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We present a renormalization program for spontaneously broken gauge theories in the unitary

formalism. It is compared with the renormalization program for renormalizable gauges and necessary

constraints are discussed. We then explicitly formulate this program for the Weinberg SU(2)XU(1)
theory of leptons and show how it provides the basis for the dispersive calculations of higher-order

corrections to p, decay reported in a previous paper. As we pointed out there, certain

symmetry-breaking effects are finite and calculable. In this paper, we calculate the breaking of p.-e

universality in order a. We also explicitly verify the consistency of our renormalization procedure on

the one-loop level. There are certain subtleties in the treatment of infrared divergences in gauge models,

particularly in dispersive calculations. We give a method for handling this problem, calculate the rate

for W decay, and complete the calculation of the photonic contributions to I(J, decay in the Weinberg

SU(2)&(U(1) model. Our predictions for the decay rate and the electron energy spectrum in r(I. decay

for the Weinberg model are experimentally indistinguishable from those of the old current-current

theory of weak interactions. Finally we make some comments about other gauge models and other

physical processes.

I. INTRODUCTION

The spontaneous breaking of a gauge symmetry
allows the incorporation of massive intermediate
vector bosons in the construction of renormalizable
field theories of weak and electromagnetic inter-
actions. This approach was first proposed by
Weinberg' in the context of an SU(2) x U(1) model of
the weak and electromagnetic interactions of lep-
tons, and it has recently been pursued vigorously
as a result of the work of 't Hooft' and others. '

In a previous paper (I), we have presented a
calculation of higher-order weak contributions to

p, decay in the Weinberg model. The calculation
was done in the U formalism, ' ' in which the prop-
agator of the massive vector mesons W' and g
takes the canonical form f(k„k„lM'-g„„)l(k'—M'),
and only one real scalar field P appears in the
Lagrangian. A dispersive approach was employed.
Despite the bad behavior of the vector propagator
at high energy, it was shown that if the absorptive
parts corresponding to all the W-Z, W-y, and
W-Q exchange graphs are separately added, the
asymptotically growing terms cancel. The disper-
sion relations then converge with only the usual
subtractions, corresponding to mass and wave-
function renormalization of the propagator and to
renormalization of the W-lepton vertices. All fi-
nite contributions, except those coming from the
W-y cut, were calculated explicitly in I. It was
concluded that these contributions to the p, -decay
rate were less than 1% (except for singular limits
of the model) and that they would have negligible
effect on the shape of the final electron spectrum.
In addition, certain aspects of the dispersive

method of calculation, including the complications
due to spin and to the instability of the W boson,
were discussed in some detail in I.

In the present paper, we discuss our renormal-
ization procedure for calculations in the U formal-
ism; and we complete the calculation of the W-y
contributions to g decay in Weinberg's model,
including a detailed treatment of infrared diver-
gences. As we explained in I, individual Feynman
graphs are badly ultraviolet-divergent in the U for-
malism, and Green's functions remain divergent
even after the usual renormalizations have been
performed. When the graphs corresponding to
physical S-matrix elements are summed, however,
the divergences cancel as a consequence of the

Higgs et al. ' mechanism: the spontaneous breaking
of the gauge symmetry. The divergent nature of
Green's functions in the U formalism, and the ne-
cessity of respecting constraints imposed by the
underlying gauge symmetry, require that care be
taken in the renormalization of the field theory.
We present here an explicit procedure for fixing
the free renormalization constants in the U formal-
ism and we check that essential constraints are
fulfilled. Our discussion here thus supplements
that in paper I by verifying the consistency of the
calculational procedure adopted there.

As always, the burden of renormalization is to
enable the calculation of physical amplitudes in
terms of physically measurable parameters:
masses and coupling constants. We have chosen
the following parameters as fundamental in the
Weinberg model: the electric charge e, the
charged-intermediate-vector-boson mass M~, and
a coupling constant g which is related in a simple
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way to the on-mass-shell (ii'lvr) couplings g~

(f = e, p).7 The quantity R, used to parametrize
the Weinberg model in I, is given in terms of e'
and g' as follows:

R=—Ml /Mz

The massive neutral-intermediate-boson mass is
thus determined in the Weinberg model in terms
of the parameters already specified.

We note here some of the special features of our
renormalization procedure: Renormalization is
performed starting from the bare U-formalism
Lagrangian, obtained after shifting the neutral
scalar field to remove its vacuum expectation
value, and eliminating the three remaining unphysi-
cal components of the (complex) scalar doublet by
means of a gauge transformation. Consequently,
we have —and must use —the freedom to rescale
the scalar field, its vacuum expectation value,
and the gauge couplings all independently. The
left- and right-handed fermion fields are separately
renormalized. The mass and wave-function renor-
malizations of all particles except the neutral vec-
tor boson Z are performed on the mass shell in
the canonical fashion. The Z mass M~ is then deter-
mined in the Weinberg model in terms of M~ and the
ratio of electromagnetic and weak coupling constants e
and g, as we have noted in Eq. (1). The Z wave-func-
tion renormalization can then be performed in the
usual manner, aside from the trivial complication
of including Z-y mixing, and this determines the
last free renormalization constant. The subtrac-
tions to be made for all remaining vertices in the
theory are then determined. If the theory is renor-
malizable and our subtraction procedure is con-
sistent, these subtractions will remove all remain-
ing infinities in physical S-matrix elements ex-
pressed in terms of physical coupling constants
and masses. We have verified Eq. (1}and have
also verified4 that our procedure yields a, finite
physical (Wev, ) coupling g, which differs from g„
only by ultraviolet-finite terms of order e'. These
calculations were performed using the gauge-in-
variant regulator method of 't Hooft and Veltman. '
The consistency of our U formalism renormaliza-
tion procedure has also been verified more fully
at the one-loop level in a simplified Abelian mod-
el.'

Infrared divergences are a well-known feature
of calculations of electromagnetic radiative cor-
rections, and they appear with a vengeance in a
dispersive treatment such as ours. This is be-
cause all renormalizations are done on the mass
shell, which for example introduces infrared di-
vergences into g„the (Wlv, ) coupling constant.

We can easily understand this physically: The
process W - /+ v, +y has an infrared divergence
as the photon energy goes to zero, and it is only
the sum of this rate with the nonradiative decay
rate that is infrared-finite in order g'n. We dis-
cuss the detailed treatment of infrared divergences
in spontaneously broken gauge (SBG} theories of
weak and electromagnetic interactions, and show
how to introduce a fictitious photon mass 5 in the
Weinberg model so that the infrared divergences
can be handled in the usual fashion. These consid-
erations are illustrated by the explicit calculation
of the contributions to p, decay from W-y interme-
diate states in the Weinberg model of leptons.

The paper is organized as follows. In the next
section, II, we discuss the renormalization of
spontaneously broken gauge models in the U for-
malism, and verify for the Weinberg model that
certain crucial constraints are satisfied. Formal
details, including the explicit forms of bare and
renormalized Lagrangians, are relegated to Ap-
pendix A, and calculational details are placed in
Appendix B. In Sec. II we largely ignore the prob-
lem of infrared divergence. Section III remedies
this omission. There we introduce a photon "mass"
6 as an effective infrared cutoff parameter, and
discuss the separation of infrared-divergent from
nondivergent terms in the context of a calculation
of radiative corrections to W- /+v„ l=e, p, . The
formalism is then applied in Sec. IV to complete
the calculation of electromagnetic corrections to
p, decay. In Sec. V we discuss other processes
briefly and conclude with some comments on the
import of our results for other SBG models.

II. RENORMALIZATION

The starting point for any SBG model is a renor-
malizable Lagrangian gl involving a set of mass-
less gauge fields coupled to a set of complex sca-
lar fields and possibly other fields [e.g. , Eq. (Al)].
Spontaneous breaking of the gauge symmetry gives
masses to some of the gauge fields and can be in-
troduced in such a way that the resulting Lagran-
gian g~ or g~ possesses manifest renormalizabil-
ity or unita, rity, respectively. The unitary La-
grangian U for the Weinberg model is displayed
in Appendix A [Eqs. (A2), (A3)].

The first step in a renormalization program is
a regularization procedure. For the dispersive
calculations of I we did not need to use a regulator,
but in examining the subtraction constants it is
necessary to define such a procedure. Further-
more we are very much constrained as to the
method of regularization we may use, as we must
maintain not only the explicit quantum-electrody-
namic (QED) gauge invariance of our Lagrangian,
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TABLE I. Renormalization constants. The subscript
0 designates the unrenormalized fields and parameters
of ZU [Eq. (A3) J. Vector indices have been dropped and
lL =
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(1 —y )l, lz ——~(1+y )l, l =e or p, .
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but also other formal relationships between differ-
ent amplitudes which are a remnant of the larger
gauge invariance of the initial Lagrangian. The
only regularization procedure which we know that
satisfies these conditions and is strong enough to
regulate the U formalism is the dimensional con-
tinuation scheme of 't Hooft and Veltman. ' ' All
our results are to be understood in the context of
this regularization prescription.

The gauge-symmetric theory is renormalized by
adding to 2, a set of gauge-invariant counterterms.
It is then claimed '' that this set of counterterms
is sufficient to remove the divergences of the spon-
taneously broken theory expressed in an R formal-
ism.

If one chooses instead to work in the unitary for-
malism, the above set of counterterms is not suf-
ficient. That is, it is not sufficient to generate the
counterterms for U by adding gauge-invariant
counterterms to g, and then transforming to the
unitary formalism. This is not surprising if it is
recalled that the only possible gauge invariance
remaining in g~ is electromagnetic. The diver-
gence cancellations which lead to a finite S matrix
are due to the many relations between the coupling
constants and masses of gc (which are of course
a result of the full original gauge symmetry of 2z).
The important thing then is to preserve these
relations when generating the counterterms, and

this is assured if the counterterms are generated
by a separate multiplicative renormalization (re-
scaling) of each of the indePendent parameters and

fields of g~.
The difference between renormalizing in the U

formalism and an R formalism can readily be
understood. The gauge-independent counterterms
are sufficient to perform an intermediate renor-
malization in the R formalism. Certain finite but
gauge-dependent shifts must be added to define
conventionally renormalized on-shell quantities. ' '

These pieces can be different even when the inter-
mediate counterterms are the same —for example,
the wave-function renormalization subtractions
for different members of an isotopic multiplet.
In going to the U-formalism treatment, these ad-
ditional pieces become divergent and thus the rel-
evant counterterms for the U formalism differ by
infinite quantities. Even this expanded set of inde-
pendent counterterms is fewer than the number of
quantities to be subtracted; but if the theory is
to be renormalizable, these counterterms must be
sufficient to produce a finite S matrix.

The details of this program will now be described
for the Weinberg model. The unrenormalized La-
grangian is exhibited in Appendix A. Note that we
write it in terms of e, and g, . Then

(Mw)o= ~
and

go
( Z)0 ~g (

2 2)1/2

XG' = rn, =physical electron mass,
v2

(2.1)

A, G~" = m „=physical muon mass .
v2

The rescalings and our notation for the renormal-
ization constants are displayed in Table I. The
following points should be noted:

(i) The usual quantum-electrodynamic Ward
identity has been incorporated so that e, —(1/~Z„)e.

(ii) The scalar field and its vacuum expectation
value are rescaled independently.

(iii) The left- and right-handed fermion fields
are rescaled independently.

(iv) The renormalization of the neutral vector
fields A and Z involves a mixing which preserves
the masslessness of the physical photon.

The complete set of counterterms generated in
this way is written in Appendix A [Eq. (Af)]. The
next step is to physically define the renormalized
parameters of the theory by adjusting the counter-
terms properly. The eventual finiteness of the
theory depends upon being able to remove enough
of the singular pieces using the counterterms so
that the divergences remaining in the Green's func-
tions cancel when calculating the on-mass-shell
S matrix. In this paper we examine in detail only
the parts of this program which are relevant to a
p. -decay calculation on the one-loop level.

We begin by doing conventional on-shell mass
and wave-function renormalization subtractions
for the leptons and charged vector boson so that

X2
= M„=physical W massXg„
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This fixes the renormalization constants ZQ/ Z
Z f gy Z, , Z~, and the combination Z qZ, ' which en-
ters the mass counterterm for the W. The Q mass
and wave-function renormalization are also per-
formed conventionally.

The wave-function renormalization counterterms
for the charged particles are, by gauge invariance,
also the electromagnetic vertex counterterms for
each of these particles. They subtract the ver-
tices at q'=0 and so by adjusting Z„to effect the
photon wave-function subtraction at q'=0, we en-
sure that the renormalized electric charge e is
the physical (on-shell) coupling of the photon to
each of the charged particles.

We next define the renormalized weak coupling
constant g„to be the on-shell (Wgv„) coupling.
This fixes Z~ since Z~ —2 is the counterterm for
the (Wpv„) vertex correction Be.cause of electro-
magnetic radiative corrections, the renormaliza-
tion constants Z~ Zrz, ~ Zi~, and Z, will be in-
frared divergent, as will

g„=[(zvz„„z„,)' '/z, ]g, .

This infrared divergence is expected, as we noted
in the Introduction, since W decay will become
infrared convergent only by including the radiation
of real photons. The problems associated with
inserting an infrared cutoff and the separation of
the infrared pieces will be discussed in Sec. III.

We have now expressed the theory in terms of
the physical parameters e, M~, and g„.We are
then not free to perform the Z mass renormaliza-
tion conventionally, however, since all the renor-
malization constants which enter the Z-mass-re-
norma1ization counterterm [see Eq. (A7)] have
been previously determined. If the theory is to be
renormalizable, this counterterm must be suffi-
cient to give a finite M~:

Mz'=(physical Z mass)'

+ (ultraviolet-finite
A g~

terms of order a) . (2.2}

The finiteness of the order n (=e'/4m= ~», ) correc-
tions is explicitly verified in Appendix B.

The Z wave-function renormalization constant
Z~ is now defined in the usual way. The A-Z mix-
ing renormalization constant Z„is defined such
that the A-Z amplitude vanished for q'=M~'.
(Note that ordinary electromagnetic gauge invari-
ance already implies that it vanishes at q'=0. )

The other subtraction which is important for the
p, -decay calculation is the (Wee, ) vertex. The re-
normalization counterterm for this vertex is

which has also been previously fixed. This coun-
terterm must leave the (Wev, ) vertex correction
finite on the mass shell and yield a physical
(Wev, ) coupling given by

g, =g„[1+(ultraviolet-finite piece of order u)].
(2.3)

This has also been checked on the one-loop level
and was reported in paper I. (See also Appendix
B.) The finiteness of the deviation from electron-
muon universality as expressed by Eq. (2.3) is
necessary if the theory is to be renormalizable,
since the two vertices cannot be renorrnalized in-
dependently. The absence of independent counter-
terms in SBG theories also implies the finiteness
of other symmetry-breaking effects, for example
certain mass splittings. "

There are many more pieces of the subtraction
program to be checked. For example, the sub-
traction constants for the three-vector and four-
vector vertices are already determined. Such a
complete treatment is, however, beyond the scope
of this paper. A full investigation of the consis-
tency of our U-formalism renormalization scheme
on the one-loop level and its connection to the R-
formalism method for an Abelian theory will be
presented in a future publication.

III. INFRARED DIVERGENCES

It is natural, in a dispersive calculation, to cal-
culate in terms of the on-mass-shell (Wlv, ) cou-
pling constants g, . These coupling constants con-
tain infrared divergences, however, as can easily
be seen by considering the decay W- l+ v, (Fig. 1),
a process which will of course be observed if the
W is discovered. A finite prediction for this par-
tial decay rate is obtained only when the emission
of real soft photons (with energies below some
detection threshold energy k} is included to any
given order in a, and the infrared-divergent part
of g, is explicitly kept to that same order. It is
convenient to express the resulting finite answer
in terms of an infrared-finite coupling constant
g, thus defining g as a measurable quantity, at
least in principle.

In order to keep track of infrared divergences
in a consistent manner, we introduce a photon
"mass" 6 into g. This can be done without de
stroying the renormalizability of the Weinberg
model by simply adding the term —26'B„B"to the
initial Lagrangian Eq. (Al}. This term breaks
the Abelian gauge invarianee but preserves renor-
malizability since 8 just becomes a massive neu-
tral vector field coupled to a conserved current.
(It is also possible to introduce a photon mass
term without destroying the underlying gauge in-
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variance, at the cost of adding an additional scalar
field to the Lagrangian. ") After transforming to
the U formalism, there results a photon mass
term —,'O'A„A", corrections of order 5 to the Z-
boson mass, and a Z-A mixing of order 5, where
6' = 6 'g, '/(g, ' —e,'). These additional pieces,
some of which are ultraviolet-divergent or con-
tain divergences as 5-0, complicate the renor-
malization program. However, we have checked
that these extra divergences cancel, so that we
are free to take the limit 5-0 everywhere except
in the denominator of the photon propagator in cal-
culating S-matrix elements.

We now define an infrared-finite coupling con-
stant g by means of the equation

g„=g(1+aB„), (3.1)

where the quantity B„is defined to include all the
infrared divergences that are present in g„.We
specify in addition that B„alsocontains all terms
which are divergent as m„/Mv-0. Then, to order
CXq

B„=— — ln ln + & ln +ln

Mw g ~m„ I ~ Mw+g n +2 —4
m

(3.2)

(3.3)

where B„-B, upon the substitution m„-m,.
The partial decay rate for the process 8'- Iv, is

1I't —
48 Mw8& (l=e or lL). (3.4)

Including soft-photon emission and using (3.1) and
(3.2} then gives the infrared-finite result

The first three terms come from the photon con-
tribution to the (Wpv„) vertex renormalization
Fig. 1(b); the fourth, from W wave-function re-
normalization Fig. 1(c); and the last two, from
muon wave-function renormalization Fig. 1(d}.
The nonelectromagnetic contributions to coupling-
constant renormalization are not infrared-diver-
gent and also are finite in the limit m „/Mv-0,
and are therefore by definition not included in B„.
Such terms are combined with those of Figs. 1(b),
1(c), and 1(d) to define an ultraviolet-finite g„.
Thus g of Eq. (3.1) is free of all divergences, even
in the limit m„/Mv-0. [In writing Eq. (3.2) we
omit infrared-divergent terms of order (m„'/Mv')
In(6/M„), which become negligible when soft-pho-
ton emission is included. This is consistent with
the omission of such terms in paper I, and below. ]

From the universality result Eq. (2.3), it follows
that, aside from terms of order am„'/Mv2,

(b) ~=—— g ~ 2x

(c)

(g

FIG. 1. Infrared-divergence cancellations in S' decay.
The quantities (g& " + I v ) v (g~ se+ Ie) v and (g& sw + Iw)
are each independent of the photon mass. Diagrams (e),
(f), and (g) represent the contributions to the rate from
decay with emission of a real photon.

/

Mwg' 1+—-2 ln ln +ln
1 2 a Mw Mw

48m n ms

IV. I, DECAY-THE W-1 CUT CONTRIBUTION

For p, decay it is simplest to present our result
by comparing the various contributions with the
results of the current-current theory. " With this

+in ' + ~ ln v +0(1)
ms

+ 0{a'{}, {3,5{

where k is the maximum energy of the emitted
undetected soft photon.

From (3.5), the ratio R = I',/I'„can be read off.
The order-n correction can be quite large (-10%)
due to the lepton mass factors and photon energy
resolution factors in the logarithms. " The fact
that this ratio is calculable at all —that is, that
p. -e universality is broken only by a finite amount-
is a consequence of the renormalizability of
spontaneously broken gauge theories.

Finally, let us return to a question left open in
the preceding section. The expression Eq. (2.2)
for Mz is not manifestly infrared-finite. If, how-
ever, we substitute into this equation the defini-
tion l{.'g„'/4 =Mv' and explicitly exhibit the in-
frared part of g„using Eq. (3.1), the infrared di-
vergences cancel, and we obtain the desired result

Mg =
(

g 2 gg 2 + (ultraviolet- and
Mw

z 1 —e2 @21/2
inf rared -f inite
corrections of order o,).

(3.6)
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(a) (c)

FIG. 2. Photonic corrections to p decay in the current-
current theory.

(o)
I~ port of
)1)1 propogotor

in mind me first outline the contributions of the

various one-loop graphs in that theory, making
a separation of terms which will be convenient
for this comparison. The contributions are shown

in Fig. 2. The Born graph, Fig. 2(a), gives
(b)

g „port of

W propogator

4Q g(e), g(p) &

W2
(4.1)

FIG. 3. Photonic corrections to p decay in the
steinberg mode1.

where G is the bare coupling constant appearing
in the current-current Lagrangian. The graph
of Fig. 2(b} yields"

(4.2)

where g is some known quantity, of order n,
which is independent of the ultraviolet cutoff A.
%e note that X includes an infrared-divergent
part. %'e also note that it is not directly propor-
tional to the Born-graph contribution so that it
causes a change in the shape of the p, -decay spec-
trum from that predicted by the Born graph. The
external-line corrections, Fig. 2(c), give

A
4G ~(e).g(p) t
&2

The photonic corrections to the p, -decay ampli-
tude in the steinberg model are displayed in Fig.
3. The contributions of Fig. 3(c) correspond ex-
actly to those of Fig. 2(c) for the current-current
theory, but here they are necessarily absorbed in-
to the renormalization of the coupling constants.
This was discussed in the previous section, where
the infrared and lepton-mass-dependent parts of

g, and g„were exhibited explicitly [E(1. (3.2)]. By
contrast, in the current-current theory, the log-
arithmieally divergent part of these contributions
is canceled so that the result can be expressed
in terms of the "bare" Fermi constant G.

Figure 3(b), representing the contribution from
the g„„partof the W vector-boson propagator in
this Feynman graph, can readily be compared
with the contribution of Fig. 2(b) in the current-
current theory

——ln +—ln
n M2

3s —2~ 2 4„n 2 +X
W P

(4 3)

Combining these and including the effect of real
radiated photons, one can calculate the total decay
rate. One finds":

(i) The ultraviolet cutoff-dependent terms in A»
and A„cancel.

(ii) There are no terms involving logarithms of
lepton masses in the resulting expression for the
total decay rate.

(iii) The important corrections to the Michel
shape parameter p away from its Born amplitude
value (p = 0.75} arise from X and from real-photon
emission.

G Qe(A —M~) . (4 4)

gegp g(e). g(p)e (1+~F)2M (4 5)

where the 1 term corresponds to the Born graph
(i) and

That is, A„-A»if the weak coupling G/~2 is
replaced by g, g„/BM~' and the ultraviolet cutoff
A is set equal to the vector-boson mass M~.

The remainingterms, Fig. 3(a), can be written as
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where

dq' [k) 16M ' 8(-+(k(')
.'&„,e)s q' 8v q (q' —M~'}' (q' —M~')'

(a -M,')lkl

5'-2+.P. —2lkllp, l

5' - 2&.&.+2 Ik I lp, I

(4.6)

and the momentum components are evaluated in the center-of-mass frame q=(q„0). The various mo-
menta are labeled in Fig. 3(a). The method used to obtain Eq. (4.6) was discussed in detail in I. We no-
tice that Y is an infrared-divergent quantity even though the diagrams of Fig. 3(a) appear to be infrared-
finite.

We have introduced spurious infrared divergences into the amplitudes for Figs. 3(a ii), 3(aiii), and
3(aiv) by subtracting the vector propagator and weak vertex with the W boson on the mass shell. These
divergences are of course exactly canceled by terms in the product g,g„.The full expression of Eq. (4.5),
when written in terms of the infrared-finite coupling constant g defined in Sec. III, contains only the in-
frared-divergent pieces corresponding to Fig. 2(c) [Eq. (4.3)] which will be made finite by the inclusion
of soft-photon emission in the expression for any measured rate. Integration of Eq. (4.6) yields

J«~ ~ J~&&~ 1+— -&ln +~ln ' " +—+—
2M~ g m,m„5' 6 12 (4.7)

Thus, combining all contributions,

A =A3, +A3~+As,

J( ).J&a)& 1+ —ln + —ln & + —+ q+X
g' f o. I m I mm 5 g l

2M, ' l J w
' m„' 5* 6 12

whereas for the current-current theory

A =A, +A„+A„

(4.8)

J«&.J I )~. 1+ ~ ln ~ + 1 ln ~ j ~+
46 ( a, m. , mm 5

v
' m„' 5' 8, I

(4.9)

G'm „'
1

e
F-=192 ' ' 2. (" (4.10)

where experimentally G = 1.026 x 10 '(m„„,„)'.

We caution the reader that our definition of g is
somewhat arbitrary. The difference between Eq.
(4.8) and (4.9) could be absorbed into a redefinition
of g. Equation (4.8) is only meaningful in conjunc-
tion with Eq. (3.2}or (3.5), which define g.

To summarize our results for p. decay, we must
include the contributions from other cuts calcu-
lated in paper I. Denoting the summed contribu-
tions of the W-Z, W-Q, and lepton cuts by
—,'$(g, M&}, we recall that $ is a number of order
n except at extreme values of the parameters g
and M&. Combining $ with Eq. (4.8) and including
real-photon emission, one can calculate the phys-
ical total rate for the p, decay. In fact, this rate
can be obtained with no further calculation by using
the similarity of Eqs. (4.8) and (4.9). We know that
the p, -decay rate in the current-current theory is"

Thus, from Eqs. (4.8}and (4.9) plus the results
of payer I, we find in Weinberg's model

g Q
Ftgtg =

2 1 + $ +—(v + 2 )
W 6w

(4.11)

g, a ~ G
8M 12W

(4.12)

Precise computation and measurement of any
other weak process would provide a test of the
model, but unfortunately there are no other ob-
served decays which are not complicated by the
presence of strong interactions.

Furthermore the Michel parameter p is unchanged
up to terms of order am„'/M~'. We can use Eq
(4.11}as a way to fix some combination of the pa-
rameters of Weinberg's model. We find, com-
paring Eq. (4.10) with Eq. (4.11),
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V. CONCLUSION

A. Including Hadrons

If hadrons are included in the Lagrangian in a
way which preserves the underlying gauge sym-
metry and thus the renormalizability of the mod-
el, then P decay and all other semileptonic and
hadronic weak processes will be finite. This is
to be contrasted with the situation in the current-
current theory, where the radiative corrections
to p decay are finite [because of the possibility
of rewriting the (V- A)' interaction in charge-
retention form] but the radiative corrections to
P decay are not if the strong interactions provide
no damping. Unfortunately, the presence of strong
interactions complicates the actual calculation
of weak processes involving hadrons. In P decay,
for example, one must include the effect of the
anomalous magnetic moment of the neutron and
proton. This cannot be done in strong-interaction
perturbation theory, of course. Yet, in a gauge
theory, if we try to do it phenomenologically, in-
troducing an explicit anomalous magnetic moment
term, we destroy the renormalizability. Even if
a finite second-order calculation of P decay could
be made in some gauge models, it appears from
the results of our p. -decay calculation that com-
parison of p. and P decay will not provide a sensi-
tive test of the model.

8. Comparison with R-Formalism Calculation

Ross' has performed a calculation of the second-
order corrections to p. decay in the Weinberg
SU(2) && U(1) model, in the renormalizable 't Hooft
gauge. ' " In this gauge, the W propagator has
the form ig„„/(k'—M~'), fo-r example, and there
is also a fictitious scalar propagator 1/(k' —M~')
which serves to cancel out the wrong-metric sca-
lar piece included because of the g„„inthe W prop-
agator. A general discussion of the renormaliza-
tion of gauge theories in the R formalism has been
given by Lee and Zinn-Justin, ' and an explicit re-
normalization program for the Weinberg model
in the 't Hooft gauge has been given by Ross and
Taylor. ' We have discussed in Sec. II the differ-
ences between renormalizing in the R and U for-
malisms. The most important difference is that
rescaling the gauge-symmetric Lagrangian 2,
[Eq. (Al)] provides enough counterterms to per-
form an intermediate renormalization in an R
gauge, but not enough to renormalize the U for-
malism. Consequently, a U-formalism renormal-
ization program must be based on a rescaling of
the shifted Lagrangian [Eqs. (A3) and (A4)].

Ross' chose e, M~, and M~ as his fundamental
parameters in the Weinberg model; we chose e,
g, and M~. Either choice is equally 'physical, "

since all of these parameters are in principle mea-
surable. In order to compare our explicit results
with those of Ross, however, it would be neces-
sary to evaluate the terms of order a in Eq. (2.2).
Another difficulty in making a direct comparison
is that Ross does not present his answer in a very
convenient form.

A remark is perhaps in order on the relative
ease of such calculations in the 't Hooft gauge and
in the U formalism. The complications in the U

formalism arise from the many ultraviolet diver-
gences and, particularly in our dispersive calcu-
lation, from the infrared divergences. The in-
frared divergences have a real physical origin,
of course, and consequently are present in any
formalism; however, by renormalizing off the
mass shell, Ross and Taylor avoid the appearance
of infrared divergences in coupling constants.
The price for this convenience is the necessity to
calculate and include renormalization constants
on external lines. The R-formalism intermediate
renormalization program is also complicated by
the presence of the "ghost" particles, "whose
function is to preserve unitarity. Thus, in the p.

decay calculation at least, there unfortunately
appears to be a "conservation of difficulty. "

C. Summary

In this paper we have set forth a renormaliza-
tion program for spontaneously broken gauge theo-
ries in the U formalism. The program begins by
generating the renormalization constants with a
separate rescaling of each independent parameter
and field of the unrenormalized U-formalism La-
grangian. Using the 't Hooft-Veltman' method of
dimensional continuation as a regulator prescrip-
tion, subtraction constants and physical parame-
ters are defined in a conventional fashion. The
particular feature of SBG theories which makes
this program unusual is that the number of inde-
pendent counterterms is quite limited. Once a
certain number of physical parameters have been
defined —in this case the coupling constants e and
g„and the masses of the leptons, charged vector
boson, and Higgs scalar particle —all remaining
subtractions are fixed and the remaining physical
parameters are determined as functions of these
quantities.

We have in this paper also shown how to treat the
infrared-divergence problems associated with on-
mass-shell subtractions, calculated the W-decay
rate, and completed the calculation of p. decay in
Weinberg's SU(2) && U(1) model begun in paper I.
We find that the shape of the final electron spec-
trum in p, decay is essentially the same in Wein-
berg's model as in the current-current theory.
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Neglecting terms of order (lepton mass)/M~, this
will also be true in other such models, for ex-
ample those of Georgi and Glashow" and Lee,
Prentki, and Zumino. " The reason for this is
simply understood. These theories are con-
structed so that, up to terms of order m, '/M~',
the Born terms for p, decay are identical. Up to
terms of order o.m, '/M~', the change in the
Michel parameter p, which describes the spectrum
shape, arises only (a) from the contribution cor-
responding to Fig. 3(b) where a photon is ex-
changed between the muon and electron and only
the g„„partof the 8' propagator is included, and

(b) from the emission of real photons from the ex-
ternal lines. These contributions are model-in-
dependent for the class of models under discus-
sion. All other terms yield contributions which
have the same shape as the Born term, or are
negligible. As well as these effects, in the Georgi-

Glashow and Lee, Prentki-Zumino models there
are also corrections to p which are as large as
(a/w)(m, /M~)', where m, is a heavy lepton mass.
In the Georgi-Glashow model the ratio m„/M~ is
at most „,"so that such terms are undetectable.
The calculation of the tota/ rate for p, decay in
any of these models also yields a result experi-
mentally indistinguishable from that of the current-
current theory.
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APPENDIX A. LAGRANGIAN COUNTERTERMS FOR THE WEINBERG MODEL

Before symmetry breaking the Lagrangian is

2, =--,'(e„A„-e„A„+gA„xA„)'--,'(s„B„e„B„)'+g L,(i/+ gT P+ g'J—)f)L, —

l =e, P

+ Q R, (iy))+g'g)ft, + ~(B„+,'igr Aq——Rig'B„)Q~ — Q G, (L, QR, +B,gtL, ) —P. @ )t) —h(Qt)t)) . (A1)
l =e,P l=e, p

All parameters and fields above are unrenormalized. For simplicity we delete the subscript 0 used in
Sec. II to denote unrenormalized quantities. The Lagrangian of the U formalism is obtained by the substi-
tutions

A„'aid'„=))2W'„, A'„=(g'+g") "'(gZ„-g'A„), B„=(g'+g")'"(g'Z„+gA„),

l, =l( -y, )( ')= ', R, =l(1 y, )l=)„R= (1 R)( ).
L

(A2)

We express g~ in terms of the parameters g, e [=gg'/(g'+g")"'], X, p', h, and G, . Then the free and
interacting parts of g~ are

» 2 2»»
P ~ P v v P» 4 g» e» P

and

--,'(s„A„-s,A„)'+-,'(s„y)' ,'(q'+3h-x'-)y'+g l i If'- ~ l+),ig),v2

» j./»

R, =I I~ t,y') w;+ y', ly), ) -(. . .y', R
l

(A3)

+2»» -1 lL, y" lJ. +2 —
» l„y"l„&+ely" lA — ' l lflt)

g —e g
» »» »+~ ~w„~'4)(21+4))+—R, P(2x+P) —hx)t) —Rhg ——(s„A„—8 X ) ~ (X„xX,) ——(X„xX)'

(A4)

where, from (A2),
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A
=('-"'"

Z --'A .
]I g ]I g

We now imagine putting the subscript 0 back on the above fields and parameters and rescaling accord-
ing to Table I. The result is

v =&o+&r+Z

where, having expressed everything in terms of renormalized fields and parameters (M„=Kg„/2,
m, = XG, /&2}

20= 2(&-qW, —&„Wq)'+M~ (Wq) —g(sqZ„—8„Zq) + 2M~ Zq'

——,'(6 „A„—s„A„)'+g[i(if m, }l+v—,if v, ]+ &(8„$)'—~m z'p'

and Pz [Eq. (A4}]-Zz by replacing g, -g„,e,- e, W, —W etc. The mass terms in (A6) are the physical
masses. As discussed in Sec. II, Mz is to be calculated in terms of other renormalized parameters. [See
Eq. (2.2).] The counterterms are in 2,. We exhibit the part of 2, most important for calculations;

ZZ2
Vp

+ P (Z, z
—I) I r, (i y') lz + (Z, s —I) I„(if)ls —(Z„—1) ' I l+ (Z, ,

—I}v, (if}v,

—,'(Z„ 1)(S„A„—a, A„)'——,'(Z„Z„)'i'(S„A„S„A„)(S~Z"—6"Z') ——,'(Z, +Z„—1)(a,z, S„Z„)'

g —
Z Z l/2

+ ~&(Z~ —1}(v&y gzW'+ pzy"v&W )+~& Z~
"'- ' —1 [py ezW ~+e~y "v,W„]

pL

+eg[(Z, z,
—l)lay„lz +(Z,s —1)lay&4]A" + ~ ~ ~ .

There are many more counterterms associated with 3W and 4S' vertices, vertices involving the Higgs
scalar, etc. Very few of these counterterms are independent and therefore many relations of the type veri-
fied in Appendix B must be satisfied.

APPENDIX B (Ref. 20) e' ZwZ p Z.
„

Defining the Z's as in Table I and Appendix A
we find

+ (ultraviolet-finite higher-order terms) .

(B3)

Mw2 Mw2

Z Z )

ZwZ ]IL Z
]I

-11,(M ')
2

w

M Mw Z~ Z~
( ~ ) =1 ./, ~ ZZ' Z

x 1 — e ZwZIIL, Zy

(Bl)

(B2)

The quantities involved in Eq. (B3) have been cal-
culated using the 't Hooft-Veltman method' of con-
tinuing in the number of dimensions to obtain well-
defined expressions. Each of these quantities can
be written in terms of I functions with poles at
n = 2 and n = 4 where n is the dimension. Letting X
represent any one of these pieces, we have

X 1 g" ( ) (1

+1(2- -,'n)a

+ finite terms at n = 4

Thus if Mz'=M~'(I —e'/g„') '+(ultraviolet-finite
higher-order terms), then

Figure 4 shows each of the g's along with the rele-
vant Feynman diagrams and the corresponding co-
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w1+
Mw

Z+y

Feynrnan diagrams

"e

2 2
5 l R-g me ™p

12R 2 M2w

same 4R R -R ——2 8
3

3M,

Z

2 2
52R +25R-35+

2M'„

Zz same 7 2 13R
3R 3 3

—(1-R)—52
12

V~ ) O' P Z

9 yZ 'N W Z p v

)w
4R -2R+32

2
3R )g (1 2R)mpR-—+ —+
2 6 8M2w

4R -4R+3 2 g (4-2R) rnid
R -2R+++

4M2w

z.,
c Vg V) Vg

23 3mt
4 4 Mw2

FIG. 4. Divergent parts of some subtraction constants and relevant Feynman diagrams. [Here, R = (1-e /g )

efficients A. and B. One can easily verify that Eq.
(BS) is satisfied, thus showing that Mz can be cal-
culated in terms of M~, e, and g„.

Figure 4 also contains all the information re-
quired to see that

gI (1 + ultraviolet-finite piece of order n)

that is [see Eq. (A6)],

Z -2ZP. -2Z
Ep Vp

=(ultraviolet-divergent terms
independent of muon mass)

+(ultraviolet-finite terms of order n) .

*Work supported in part under Air Force Contract
No. F44620-70-C-0030.

)Junior Fellow, Society of Fellows.
S. Weinberg, Phys. Rev. Letters 19, 1264 (1967);

ibid. 27, 1688 (1971). See also, A. Salam, in Elementary
Particle Theory: Relativistic Groups and Analyticity
(Nobel Symposium, No. 8), edited by N. Svartholm (Wiley,
N. Y. , 1969).

2G. 't Hooft, Nucl. Phys. B33, 173 (1971);B35, 167
(1971);G. 't Hooft and M. Veltman, ibid. B44, 189 (1972);
ibid. (to be published).

3B. W. Lee, Phys. Rev. D 5, 823 (1972); B. W. Lee
and J. Zinn-Justin, ibid. 5, 3121 (1972); 5, 3127 (1972);
5, 3155 (1972).

4T. W. Appelquist, J. R. Primack, and H. R. Quinn,

Phys. Rev. D 6, 2998 (1972). Note the following cor-
rections in this paper: The leading sign should be
changed from —to + in Eqs. (20) and (26). The factors
(~z Mz), Mz, and Mz should appear in the left-
hand side of Eqs. (25), (26), and (27), respectively.

~D. Ross and J. C. Taylor, Nucl. Phys. B51, 125
(1973); D. Ross, Nucl. Phys. B51, 116 (1973). These
authors give an R-gauge treatment.

~P. W. Higgs, Phys, Letters 12, 132 (1964); Phys.
Rev. Letters 13, 508 (1964); Phys. Rev. 145, 1156
(1966); F. Englert and R. Brout, Phys. Rev. Letters 13,
321 (1964); G. S. Guralnik, C. R. Hagen, and T. W. B.
Kibble, ibid. 13, 585 (1964); T. W. B. Kibble, Phys. Rev.
155, 627 (1967).

YThe notation used in this paper differs slightly from



RENORMALIZATION OF GAUGE THEORIES, W DECAY, AND. . . 3009

that used in I. The quantity g in I is identical to g&
here, and the quantity g introduced in this paper [see
Eq. (3.1)l is simply the infrared-finite part of g&. The
notation g, has exactly the same meaning here and in I ~

T. W. Appelquist and H. R. Quinn, Phys. Letters
39B, 229 (1972); T. Appelquist, J. Carrazone, T. Gold-
man, and H. Quinn, Harvard University report (unpub-
lished).

SFor the calculations discussed here, the quantities
to be calculated can always be written in the form of
spinor invariants multiplied by momentum-dependent
quantities. By a regulator procedure, we mean a pre-
scription for calculating these momentum-dependent
factors; the spinor invariant is not included in the dimen-
sional continuation. Anomalies do not arise in our cal-
culation because we encounter no triangle diagrams in
calculating order-z corrections to W decay and p de-
cay. We emphasize that the regulator techniques of
Slavnov and Lee and Zinn-Justin (Ref. 3), which are
sufficient to deal with the R formalism, are inadequate
for the highly divergent U formalism.
' S. Weinberg, Phys. Rev. Letters 29, 388 (1972);

H. Georgi and S. L. Glashow, Phys. Rev. D 6, 2977
(1972).

~~One can introduce a photon mass while preserving
the underlying gauge symmetry by adding a complex
scalar field X to the Lagrangian. If g has vanishing
SU(2) charge, and U(1) charge f, then the piece added to
the Lagrangian has the form

«=l(~„-~f~„)xl'-u„'xx-"„(xx)'

-&(x x)(e e).
Spontaneous development of a vacuum expectation value
for y will generate a term 28 BpB", with 8 =v 2 f (X)0,
and a few well-behaved corrections to the shifted theory.
One can proceed back to the massless photon by taking
(X)0- 0 or f —0. In the limit f —0 and a —0 the X,

becomes a free particle.
2It is interesting to compare this result to that ob-

tained for n decay assuming a universal pseudovector
coupling of the pion to leptons by S. M. Berman [Phys.
Rev. Letters 1, 468 {1958)]and T. Kinoshita [ibid. 2,
477 (1959)]. Writing their result as

I (n.-pv )
=

where Ro -—(m~2/m„) [(m 2 m 2)/(m 2 m )]

represents the corrections of order n. We note that
Eq. (3.5) gives

I'( W eve) w 2n m~=Ra 1+ ew+ —ln ~
r(m pv&)

0 w z me

where Rwo ——1+0 (m, /Mw) and E'„E'won rePlacing Pion
mass by W mass. The additional ln(m&/m, ) term comes
from a spin-dependent (nonconvective and noninfrared)
part of the photonic vertex correction. The important
new feature is that this ratio can now be calculated for
a vector particle in the context of a spontaneously broken
gauge theory. This was previously impossible since,
unlike spin-zero electrodynamics, ordinary spin-one
electrodynamics was plagued with nonrenormalizable
divergences. See, for example, the $-limiting calcula-
tion of T. D. Lee [Phys. Rev. 128, 899 (1962)l where

g&/g, is infinite in the limit $- 0. The formulas given
here and in Eq. (3.5) are derived assuming photon mass
« lepton mass. The rate for W decay is divergent in
the limit m& 0, thus violating Kinoshita's theorem (see
above reference).

S. M. Herman, Phys. Rev. 112, 267 (1958); T. Kino-
shita and A. Sirlin, ibid. 113, 1652 (1959); L. Durand III,
L. F. Landovitz, and R. B. Marr, ibid. 130, 1188 (1963).
~4For the current-current theory the result is expressed

in terms of regulator of mass A to define the ultraviolet-
divergent contributions. For the Weinberg model we
continue to use the 't Hooft-Veltman method wherever
regularization is required.

K. Fujikawa, B. W. Lee, and A. I. Sanda, Phys. Rev.
D 6, 2923 (1972).

~ R. P. Feynman, Acta Phys. Polon. 24, 697 (1963);
L. D. Faddeev and V. N. Popov, Phys. Letters 25B, 29
{1967). See also Refs. 2, 3, and 5.

7H. Georgi and S. Glashow, Phys. Rev. Letters 28,
1494 (1972).

B. W. Lee, Phys. Rev. D 6, 1188 (1972); J. Prentki
and B. Zumino, Nucl. Phys. B47, 99 {1972).
'SJ. R. Primack and H. R. Quinn, Phys. Rev. D 6, 3171

(1972).
See also C. G. Bollini, J. J. Giambiagi, and A. Sirlin,

NYU report (unpublished). These authors have arrived
at the results of Appendix B independently of us. We
would like to thank Professor Sirlin for communicating
this work to us in advance of publication, and for point-
ing o«a sign inconsistency in our manuscript (corrected
here).


