variables and which satisfies elastic
unitarity to second order in each channel. This
amplitude still contains a logarithmic dependence
on cutoffs introduced to define the integrals in
each channel. These cutoffs are arbitrary param-
eters. We then use the first iteration of the equa-
tions with crossed-channel input for Tp in order
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to fix the cutoffs in each channel in terms of a
single dimensionless parameter I'. The cutoff
parameter A' in each channel has the form
P(GInl'), where P is a known channel-dependent
number and G is the weak-interaction coupling
constant. Scattering amplitudes depend on In(lni').
In the final section we calculate the charge radius
of the neutrino in terms of the same parameter.

What are the results of our calculationsg We
obtain scattering amplitudes for all leptonic pro-
cesses which are crossing-symmetric and ap-
proximately unitary. The unitarity limits on
cross sections are satisfied. The amplitudes for
about thirty different leptonic processes depend
on a single parameter in addition to the coupling
constant G. This should be compared to the work
of Appelquist and Bjorken, where there are a
large number of unknown parameters even in
second order. Although our results are reliable
only to second order in G, their high-energy be-
havior may be qualitatively correct. Thus we
have a model of high-energy and higher-order
weak interactions in which all amplitudes are fi-

TE

E

+
E

FIG. 1. Kinematics used in solution of the Bethe-
Salpeter equation for the s-channel process ev~ v, e.
Greek letters o. , P, y, 6 refer to spinor indices.

nite and well behaved. However, we stress the
fact that the possibility of obtaining these forms
is a feature of the rather strong assumptions used
in setting up our model.

II. LEPTON-LEPTON SCATTERING FERMI INPUT

In this section we address the problem of unitarizing the lepton-lepton scattering amplitudes. p. -e uni-
versality is assumed, and the zero-energy amplitude is described by the current-current effective Hamil-
tonian. We use the transformed Bethe-Salpeter equation to carry out unitarization. Although neutral cur-
rents could in principle be included in our discussions, we assume they are absent. This is consistent
with the requirement that the Fermi interaction correctly describes low-energy, low-momentum-transfer
scattering.

There are three basic types of processes to be considered. They can be characterized by N=N, +N„and
Q, where N, (N„) is the electron (muon) number and Q is the electric charge:

s channel: N =+2, e.g. , ev, - v,e, ev&- v, p, ;

t channel: N=O, @=+1, e.g. , ev, - v,e, ev, —v„p, ;

u channel: N=O, Q=O, e.g. , ee- v, v„eP- v, v„.
These reactions are related by crossing. In a weak-interaction theory with charged intermediate vector
bosons, s and u channels involve boson exchange, while g-channel reactions contain one-boson intermedi-
ate states.

Consider first a typical s-channel process ev, —v,e, where the explicit form of the transformed Bethe-
Salpeter equation in the c.m. frame is

T~8,y, (P, q)sy(E+p)us(E -q) = Ta8:yh(P q)gyes
4

+i
( )4

T 8. e(P, k)[Gs"(k) -Go"(k)], epT, p.„q(k, q)u'„uq. ,

where u' and u' are spinors and

G (A,') T.
y (E+k) — . .. y (z —al)„,

'

In the Fermi input approximation with I'~ = y" (I+ y, ), T, is given by

Toa8:y~ ~2 gPx~ s~8y ~

when all particles are on the mass shell. The kinematic variables p, q, and E are defined in Fig. 1. Spin-
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or indices are denoted by oPy6. T 8.„~(P,q) is the scattering amplitude with all particles off the mass
shell. The kernel of the integral equation needs T, with the two final-state particles off the mass shell.
We use the Fermi amplitude for this amplitude.

Solution of (6) is simplified by making a Fierz transformation on T, :
g""[y,(1+»)].~[v.(1+ r5)]8 = -2(rV+&y'y') ~(-rV+f r'y'), . (8)

This rearrangement allows us to isolate the spinor indices for the final-state particles and separate the
problem of Dirac algebra from that of solving the integral equation. We find then that 7 8. ~ is given by

T'„,. , = g„„r",r', „f,(P, q), (9)

where

.
. ~4k E -k 1(PQ)=((PQ[ —16

(2 )
t P[k)

[@ y[[[@ ~) [+y )4[, l)

Use of the Fermi approximation t, = G/v 2 gives

G/W2
1+ (G/v 2)I(E) '

with
" d'k

[2 [' (z -kP[(8+k[' — '] k' — )

(10)

(12)

Since we are interested in high-energy scattering processes, in which higher-order weak processes
should become important, we neglect all lepton masses. Then the integral in (12) can be cast in the form

2E2I (E) =
lT 0

I (E) diverges logarithmically. Standard calculations of the same process would lead to a quadratically
divergent integral at this point. If the integration is cut off at k'= 4 A', we find

(14)

where s =4E'. The cutoff A' is a parameter which we would like to take to infinity, except for the diver-
gence of the integral. In the next section we develop constraints on A'. Our conclusion is that for the s-
channel process e v, —v,e, the unitarized scattering amplitude is just the Fermi amplitude with the cou-
pling constant G/v 2 multiplied by an energy-dependent factor which is unity at low energies and vanishes
like (sins) ' at high energies:

2v 2v' A'

The solution contains the free parameter A'. To second order it agrees with the results of Appelquist
and Bjorken for s-channel unitarization. Solutions for other s-channel amplitudes are obtained in exactly
the same way. There is a slight additional complication for the processes ev„- ev„, ev„- v, p. , and p. v,- p. v„which are coupled to each other. Only ev„- v, p, has a nonvanishing To amplitude. The coupled-
channel problem is trivial in the limit of zero lepton mass and p. -e universality. All s-channel amplitudes
are displayed in Table I.

For a typical t-channel process such as ev, —v,e, a Fierz rearrangement is unnecessary. The T, am-
plitude is

G
p+ [[; y6(I q) ~2 gu[F 8 6y . (16)

The initial- and final-state particles are arranged so that the appropriate integral equation is

~ [[ g(P q)~[(E —q)&~(E+q) = & 8 ys(P q)7[a&'&

+~ 4 8. 8 p k Gz k Go k .Gp+p. yQ
k q ~&M
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The kinematics for this process are shown in Fig. 2(a). There are coupled channels in this case. If chan-
nel 1 is eP„ then channel 2 is p. v„. In channel space T, is given by the 2 x 2 matrix

The t-channel solutions are of the form

"T'.S,e= (F.)-8(F,) ~, "4"
where the ij superscripts are channel indices and the "t~~" satisfy the equations

2

In the limit of massless leptons and p-e universality, "ts="t~, 22t~="t~, and the integral J~'(E) is giv-
en by

2@~~"(E)=2 2 E2 ~2 g —
E27T p

(20)

In the c.m. frame E has only a time component, and J '(E) is a diagonal matrix. We need only consider
J", i = 1, 2, 3, which is independent of i. To see this, we note that

1
v I',u =—v (E —q)y ~ E (1 +y, )u(E + q) = 0

for massless particles. Using this result, we can drop the E E'/E' term in (20). Hence, with t =4E',
we find

ij. X, q 21. XI) Xg G G
E g ~2 ~ ~2 3 2 ln A2 ~ (21)

Again the solutions for the scattering amplitude have the form of the Fermi input modified by a denomina-
tor function. The results for the various t-channel amplitudes are collected in Table I.

For a u-channel process like ee- v,v„ it is necessary both to make a Fierz rearrangement and to treat

TABLE I. All lepton-lepton scattering reactions are catalogued except for those which are related to other reactions
by T or CP. Reactions which are related by p-e universality and the replacement e —v, , p —v are grouped to-
gether in column 2. In column 3 are listed the corresponding unitarized scattering amplitudes. Here g = G/W2 and
J(s, a) = {as/~ ) in{-s/h ). Column 4 gives the constant C„, in terms of which the cutoff parameters A are given by
A =47( /{g C lnl"), where I' is defined in {40).

Reaction
Scattering amplitude

(Fermi input) Cn n Reaction
Scattering amplitude

(Fermi input) Cn

ee —ee
Ve Ve V~ V~

PP

2 ep, ep
V@ V~

~ Pe Vp

3 eve eve
PV ~PV

P

4 ev —ev
P

P, V~ ~ P, V~

5 P, V~ ~8V~
8V ~PP

p e

6 ev ev
P

PVe ~P, V~

7 ep, —ep,

V~vp~v P

g[1+gJ(s, -')

g J(s, -)[1-g J (g -)]

g[1 g2 J2(g i )]

g J(s, -)[1-g J (g, )]

0.86

0.86

0.86

1.17

8P V~ V~

9 ev, -ev,
PV ~PV

10 eve pv&

11 ee ee
Ve V~ V~ Ve

IJP PP

PPPV
12 ee~ veve

PP~V P

13 v~ v~ P,P
V~V~ ~

V~V~

ee vv
Lf 0

ee —pp,

g[1 g2 J2(g i )] i

g[1 —2gJ(s, -')]—

g[1 —2gJ(s -)]
g2J(g i )[1 2J2( )]

g[1 —g J (s -)]

1.17

1.07

0.92

0.73

0 ~ 73
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a coupled-channel problem. The Fierz rearrangement is

[y"(1+y, )]„&[y„(l+ y, )]s s = -[y"(1+y, )]„s[y„(1+y, )],„.
Solutions have the form [see Fig. 2(b)]

' T~a. yg
=-I'"BI'~y "tE

where

lit kg

JET�

(E)21ts 0'gG

v2 ro g'

2itxq gxq+ gxr(E) &&ts

2

Channel 1 refers to ee and channel 2 to v, P, . Ji'(E) is given in (20).
not contribute if the initial-state particles are on their mass shells.
"t, divided by a denominator factor, while "tE has an extra factor in
that it is a second-order process:

(22)

(22)

The X = g = 0 components of tE" do
Thus, the solution for "t~ is just
the numerator, expressing the fact

"t"'=
2

g"", ln ——, 1 — ~, ln

(24)

The amplitudes for all u-channel processes also appear in Table I.
The most convenient way to describe our solutions for lepton scattering is to use the fact that in every

case the amplitudes have the spinor structure of the Fermi amplitude. Thus, we have invariant functions
t„ t„and t„which reduce to the Fermi coupling constant G/v 2 (or zero) in the absence of higher-order
corrections. The cross sections in each channel are as follows:

dv ss channel: —= —,
i t, i',

do t'
t channel: —=, i t, ~',

5 s (25)

dO' Q
u channel:

7Ps

From Table I we see that the Bethe-Salpeter equation with Fermi input leads to cross sections which sat-
isfy the unitarity bound. On the other hand, the amplitudes are not crossing-symmetric. Crossing sym-
metry tells us, for example, that the same invariant amplitude A(s, t, u) should describe the three pro-
cesses ev, -v,e, ev, -v,e, and ee-v, v, . From Table I we have

s channel: A(s, t, u) =t, (s) = 1+ + ln
G G s s

A,

t channel: A(s, t, u) =t, (t) = 1—,ln —A,2 37T2 t
(26 )

u channel: A(s, t, u)=t„(u) = G

The fact that the s-channel representation of A(s, t, u) has no t or u dependence is a reflection of the fact
that the Fermi amplitude is really A(s=O, t =0, u =0). In the next section we argue that a better approxima-
tion to t, can be obtained by using t„and t, as input rather than to =G/v 2. A separable approximation to
the s-channel equation with the t-channel solution for t, suggests that t, has the form of a product of t- and
s-channel solutions. Extending this argument to include the u channel, we conclude that

A(s, t, u) = G
2

G s s G t t G u u
1+~2 2

ln -A 1 —
~2 3m

ln -A, 1 ~2 6
ln

A
Q

(27)
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This amplitude is manifestly crossing-symmetric.
It satisfies unitarity to second order in each chan-
nel and vanishes when any of the invariants be-
comes large. The product form of the invariant
amplitude is also suggested by other arguments.
The s-, t-, and u-channel amplitudes should not
be added, since then the Fermi term would be
counted three times. Moreover, an additive am-
plitude would not vanish when any one of the in-
variants becomes large. Yet an amplitude which
is unitary in each channel must vanish in this lim-
it.

Similar crossing-symmetric invariant ampli-
tudes can be formed for any set of processes con-
nected by crossing. Expanded to second order,
our expressions agree with those of Appelquist
and Bjorken. In third and higher orders our in-
variant amplitudes contain terms which have si-
multaneous cuts in two variables. In other words,
they have Mandelstam double spectral functions.
The double cut terms represent an approximation
to the contributions of diagrams with cuts in two
variables. However, given our basic assumption
about the current-current interaction being the ex-
act low-energy scattering amplitude, the diagram-
matic analogy cannot be pushed too far. A second
difference between our amplitudes and those of
Appelquist and Bjorken relates to the number of
unknown constants. A second-order expansion of
A(s, t, u) contains two unknown constants; an expan-
sion to arbitrary order has only three. Appelquist
and Bjorken have three constants in second order
and still more in higher orders. In the next sec-
tion, we argue that all the processes in Table I
can be described in terms of just one unknown pa-
rameter.

The proper procedure for forming crossing-sym-
metric invariant amplitudes is not so obvious when
one of the channels is empty in first order. In the
absence of other criteria, a simple separable ap-
proximation to the Bethe-Salpeter equation with
crossed-channel input can be used to suggest a
form for the invariant amplitude.

Finally we comment on the assumptions made
in this section in order to obtain the solutions in
Table I. First is the assumption that went into the
derivation of the transformed Bethe-Salpeter equa-
tion- the energy independence of the basic, un-
known interaction. If we allow for energy depen-
dence of V, then in a single-channel problem with
T, =G/v 2 Eq. (5) becomes

Ts(P, q) =~ +~ [Gs(k) —G,(k)]Ts(k, q)
G G

&Vs(k)T~(k, q) .G

Ve

Ve

Ve

(b)

FIG. 2. Kinematics for the {a) t-channel process ev,
v, e, {b) u-channel process ee v, v, . Greek letters

u, P, y, 6 refer to spinor indices.

We suppress the dependence on spinor indices.
This equation can be solved to give

G
E W2

1-~ GE k' —Go 0 +~ AVE k

The extra integral over AVE in the denominator
represents the unknown energy dependence of the
interaction term. It does not have the two-particle
elastic unitarity cut. It vanishes as E -0. It
would be reasonable to hope both that b VE is
small and that its integral converges rapidly
enough so that f6 Vs vanishes as E -~. Our solu-
tions might then dominate at low and high energies.

The second assumption made in this section is
that the Fermi term represents the correct T,
amplitude to be used in the transformed Bethe-
Salpeter equation. There are two points to be con-
sidered. The choice of a V-A representation for
the off-shell amplitude is consistent in the sense
that it leads to a TE with the V- A structure.
Moreover, CI' invariance, the fact that the equa-
tion involves T, with two legs on shell, and the
requirement that off-shell terms have to vanish
on shell severely constrain the off-shell behavior
of T,. The second point is that T(E = 0, t) = T(E = 0,
t =0) is a strong assumption. A better approxima-
tion to T, is the appropriate combination of
crossed-channel amplitudes. It is just this im-
provement which leads to crossing-symmetric
amplitudes. We consider the effect of crossed-
channel input in the next section.
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III. LEPTON- LEPTON SCATTERING:
CROSSED -CHANNEL INPUT

The results of Sec. II have the distasteful fea-
ture of depending on unknown cutoffs A'. We
needed a cutoff for the integral in (15) because,
by using the Fermi term for T,(t), we did not
have any momentum-transfer dependence to damp
the contributions from the large-k' region. To cor-
rect this defect, we propose to use the crossed-
channel solutions for T,. For instance, in the s-
channel reaction ev, —v,e, we use the unitarized
amplitudes for e v, - v,e and ee —v, v, in the form

the integrals are now convergent in order to fix
the cutoff parameter A'. To be more specific,
we assume that the crossing-symmetric solutions
of the previous section have the correct form. We
expand them to second order in the coupling con-
stant and compare the result at P = q = 0 with the
first iteration of the equation for ts(P, q) with

t, (p, q) given by (28). Since integrals converge,
we are able to fix A'. Consider the process ev,
—v,e. The integral equation has the form

t (P, q)=t. (P, q)

(P+ q)' (P+ q)'
t.(P, q) =~2

+ &p P k G~ k Go k &g k, q

(32)

(P —q)' l„(P—q)'
6v'

(28)

The spinor decomposition of the amplitude is the
same as in the previous section. The difference
Gs(k) —G, (k) appears in (10). If we iterate (32)
and then setP =q=0, we find

The choice of a product of t- and u-channel solu-
tions is based on arguments given in the previous
section for the construction of a crossing-sym-
metric invariant amplitude. In addition, to ob-
tain (28) we have analytically continued mass-
shell amplitudes in the crossed channels to the
s channel.

The Bethe-Salpeter equation can be solved if
we use a separable approximation to t, (P, q),

ts(0, 0) = t, (0, 0)

+ to 0 k G@ k G() k /0 k 0 +

Now t, (0, 0) is just the Fermi term G/)t 2, while
t, (0, k) =to(k') is given in (28). Combining the pre-
dictions of (33) and (27), we find

t,(p, 0)t,(0, q) (28)
G "' G s s

ts(0, 0) =~ 1+, ln

Such a separable approximation has been shown
to lead to reasonable solutions in other applica-
tions of the Bethe-Salpeter equation. ' With this
approximation we find

G s " dk'
z0

Thus, we make the identification

(34)

t.(P, o)t.(o, q)
t (0, 0)II+ (G/)t 2 )I'(E)]

to(p, q)
1+ (G/Wa)f'(Z) ' (30)

where the integral in the denominator is given by

&'(&)=(~ ) ~ 5 ~. „.(4()', o)l' (31)

Since this integral is convergent, it need not be
cut off at large values of O'. In this separable lim-
it ts(p, q) =A(s, t, u), where A(s, t, u) is defined in
(27). In this approximation A(s, t, u) emerges nat-
urally as a product of direct and crossed-channel
amplitudes.

However, rather than calculating the solutions
to (6) with T, given by (28), we use the fact that

~2 ln —,=, , t, -k' '. 35

In the Appendix we discuss the steps necessary to
write the integral in (33) in the form appearing in
(35)

If we use (28) for t,(k'), the resulting integrals
are nontrivial. Moreover, they depend on A,' and
A„', the crossed-channel cutoffs. These are pa-
rameters which we would like to let become as
large as possible. In the Appendix we evaluate
the integral in (35) in the limit A,' =A„'-~. In
this limit the integrals are sensitive to values of
k'«A', the region where the form of t, (k') should
be most reliable.

For the process ev, - v,e, the iteration scheme
is similar, although there is the problem of cou-
pled channels. In this case we find
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2 ln 2
=

2 2 Ilto k2 2+ 12to-k2 2 (36)

where

"t (-k') =t (s=u=-k' ev —v e)
and

' t,(-k') = to(s = u = -k', ev, —P„V,) .

In the case of ee- v, v„ the situation is somewhat different in that the lowest-order correction to the
Fermi amplitude is, in fact, third-order in G. This correction arises then both from a double iteration
of t,(ee- v, P, ), which is first-order in G, and from a single iteration of t,(ee- ee), which is second-order
in G, and t,(ee —v, P, ) It w. ould be very difficult to evaluate the double-iteration integral in a reliable way.
Thus, we consider ee —ee instead and assume that for this coupled-channel problem, the cutoffs should
be the same. In this case

Ok G k —G k 'tok 0+

ln —
2

=
2 2

't-k (37)

which fixes the cutoff for ee —ee and (by the above assumption) for ee —v, v, .
In order to actually determine the cutoff in each channel, we need to evaluate integrals of the form

Az 1(» ) [I I ( /A2)]))( (38)

in the limit A -~. The specific integrals in each case can be put in this form by use of partial fractions.
In the Appendix we show that

Using this result, we find for the nth channel in
Table I

ln, = 1n (4o)

where I'= GA'. The constant C„ is given in the
last column of Table I. We have taken all crossed-
channel cutoffs to be the same in obtaining these
results. However, the values of C„are indepen-
dent of this assumption, since

)n[) ( «')]=) ()««') ~ ) ((,)
= ln(lnA')

t

I

I

I

I

in the limit A'- ~. Thus we have managed to ex-
press all lepton scattering amplitudes in terms of
one unknown parameter ln(lnI ). To the extent that
lnI' is truly large, one expects deviations from
the predictions of the simple Fermi amplitude to
set in considerably below the unitarity limit —i.e. ,
near

v2 1 (1000 Ge V)
G ln(lnl") ln(lnI')

TE

FIG. 3. Graph employed in calculation of the neutrino
charge radius.
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However, there are reasons to believe that lnI' is bounded from above. '
Finally, we note that this procedure for determining all cutoff parameters in terms of a single unknown

would not work if we had not used the transformed Bethe-Salpeter equation or an equivalent procedure,
for then the cutoff would be necessary to give meaning to quadratically divergent integrals. The integrals
1„(T,X, A') would be replaced by

zdz l
z+ T [I+i'. 'a+hz In(z/A')]" '

which either diverge or go to zero as A'-~.

IV. CHARGE RADIUS OF THE NEUTRINO

Other usually divergent weak parameters can also be calculated in terms of lnGA', if our invariant am-
plitude A(s, t, u) is used for the weak-interaction four-point function. As an example, we consider the elec-
tromagnetic interactions of the neutrino generated by the diagram in Fig. 3.' Using the kinematics shown
in the figure, we find

i4G d k
~2 (2z)' [(E+k)'-m'][(E-k)'-m']

'([1 ~, l(—,) 1 —~ ~l (
—

) ] ~ 1(—
) )I '(41)

where q'=4E' is the momentum transfer at the vertex. In (41) we used (21) for the v, v, -ee amplitude.
After making a Wick rotation and carrying out the angular part of the integration (see the Appendix), we
subtract the resulting integral at q'=0 to ensure the vanishing of the neutrino charge. In the limit q'»m',
.4~ becomes

(~ q2
Az=6„y~(1+y,-)u, , —.—„- .

q' —k~ ~'2 2m,
—ink~ 1+~2 3y A

~ ~2 6p l A2

(42)

In order to obtain the charge radius, (41) is evaluated in the limit q'«m'. In this case the q' in the log-
arithm in (42) is replaced by ~n 'We ca-n. hope that the charge radius might be measured, say by scatter-
ing from a high-Z nucleus. " This would determine the unknown parameter lnGA' = lnl and allow definite
predictions to be made concerning the various leptonic scattering reactions.

APPENDIX

In this appendix we discuss the evaluation of two types of integrals. The first has the form

d'k F(k')
[(E —k)' —m'] [(E +k)' —m'] (Al)

where F(k') is an arbitrary function of k' =k,' —
~
k ~'. If 0& E & 2m, the k, integration contour may be ro-

tated from the real to the imaginary axis. After this Wick rotation, we have an integration over a four-
dimensional Euclidean region. If E is purely timelike, k'- k', and k, =-kcosP,

~ k~ =ksinP, we have
OQ ir 2

f(E) = 4zi k'dk F( k)- (A2)

The integral over P gives

(A3)

This integral and the one with F(k') replaced by k,'F(k') are used in going from (33}to (35). The k,' factor
introduces -cos'p in the numerator of the p integral in (A2) and causes no difficulty. Both integrals can be
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continued to all values of E' and to rn = 0.
The second type of integral appears when we try to fix the cutoff parameters. We must evaluate inte-

grals of the type

t„(~, T, A') =
" dx

x+~ [1+Xxln(x/A')]" ' (A4)

The constant X can be either positive or negative. We want the value of the integral in the limit A. -O,
A. I.nA 0.

If X is negative and y =
I Xl A', we have

dx 1
x+v 1 —Xxln(x/A )

dx 1
x+ T/A 1 —yxlnx

which we write as

dx ' dxx y lnx " dx 1

, x+T/X', x+T/A' 1 —yxlnx, x+7/A' 1-yxlnx (A5)

In the limit A'-~ we may drop T/A' in the second and third integrals. The latter integral contains a pole
at x=x, with x, lnx, =l/I AIA' =1/y. Since I, must be real, it is treated as a principal value integral. This
pole, and the ones in the case A. is positive, represent distant left-hand singularities in the amplitude
A(s, t, u). See (27). However, these poles do not contribute to the large-A' limit of the integrals. The
last integral in (A5) can be broken up into the ranges from 1 to 1+5 to ~, where 5«1, but y5-~. Then
we find

P —P
x(1 —yx lnx), x(1 —yx 1nx)

e dz 1=-- ln(y5 —l)-0 .
1 —yz y

The integral from 1+5 to ~ is dropped, since it is easily seen to vanish as y-~.
The remaining nontrivial integral in (AS) can be written in the form

J
' dxylnx ",d

0 1-yxlnx 0
d y ' ——(yze ')} (1+y*e ')

dz

dz=-y, ~ -ln(ylny) .e'+ yz

The last step is not obvious, and we proved it by numerical integration. Thus, we find

I,(P., vz A ) = ln(A'/7) —in[I A
I
A ln(l y).

l
A')]

=-In[I e).
l Tin(l Xl A )] . (A7}

I,(X, T, A') with X negative has a double pole. We evaluate the double pole as the limit of two single poles
which approach each other. This definition is consistent with the definition of tx(0, 0} in (33) as the limit
of tx(P, 0}as P - 0; tx(P, 0) does not have a double pole. We find

J(x, T, A', n) =
x+T I+Xxln(x/A') 1+Ac.xln(x/A')

1 "dx 1 n
1—,*~ 1+1*1 (*/d') 1 ~ 1 *1 ( id'))

$ o»[I &I »n(I ~l oA'}]—»[I &I »n(l &I A')] j
In the limit n-1,
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lim J(1(, w, A', a) = 12(A, r, A')
cx~ 1

= In[(y[ Tin([y(A')]

= -In[[ X) ~e In(( z) A')] . (A8)

(A9)

The first two integrals have poles. We drop 7/A' where possible. The third integral vanishes since

dx dx dx ' dx 1
+ +ln 1+— ~ 0.x(1+yx lnx), x(l + yx lnx), x(1 +yx), x(1+yx lnx)

The second integral in (A9) can be shown to vanish in the same way as the integral in (A6) vanished. It
contains a single pole which moves to x=1 in the limit y-1. We are left with

&0-e dx
(1+Tx/Am)(x y lnx—)

where x, =ylnx, . In the region x& x„we write

Xp X
x —y lnx = x —y lnxp —y ln 1—

Xp

(x, —x)" '
=(*-*.)()- p

n=l xp

(Al0)

(All)

(A12)

For x& x, we have

X Xpx-ylnx=x-ylnx +yln 1—0 x

If X is positive, evaluation is more difficult, since there exist two poles in the interval 0& x& 1. Again
defining y =RA', we have in this case

1/e dx dx " dx
x+(T/A2)(l+yxlnx), ~, x(1+yxlnx), x(1+yxlnx)

'

=(*-*.)()- I: *-*
) .

n=l
(A13)

By using more and more terms of these series in the integrand of (All), we generate a set of better and
better approximations to the integral, the first few of which can be done by hand. The first and second
approximations, in fact, give the same answer for I„ the answer which appears in (AV). 1,(A, 7., A') for
positive A. is defined in the same way as for negative A. and has the same value.
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