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S = ODO, 0 orthogonal, (816)

and thus, A*=a*v, with 8 real. Equation (816) is
similar to the well-known decomposition of an ar-

can be freely chosen, only satisfying the condition
that they be perpendicular to v.

If S is a normal operator, so that [S,St] =0, then
S can be diagonalized by a unitary transformation

S= UDU (815)

where U is unitary and D is a diagonal matrix of
the form (A., e' &, . . . , e""), with P. the complex
eigenvalue corresponding to the eigenvector v.
But since S is also symmetric, Eq. (815) forces
U to be a real orthogonal matrix, so that

A. a+ye " a*=a, (817)

so that
~

X
~

= q and 25 = w —2 arga —arga. Since nei-
ther 5 nor arga can be obtained independently, it
is clear that one variable, which we choose to be
the phase shift 5, must be given in order to deter-
mine arga.

bitrary unitary symmetric matrix, except that D
has entries of modulus one everywhere except for
the first entry, where the magnitude of the eigen-
value X is less than one.

VVe thus conclude that S has a unique real eigen-
vector v and a complex eigenvalue ~, which, using
Eq. (812b) is related to qe" by
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Tke most general solution to the unitarity equations involving 2 —2, 2--3, and 3 —3 processes is
given when the total (including all disconnected processes) 3 —3 partial-wave amplitude S is
non-normal. The solution is given in terms of characteristic operator functions, using the theory of
completely nonunitary operators. It is shown, once the characteristic operator function is given, how to
compute the 2 —3 partial-wave amplitude. An appendix shows that, if S can be exponentiated and all
forces are two-body forces, no particle production is allowed, i.e. , the 2--3 partial-wave amplitude is
zero.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as
paper II) it was shown that the unitarity equations
involving three reacting particles could be re-
formulated as eigenvalue-eigenvector equations,
in that one could regard the 3-3 partial-wave

amplitude S as an operator acting on a suitably de-
fined Hilbert space, the 2- 3 partial-wave ampli-
tude being an element in this space of length less
than or equal to one. This 2- 3 partial-wave am-
plitude was then shown to be the unique eigenvector
of S S, with the eigenvalue being equal to the
square of the inelasticity parameter of the corres-
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ponding 2- 2 reaction.
These equations, derived in paper I and re-

stated at the beginning of Sec. II for completeness,
can be viewed in two ways. On the one hand, they
can be viewed as providing a set of constraint
equations on 3-3 and 2-3 partial-wave ampli-
tudes, obtained from other theories in which it is
necessary to make approximations in order to
generate solutions and hence violate unitarity. For
example, the partial-wave amplitudes generated
from Feynman diagrams can be viewed as solu-
tions to equations of quantum field theory which
violate unitarity; one might hope to unitarize
Feynman diagrams by inserting form factors of
unspecified functional form and then forcing these
diagrams to satisfy the eigenvalue-eigenvector
equations.

On the other hand, one can view the unitarity
equations as leading to a formulation of particle
production without introducing Hamiltonians and
other machinery of quantum field theory. In this
view, similar to the viewpoint of S-matrix theory, '
one would like to generate all the properties of
partial-wave amplitudes from the unitarity equa-
tions supplemented by some additional hypotheses.
The goal of this paper will be to show that it is
possible to express three-body unitarity in a
canonical form in which a so-called characteristic
operator function carries almost all (up to the
2-2 phase shift) information about the interacting
systems and automatically guarantees that three-
body unitarity holds; in a succeeding paper, sys-
tems involving four- and higher-body unitarity will
be discussed and the notion of crossing introduced
as one of the possible additional hypotheses, used
to constrain the possible characteristic operator
functions. Section III will deal with the mathemat-
ics required to carry out this program and will in-
volve the theory of completely nonunitary opera-
tors, while Sec. IV will discuss a simple (un-
physical) example. Finally, Sec. V will show how
one can calculate the 2-3 partial-wave amplitude
from knowledge of the characteristic operator
function.

It should be pointed out that a solution to the
three-body unitarity equations was already given
in paper II for the case when the total 3-3 partial-
wave amplitude is a normal operator. But it will
be shown in the Appendix that if one assumes that
all forces involving the three interacting particles
are two-body forces, and if S is normal, then
there can be no particle production. Hence, while
the case when S is normal generates solutions to
the three-body unitarity equations, in the ab-
sence of three-body forces these solutions exclude
the very phenomenon under investigation, namely
particle production. For potential scattering,

where the equations of motion are known and the
existence of solutions for these equations guaran-
teed, ' scattering involving only two-body forces
means S must be non-normal.

II. FORMULATION OF THE THREE-BODY UNITARITY
EQUATIONS AS EIGENVECTOR-EIGENVALUE

EQUATIONS

We shall continue using the notation introduced
in paper II, so that we are considering the follow-
ing amplitudes that are to be connected by unitar-
ity:

2~2 ~

(1"2"
)

g') 1'2') —generates a partial-wave
amplitude A~(s), (2.1a)

2~3

(1"2"2"
) W

~

1'2') —generates a partial-wave
amplitude A~„„(s,s,"),

(2.1b)

3~2

(1"2"
)
q'

)
1'2'2') —generates a partial-wave

amplitude A~„,(s, s,'),

(2.1c)

3~3

(1"2"2"
~
f)1'2'2') —'generates a partial-wave

amplitude A~„„„,(s, s,",s,').

(2.1d)

As before, we are labeling initial particles with
primes, final particles with double primes, while
the intermediate particles occurring in the unitar-
ity equations are unprimed. v s is the total invari-
ant energy while J is the angular momentum. For
simplicity we have assumed that all particles are
spinless; the more complicated case involving spin
will be dealt with in a succeeding paper. The la-
bels M and s, correspond to angular momentum
projection and subenergies, respectively. For the
case of three particles, two subenergies are need-
ed, so that q runs over 1 and 2. At this point we
will leave the specific choice for the subenergies
unspecified.

It is to be noted that the partial-wave amplitude
for the 3- 2 process is separate from the 2- 3
process. In paper II, time-reversal invariance
was used to relate these two processes. However,
in this paper we will drop the assumption of time-
reversal invariance as it causes the unitarity equa-
tions to look unsymmetrical and complicates their
solutions.

The unitarity equations relate the four partial-
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ii~(s)e"6&"=1+ iA~(s), (2 3)

where q is the inelasticity parameter and 5 the
phase shift. Further, since the unitarity equations
are diagonal in s and J, the dependence of the
various partial-wave amplitudes on these two quan-
tities will be suppressed. Also, rather than deal-
ing with A«„„,(s, s,",s,'), the connected 3-3 par-
tial-wave amplitude, it is useful to introduce the
total 3 - 3 partial-wave amplitude,

St»iit(s& s& 1 s|I}= el(s&)5 riiiirl5 (s s )

3

» "N'(ss t I sq}
j=1

+ zA»6 s (s& s& & s&) &
(2.4)

which is the sum of all disconnected and the con-
nected 3-3 partial-wave amplitudes. The one-
line and totally disconnected 3-3 partial-wave
amplitudes are discussed in Appendix A of paper
II, where, in particular, it is shown that the one-
line disconnected partial-wave amplitudes
'A»„„,(s, s,",s,'} (j stands for that particle not in-
teracting with the other two particles) satisfy elas-
tic unitarity. J(s,) is a Jacobian factor depending
on the choice made of the subenergies s,'.

Finally, regarding all quantities as depending on
the basis jM, s,j, it is possible to write the uni-
tarity equations as

qe' A~
B S

(q
"' a~)

wave amplitudes given in (2.1) in a way that is
made most clear by treating A»„„,(s, s,",s,') as
an operator acting on functions that are elements
of the Hilbert space

+J
3c: ii f, (s)ll'= 5 d's, l f«(s, s,)l'&" (2 2}

Af =-J'

The measure over the subenergies depends on the
choice made for the subenergies; but whatever the
choice the integration is over the Dalitz region.
The partial-wave amplitudes, Eqs. (l.lb) and

(l.lc), are elements of K; elements, as will be
shown, of length less than or equal to unity. It is
useful to rewrite the 2-2 partial-wave amplitude
as

I =SSt +BB~,

I =S S+AA~,

(2.5e)

(2.5f)

where A is the 2-3 partial-wave amplitude and B
the 3- 2 partial-wave amplitude.

The matrices in Eq. (2.5) are written in analogy
with the actual infinite dimensional "matrices, "
as discussed in Appendix B of paper II. From Eq.
(2.5a) and (2.5b) it is clear that

II All =li&li» I, (2.8)

so that all 2-3 partial-wave amplitudes are less
than or equal to unity. Further, in the simple case
being discussed in this paper, in which there is
only one 2-2 channel, BB~ and AA t are rank-one
operators and, as shown in paper II, by writing
Eqs. (2.5e) and (2.5f) as

I -S~S=AA~,

I -SS' =BB~,

(2.7a)

(2.7b)

(1 —x~)A = A(A, A),

(1 —x, )B=B(B,B).
(2.8a)

(2.8b)

Operating on Eqs. (2.8a) and (2.8b) from the left
with A and B, respectively, then gives

I —x~ =llA IP, (2.9a)

(2.9b)

But from Eqs. (2.5a) and (2.5b) we see that

xA xB 0
2 (2.10)

Hence the unique eigenvalues of S~S and SS~ are
both q2, the 2-2 inelasticity parameter. As
shown in paper II, however, the unitarity equa-
tions as expressed by Eq. (2.5) will not enable one
to compute the 2-2 phase shift 5.

It can also be seen that the two remaining uni-
tarity equations, Eqs. (2.5c) and (2.5d}, are com-
patible with Eqs. (2.5e) and (2.5f) by writing

it is seen that A is the one unique eigenvector as-
sociated with the Hermitian operator S~S while B
is the one unique eigenvector associated with the
Hermitian operator SS~. Further, the real eigen-
values x„and x~, associated with S S and SS, re-
spectively, can be obtained by multiplying Eqs.
(2.7a) and (2.7b) by the appropriate unit-length
eigenvectors:

s~s =ssf =s:

& =q" ll A ll',

& =q'+llBll',

0 =SA +qe-"'B,
0 =StB+qe ' A

(2.5a}

(2.5b)

(2.5c)

(2.5d)

SA =-qe ' B
S~SA = -qe ' S~B

~&-ai6( i}&2i6)A

S SA =qA,
in agreement with Eq. (2.8a) and (2.8b).

(2.11)
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[S,St] =BBt —AA t, (2.12)

If Eq. (2.5f) is subtracted from (2.5e), there re-
sults

shift operator. To understand the meaning of these
terms (discussed in Chaps. III and V of Ref. 4),
consider the Hilbert space L' of square integrable
functions on the circle

so that S is normal if and only if B equals A up to
an over-all phase. This situation was discussed in
paper II where use was also made of time-rever-
sal invariance, so that B = A*. The goal of this
paper is to discuss the case when S is not normal. f = Q a„e'"'.

(3.3)

III. THE CHARACTERISTIC OPERATOR FUNCTION

D, =(I -StS}'~'

Det =(I -SSt)" (3.1)

and see that, by virtue of Eqs. (2.5e) and (2.5f),
D~ and D~t are both of rank one:

Since q & 1 and g' is the unique eigenvalue of
S tS and SSt, all other eigenvalues being unity, it
is clear that S is a contraction, i.e., [[Sf ))

~
)[ f )[

for all f~ X. In such a situation it is possible to
make use of the structure of non-normal operators
given by Sz.-Nagy and Foias in Ref. 4, and in par-
ticular, to make use of their Theorem 3.2 (p. 9),
which says that every contraction S can be unique-
ly decomposed into the direct sum of a unitary and
completely nonunitary operator; more precisely,
there exists a direct sum decomposition of X into
X„and XcN„, so that S acting on X„is unitary and
on KcNu completely nonunitary. (A contraction S
is completely nonunitary if there is no invariant
subspace of X with the property that S restricted
to it is unitary —Ref. 4, p. 8.) But it is clear that
only the completely nonunitary part of S is of in-
terest here, for only in the subspace XcNU can
there be nonzero 2-3 partial-wave amplitudes.
If S were unitary, by Eqs. (2.5e) and (2.5f), II A II

=()B()=0 and t}=1. We will thus assume that S is
completely nonunitary and X = XcNU.

Now, since S is a contraction, it is possible to
define defect operators (Ref. 4, p. 6),

Here a„are the Fourier coefficients of f and sat-
isfy

II f IP = Q I a. I' & (3.4)

Now consider the (Hardy) space of functions

fe L' with the property that the corresponding
Fourier coefficients vanish for negative index:

(fH L')a„=0, n& 0). Then it is possible to write

f = Qa„e'"~
n=p

(3 5)

and think of such functions as being boundary val-
ues of functions analytic on the unit disk

f(z) = Q a„z", lz[~ 1.
n=p

(3.6)

Such functions form the Hardy space H'; and on
this space it is possible to define the unilateral
shift operator ("raising" operator) U, as multi-
plication by z:

(U, f)(z) =zf(z), f+H'

(U, f)(z) = z*[f(z) —f(0)] .
(3.7)

Qnce the unitary map carrying X to a subspace
lg of H' is given, it can be shown that the image
of S in 9K is just the unilateral shift operator U+.

To see this, define a subspace Bg of Il' that is
left invariant by U, . Then it can be shown (Ref. 4,
p. 198ff) that there exists a unique inner function

e(ze)EH [inner means (ee(z))=1, )z)=1 almost
everywhere, and ee E-H" (Ref. 4, p. 101)], with
the property that it generates 31I:

D =AA~

D t =BB~.
(3.2a)

(3.2b)
3}I=e, (zg'.

Qn the orthogonal complement

(3.8)

In a succeeding paper it will be shown that the
dimension of the defect spaces, dime)~ =—dimD~X
and dimQ~p

—= dimD~fX, is determined by the num-
ber of 2-2 channels that are open at the energy
vs and by the intrinsic spin of the reacting parti-
cles. Since we are considering spinless particles
and one 2 —2 channel only, dim%)~ =dimS~p =1.

What we now wish to show is that on an appro-
priately chosen subspace of a Hardy space, the
operator $ can always be realized as multiplica-
tion by a complex number z, i.e., it is a unilateral

3}I =H'-e, (z)H', (3.9)

6 (z) =-S +zD t(I —zSt) 'D (3.10)

It carries Q~, the space spanned by A, into +~p,
the space spanned by B. This operator takes any

and S is realized by U, .
Before discussing the canonical form of ez(z),

we wish to show how it is connected with the oper-
ator S. Define the oPetatot ee(z) acting in 3C as
(Ref. 4, p. 23Vff)
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element in Gs and sends it into an element in Ssg,
as can be seen by the following sequence of opera-
tions:

(1) Dz sends 5)z into K)z.
(2) (I -zSt) '~z is somewhere in 3C, depending

on S.
(3) Dzg projects (I -zS~) 'Xiz into the subspace

Ss

(3.17)

each factor being the conformal map of the disk
onto itself. The set {a„}generating the zeros of
the Blaschke product are the discrete eigenvalues
of S and satisfy Q,(1 -Ia, I ) &~. The continuous
eigenvalues are given by the singular function

Since SA ~B, we see that indeed 8z (z} is an opera-
tor-valued function of z. Reference 4, p. 7 shows
that

2w it
s(*)=exp(- „*dye,

e "-z (3.18)

SDs =Ds

DsSt =S~Ds
(3.11)

holds for all contractions S; from Eq. (2.11) it
follows that

S(I-S S) =(I-SS )S

SPA ~ =BB~S
(3.12)

which, when multiplied to the right by A. , gives

II A II'SA =B(B,SA) (3.13)

or

SB~A . (3.14)

Thus, in a sense, the unitarity equations (2.5c)
and (2.5d) follow from (2.5e) and (2.5f). The main
information contained in Eqs. (2.5c) and (2.5d) is
that the proportionality factor in Eq. (3.14) is

Now the operator 8z(z) defined by Eq. (3.10) can
be regarded as a function in H2 and in fact is the
function defining the subspace 3g (and hence % ).
8z(z) is called the characteristic operator func-
tion, and knowledge of it completely specifies the
operator S and the eigenvectors A and B.

That is, once 8z(z) is known, and the map from
30 to 9R' given, the unitarity Eqs. (2.5) are auto-
matically satisfied, and in ', S is realized by
U, . Further, as can be seen from Eq. (3.10),
8z(0}=-S, so that

I6z(0)l =q. (3.15)

At this point one might well ask about the useful-
ness of 6z(z), for if S, A, and B are known, there
is not much sense in computing 8z(z). But if dy-
namical equations for S, A, and B are not known,
then 6z (z) can be a starting point for computing
S, A. , and B, for, as shown in Ref. 4, 6z(z) has a
canonical form,

(3.16)

where p is a finite non-negative measure, singular
with respect to Lebesgue measure (Ref. 4, p. 101).

In succeeding papers we will show several ways
in which such a canonical decomposition can be
used. First it will be shown that the zeros of the
Blaschke product can be used to generate a com-
plete biorthogonal set of functions which are super-
positions of Breit-signer resonance functions. '
Second, one can attempt to regard the breakup of
Gz(z) into two factors as corresponding to the
breakup of S into a part generating resonances and
a part generating a background. And finally, by
defining the notion of crossing for multiparticle
processes, an attempt will be made to formulate
equations for Bz(z), the solutions of which will
predict the form of A and B.

The problem of finding the unitary map between
3R' and 3e can be obtained once 8z (z) is known.
This subject is dealt with in the paper by Ahern
and Clark. e %'hat remains to be done in this paper
is to compute the eigenvectors A and B as functions
in 9R', for A and B correspond to quantities that
can now be checked experimentally, in contrast to
S, which involves three-particle scattering ex-
periments. Before dealing with this subject, how-
ever, we give a simple (nonphysical) example.

IV. A SIMPLE EXAMPLE

When S is a finite-dimensional matrix, 8z (z)
consists of a finite Blaschke product only. Consid-
er as an example S, an N&N matrix, of the form

(4 1)

-ge" 0 ~ - ~ 0

where B(z) is a Blaschke product, of the form where U is an (N —1)x (N —1) unitary matrix. Then
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the square of the defect operator is (3.10), we get that

I-S S=I—

2 pe ~ op

0

8» (z)A = -SA +zDzt(I —zS t) D»A

=qe "B+zD»t(I -zSt) 'A. [)A ))

=ye ' B+z(BBt)' (I —zst)A )[A )P

=ye " B+[/A [PzB(B, (I —zSt) 'A)

=[ye"~+z(1 -q')(B, (I zS-'t) 'A)]B,

1-q 0 ~ ~ ~ 0 (4 5)

so that, as a function inH',

8» (z)
' fez' +z (1 —qz) (e», (I —zS t) 'e, ) . (4.6}

Now

(4.2)

so that A is proportional to e„of length (1 -q')'".
Similarly,

0

(I -zS') -' = Z z"(S')",
n=0

so that we must compute (St)"e,; with the simple
form chosen for U, this gives

N-l
(e„,(I-zS } 'e, )= 1-z qe

I -SS~ =IN—

=BBt,

0 ~ ~ 0 1-q

(4 3)

x exp -z 5j

-2i6 + N -tg+i 6N
8 ()-

(4 7)

N

j=1

(4.4)

l/N (i]N ) b, (2 ffik)/N
a

—
f j ~ ~ ~

and we wish to connect these eigenvalues with the
Blaschke zeros of Eq. (3.17}. Now, from Eq.

so that B is proportional to eN, the unit vector in
direction ¹ Also, it is clear that S is non-normal
and cannot be brought to diagonal form by a u'ni-

tary transformation. To have A and B pointing in
arbitrary directions, it is merely necessary to
consider a "rotated" S of the form U&SU„, where
U~ is unitary, transforming A = e, into a new vec-
tor U&A, and U& is unitary, transforming B into
UgB'.

In order to find the characteristic operator func-
tion 8» (z), it is necessary to compute (I -zSt} '
according to Eq. (3.10). Since this is in general
difficult to compute, we will consider only the
simple case when U is diagonal, consisting of
N —1 phases, 5l 52 6N l with 5N 7T 25 The
eigenvalues of S are of the form

N

X»=@exp i Q 5,
j=1

=pe'~,

Comparing this with the Blaschke product, Eq.
(3.17), shows that

N

g (1-a„*z)=1-z"qe '
]s-1

(4.8)

V. COMPUTATION OF A FROM O~(z)

We now wish to show how one can compute A,
given 8» (z). It would, of course, be possible to
realize S as U, on 3Q, make use of the unitary
map from 3R' togs, and they solve the eigenvector
problem for StS to obtain A; but it is clear that it
will be much easier to carry out all the calcula-
tions in 3g, and then transform toX.

Now, as shown in Ref. 6, the unitary map V be-
tween 5R~ and H is known once 6» (z) is given.
Since Vis unitary, theunitarity equations in 3tt~

so that indeed aN =AN =q""e " ~'", with all the
other zeros differing by the various roots of unity.

Had we started with a characteristic operator
function of the form given in Eq. (4.7), one would
be able to compute q =)6z(0) (

and get A and B, in
a manner to be discussed in Sec. V. Notice that 5,
the phase shift, is lost in the over-all phase 4, as
are all the other phases 5„5„.. . , 5N, . This re-
flects the fact that the over-all phases multiplying
the unit vectors e, and eN are not uniquely speci-
fied, and hence cannot be computed from 8» (z).
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will be of the same form as in+, given by Eq.
(2.5). If all quantities in 5g are denoted by tildes,
Eq. (2.5f) in 5K' becomes

I.~& -S tS = A A t
y

(5.1)

when I~i is the identity operator in m'. Once A

is found from Eq. (5.1), A can be computed as VA,

for its length (1 -q')'" is the same in both spaces.
But S is realized as the unilateral shift in gg';

if an element of H' is not in gg', it must be pro-
jected into 3p so that

3 =P,~& U, P.~~

= Px&&Px& y (5.2)

where P~~ is the projection operator from H2 to
X

Since [z~) forms a complete orthogonal set in H'
and %~ is contained in H', Eq. (5.1) can be written

(I~i S tS—)P~iz = A (A, P ~&z ),
(P,~j- —P,~~U, P,~~U, P~i)z =A(A, z ),

(5.3)

or

A ~ (P~i —P~~U, Pm~U, P~j.)z

~[P,~ i —P~~U+(Pzz —Pm)U+ Pm ~]z

~(P~i P~iU+U+-P~i+PziU+PzU+P, &i)z

~ (P ~~U, P~U+ P~~)z

o- (P.~ ~z*P ,„zP~ j.)z. (5.4)

P.Ir( —es P~26~+ y (5.5)

where 6* is the adjoint of the characteristic oper-
ator function and P~2 is the projection operator in-
to H'. It is needed because in general es takes an
element fe H' out of H' (i.e., into L') ThatP~.
is a projection can be seen by setting f =Bzg,
fH 5g, gH H, and writing

Pmf =Bs PzzBsf

=esPH26s es g
=esPa2g

=e, g

=f. (5.6)

Since es~ takes elements of H' out of H', it is
useful to have an expression for P~2 that does not
depend on a power-series expansion. This is ob-
tained by a Hilbert transform'

where k is chosen so that (A, z')+0. It is thus seen
that the form of P~ (or Pv, i) is needed. Now P
can be written as

(P„zf)(8) =P Jl d8'cot(-,'(8- 8'))f(8)

=g(8), fE L', g e H'. (5.7)

For a given characteristic operator function

Bz(z), P~ (and thus P~~) can be computed from
Eqs. (5.5) and (5.7). Written out explicitly, A be-
comes

A ~ [(Pzm —P~)z*P~z(Pzz Pm)] z

~[(Pzz -Bz Pz&z)zWz PzmBzz

x (P; —B,P„.B,*)]z', (5 5)

and this gives the "direction" of A, while its mag-
nitude is (I -q')'".

VI. CONCLUSION

It has been shown that when S, the total 3-3
partial-wave amplitude, is non-normal it is com-
pletely characterized by its characteristic ppera-
tor function; and knowledge of the characteristic
operator function also fixes q, the inelasticity
parameter and the 2- 3 partial-wave amplitude.
Thus the characteristic operator function may be
seen as expressing the content of the unitarity
equations.

The question then arises as to how one might cal-
culate characteristic operator functions. In a well-
defined theory such as nonrelativistic potential
scattering it should be possible to compute the
characteristic operator function using the Schro-
dinger equation. This would hopefully allow one to
get a feel for the kinds of characteristic operator
functions of physical interest. Work along these
lines is in progress, but it should be clear that
knowledge of the characteristic operator function
involves less information than that contained in the
Schrodinger equation, for it seems as though the
2- 2 phase shift can never be obtained from the
characteristic operator function. This result
seems quite strange, for one usually thinks of the
phase shift as locked in with the other relevant
parameters, such as inelasticity parameters and
production amplitudes.

On the other hand, if the characteristic opera-
tor function is seen as a starting point and not
derived from more basic equations, then it is
necessary to formulate equations for the charac-
teristic operator functions. A natural choice here
involves crossing, since one already has a great
deal of analytic control on the functions, and this
possibility will be discussed in a succeeding
paper. But here too a difficulty arises, along with
that associated with the inability to calculate phase
shifts: Since the unitarity equations have their
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simplest form in terms of partial-wave ampli-
tudes, they are necessarily diagonal in energy and
angular momentum. To generate amplitudes,
more is necessary than just equations generating
characteristic operator functions. It is also
necessary to provide relations between different
energies and angular momenta.

Finally, it should be pointed out that if S cannot
be exponentiated, its spectrum must cover the
boundary of the disk. Now in potential scattering
it certainly is possible to exclude three-body
forces. It will be interesting to see if indeed $
cannot be exponentiated and its spectrum covers
the boundary of the disk.
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APPENDIX: PROOF THAT IF S IS NORMAL AND THERE
EXIST TWO-BODY FORCES ONLY, THEN THE

PRODUCTION AMPLITUDES ARE ZERO

In paper II use was made of the fact that if S is
normal, it can be brought to diagonal form, and in
that diagonal form one of the eigenvalues is com-
plex, the magnitude of that eigenvalue being the
inelasticity parameter of the 2-2 reaction. What
we wish to show is that if the forces generating S
are two-body forces only, then S must necessarily
be unitary (i.e., the defect operator is of rank
zero) meaning that A is zero so that there is no
particle production. Actually, what will be proved
is somewhat weaker in that we will assume that S
can be exponentiated, so that

e3H
y (A1)

S = I + iH + &(iH)2+ ~ ~ ~, (A2)

and identify the first term (I}with the totally dis-
connected partial-wave amplitude discussed in

where H is an operator to be determined. If S is
normal, it can be exponentiated only if its in-
verse exists, which means that $ can have no zero
eigenvalues [since the spectrum of S is defined as
the complement of those values of A. for which
(S —A.I) ' exists]. But the only possible zero eigen-
value that is allowed by the unitarity equations
occurs for g =0, in which case the energy and an-
gular momentum dependence of A~(s), the 2-2
partial-wave amplitude, is trivial. Qnly when
q =0 can the (normal) operator S not be exponen-
tiated.

Now for g 0 it is possible to write out the ex-
ponential in (Al) so that

(A3}

as discussed in Appendix A of paper II, Eq. (A2ff).
For H of the form given in Eq. (A3), S of (A2)

then consists of disconnected terms only, and is
of the form

S«„s,(s, s,", s+) = I«~,s,(, +', s,')

+I A » «(SuS&S+&S&)& (A4)

where 'A«„„,(s, s," ~ s,'} is given by Eq. (A3) ex-
cept that the unknown functions f, (s,) are replaced
by the physical 2-2 phase shifts. Since these
phase shifts occur in a one-line disconnected
graph, they are evaluated below the three-body
threshold in which region the inelasticity parame-
ters are unity. But since the phase shifts are tru-
ly phases and since iH is the exponential of $, the
unknown f, (s,) must be real, making the operator
H Hermitian. But if H is Hermitian, its spectrum
is real, meaning that S is unitary.

It can be seen from (A3) that H Hermitian is
nearly in diagonal form and has "eigenvalues" (up
to a Jacobian factor) given by f,(s,). This again.
shows that if f,(s,) is real, then H is Hermitian
and S is unitary.

Now consider H to be a sum of three one-line
disconnected terms; then for any power of H, say
H", the various terms occurring can be broken up
into disconnected terms, of which there will be
three types, and the remaining connected terms,
consisting of products of the different one-line dis-
connected graphs. When all the powers in H are
considered in Eq. (A2), there results the usual
breakup of S into

Appendix A, Eq. (Al) of paper Il.
The crucial part of the argument centers about

the form of H occurring as the next term in the
expansion. If there are two-body forces only,
thenH must be of the form of one-line discon-
nected partial-wave amplitudes, where, however,
the phase shifts corresponding to the 2-2 scat-
tering below three-body threshold are replaced by
unknown functions f, (s,}, corresponding to "primi-
tive" forces, which, when suitably summed, will
give the actual phase shifts. The index j will still
correspond to the angular momentum of system k
(where & = 1 means 2 and 3 are interacting, etc.)
and s, is the appropriate subenergy.

In particular, if H were to consist of only one
such one-line disconnected term, it would be of
the form

H ~ (s, s,",s,') =4wg Y, ,(8",0)Y, , (8', 0)
J

x f,.(s,') 5(s,"—s,')5s „s, ,
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S = I + i Q "A + iA, ,
k=1

(A5)

that is the sum of totally disconnected, one-line
disconnected, and totally connected contributions.
Now, however, the various one-line disconnected
partial-wave amplitudes will be of the more com-
plicated form given by Eq. (A4) of paper II; again,
however, since A, (s,) is the partial-wave ampli-
tude of a physical process occurring below the
three-body threshold, two-body unitarity dictates
that A,.(s„) contain a phase shift only (i.e., the in-
elasticity parameter is unity) which again means
that all the functions f,(s,) are real.

But if f, (s,) replaces A, (s,) in Eq. (A4) of paper
II, then II, as the sum of one-line disconnected
"primitive two-body forces" is still Hermitian and

hence S is unitary. But if S is unitary, then the
2-3 partial-wave amplitudes must be zero.

Qnly two ingredients have been used to arrive at
this result. First, the assumption that lnS exist
and, second, that the meaning of a two-body force
can be expressed by the notion of primitive dia-
grams, in which only two of the three particles in-
teract. When these primitive diagrams are
summed to give H, there always will be the con-
nection between the disconnected one-line partial-
wave amplitudes satisfying two-particle unitarity
and those terms occurring in e' which are one-
line disconnected; this connection always will have
as a consequence that II is Hermitian. Thus, if S
can be exponentiated, then there must be genuine
three-body forces in order to have particle pro-
duction.
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