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The nonrelativistic theory of a meson field interacting with a heavy source is treated in a self-consistent

field approximation. The energy is obtained and compared with the static model. The rnesonic contribution

to the mass is computed. Subtraction of the center-of-mass kinetic energy gives an improved value for the

energy of the system. Excitations of the system and meson scattering are discussed briefly.

I. INTRODUCTION

A self-consistent approximation for treating me-
son-field interactions has been proposed and ap-
plied to the cases of a system of fermions inter-
acting via virtual-meson exchange' and a meson
field interacting with a static source. ' This paper
is devoted to the same approximation in the case
of a meson field interacting with a massive fermi-
on. The idea is to use as far as possible the re-
sults of static-source theory, where the approxi-
mate solution describes a static meson field
around the source. If the source is allowed to
move slightly, then its wave function must satisfy
the Schrbdinger equation in the potential due to the
static meson field. The result is very similar to
the solution of the polaron problem. ' There is
some resemblance to the work of Krass, 4 but his
solution is limited by his use of an older version
of strong-coupling theory to treat the meson field.

The Hamiltonian for the case of a scalar field
interacting with a nonrelativistic fermion field is

H =H~+H +H, ,

g2
H~ = Pt(x) F., — g(x)d'x,

r
H„= &u(k)at(k)a(k)d'k,

H, =-g Jtg (x)tiI(x)q(x) d'x,

y(x) =
J,

e-„(x)[a(k)+at(-k)]d'k,

e-„(x) = e' "' "/[16m'~(k)]'",

~(k) = (k' + m ')'"

tor for the fermion variables.
As in the nuclear shell model, the vectors in the

variational space do not have simple properties
under translation. Each vector is a superposition
of components with momenta spanning the whole

range -~ to +~. Since only the expectation value
of the total momentum is capable of being given a
designated value, it is clear that a Lagrange-mul-
tiplier technique is applicable, and Sec. III shows
how this technique can be used to determine the
mass of the self-consistent ground state. The re-
sult is that the mass is equal to the fermion mass
M plus a positive mesonic contribution; the formu-
la has also been given by Gross. '

The derivation of the equation for the mass uti-
lizes the fact that in nonrelativistic field theory
the mass has nothing to do with the rest energy,
but is only related to the kinetic energy; it is the
constant relating T, the kinetic energy, and the
square of the momentum P. In relativistic theory
this "kinetic" mass that relates T and P' is re-
quired to be equal to the rest energy of the state.
From the results of the present paper, it may be
that the kinetic mass can be calculated in a rela-
tivistic theory by the techniques used here, at
least for theories with strong coupling. Since the
rest mass contains an adjustable renormalization,
it can be set equal to the kinetic mass. In this
sense, the kinetic mass is a more physical quan-
tity to compute.

Section IV contains a description of the excita-
tion spectrum of the one-fermion system, both for
the case of a neutral scalar meson field and for
the case of an isovector meson field. The scatter-
ing of mesons by fermions is considered briefly in
Sec. V.

with the usual field-operator commutation rela-
tions for P, P~, a, a . Section II gives the details of
the self-consistent field approximation, which con-
sists in essence of minimizing the expectation val-
ue of H over the subspace of states that are prod-
ucts of a factor for the meson variables and a fac-

II. DETAILS

As in I and II, let the state vector be of the form
~g) ~F), where ~g) depends on the meson field,
~F) on the fermion field. Then
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(FIB(l~& «=) "rl~& ~ J (2)&'("2(2)d'1

(d k dk d3k,

g2
+V(x) f(x)=Sf(x),

-ml x -yl()=- - - ()',
b(k) = a(k) +d(k),

g( ) —
[16 3 3(k)])f2 P( ) r

p(k)= Ie '"'"p(x)d'x,

p(x) =(F
I 0'(x)4(x) IF &.

It follows that Ig) is the vacuum of the b(k) mesons,

b(k)Ig) =0 for silk. (3)

As in I, the state
I
F & is given by

which can be solved self-consistently. If z is the
lowest eigenvalue of -V'/2M+ V(x), then IF) Ig)
is the lowest state of the system in this approxi-
mation, but other solutions of (11)are possible
and correspond to excited states. The approxi-
mate energy of the state i is given by

E3+y'MF, (m/yM) =E, +e;+—,
'

J
p;(x)V;(x) d3x

=E, +e; — ((L) k d; k 2d'k.

IF)=c io)

where IO) is the fermion vacuum and

c=
J

f*(x)g(x)d3x.

(4)

(5)

Figure 1 shows F,(m/yM) as calculated by solving
Eq. (11)numerically for the lowest state.

It is worth noting that the state Ig) corresponds
to the presence of a static meson field around the
source p(x). The static field y(x) is given by

The fermion wave function f(x) is the normalized
function that minimizes x(x) =&g Ic'(x) I g& (13)

-mI X -y I

) p(x) p(y) d'yd'x,
Ix -y I

y= g2/4v,

p(x) =
I f (x) I'.

(6)

It follows easily that

y]
X(")=g

I -yl p(y)d y (14)

H =E-&H&sM Eo (2)2JI 2(g)
d" ~ (15)

The correspondence with the results of the stat-
ic model starts with the static-model formula

A dimensionless form is obtained by the substitu-
tion

x= g/yM,

f(x) =(yM)"'k(5),

p(x) = (yM)'o(( )

which gives

If p(k) is taken to be the p(k) determined in the
self-consistent approximation, it is easy to see
that

d3k =-', p(x)V(x)d3x,y " I P(k)]',
~'k

-0.02

Clearly, the minimum of (H& satisfies

H —= min„&H) =E3+y'MF(m/yM).

(6)

-0.04

F(0) = -0.054. (10)

The case m/yM=0 is known from the study of the
polaron; it was shown by Pekar' that

-0.06 I

0.05
I

o.lo

y'M

I

O. l5 0.20

More generally, f(x) satisfies the equations FIG. 1. The function Fo(m/pM) deflIled in Eq (12).
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so that the energy in the static model is just the
potential energy of the self-consistent approxima-
tion, assuming that the self-consistent density
function is used. In the limit m/yM-0 it is pos-
sible to prove a virial theorem' by using standard
techniques. The result is

2
lim f(x) — f(x)d'x+-,' p(x)V(x)d'x =0,

m/g N~O- 2M

(17)

so that in this case the potential-energy contribu-
tion to (H) —E, is -0.109y'M for both the static
model and the self-consistent approximation,
while the kinetic energy in the self-consistent ap-
proximation is +0.054y~M. Clearly, as m/yM
increases from zero, the magnitude of the ratio
of kinetic to potential energy increases.

III. TRANSLATION

The momentum operator for the system is

POP POP +POPf m

so that the condition for the minimum is

(21)K=M*p. .
The value of p. must be chosen to make the expec-
tation of P'P equal to the chosen value P, namely,

P =(P'~& =K, (22)

where the last part refers to the set, IE„K&. For
p. =0, it is clear that the variational principle of
the preceding section is obtained. For p, c 0, it
follows that p, (P) is to be determined by solving

(P'~& =P (23)

for p. , where the left-hand side is a function of p, .
Then M * is given by (21), and hence

(28)

(24)
u-o

where the p. -0 limit avoids P', etc. , terms.
There is an additional benefit here in that, if

I E; ) is not an exact eigenstate of H and P'~, it will
have a nonzero expectation of (P'~)'; let

((P")')-=(E,, 0l(P' ) IE„O&.

(18)

The approximate state vector considered in Sec. II
is not an eigenvector of P'P, but it does give zero
expectation value for P'P. This situation is simi-
lar to that encountered in nuclear physics, where
the shell-model wave function has the same prop-
erties with respect to translation. In both cases,
it is a superposition of states belonging to a spec-
trum of eigenvalues of P'P that has relatively sim-
ple properties and can be written in a simple form.

It is now necessary to determine the ground-
state energy E as a function of the expectation val-
ue of the momentum. Then the mass M* of the
system can be determined from

p2
E(P) =E,'+ ~ + ~,

Then

&«PI(P")'I«P&=(E Pl(P"-P)'l«P&+P'

= P'+((P")'&. (26)

+ &uk —p, ka~ kak d~k

The Lagrange-multiplier equations are unchanged,
but the approximate energy E0 can be improved by
subtracting ((P'~)')/2M*, the expectation value of
the kinetic energy of the center of mass in the ap-
proximate state.

The self-consistent approximation can be applied
toH- p. P'P,

2
& —II P' = ll' ( ) z — ~ 'tl v)((x)d'*2M

where P is written for (P"). The lack of eigen-
states of P'P makes it clear that a Lagrange-mul-
tiplier method is called for here, with the follow-
ing mode of operation. If it is desired to select
from the set of states IE;, K), with E; fixed and
K taking all values, the particular state

I E;, P &

variationally, where P is a particular value of the
momentum, this can be done by minimizing the
expectation value not of H, but rather of H —p. ~ P'P,
where p is a vector Lagrange multiplier. Over
the set IE;, K) it follows that

K
(H —p ~ K& =E + —p K.2M* (20)

-g g x(rt)xpx 4 x.

The equations to be solved are

+ Ip .V + V-„(x) f -„(x)= e-„f-„(x),

V-„(x) = -g X-„(x)

-fftl x -yl
p-„(y) d'y,

p-, (y) = If-, (y)l'

where again

(27)

(28)
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k-„(k) =a(k) +d-„(k),

[16)f'(o(k)]"'[(u(k) —P k]

(29)
This last integral in configuration space is most
convenient for numerical evaluation. The substi-
tutions

Now let

(30}

k=yMK,

(d)(k} = yM v (K},

v(K) =[SR+(m/yM)']' f2

in (36) give

(39)

(P' )-„=
Jt f~(x} —. V f(x}d'x+

J
k[d-„(k})'d'k.

1

(32}

For small values of p, it follows from (29) that

d-„(k) =d, (k) (
1 ~ ), (33)

so that with (30), as p, -0,

Since there is no direction-dependent interaction
of the meson field with its source, p-„must be of
the form

p-„(x) = p.(x)+ p'p, (x)+ (31)

that is, there are no linear terms in p, . Similarly,
V-„and g-„do not have terms linear in p, .

Now

M*
= 1+y '3R(m /yM),

3g(m/yM) =, — d'K .
67f v4(K)

(40)

The function 3g(m/yM) has been computed by using
(38) and is shown in Fig. 2.

It is clear that the mesonic contribution to M*
—M is positive. The form of (36) also indicates
that in a theory with charged mesons the mesonic
mass will be positive since, as was shown in I,
the results for charged and neutral mesons differ
mainly in the presence of a Lagrange multiplier
in the charged case.

Now that M* is available from (40), the center-
of-mass kinetic energy can be evaluated. For the
approximate state vector ~g& ~F&, it is clear that
&P "& =&Pf' & =0, so that

(p)-„-
J

f-„'M p, f-'„d'x &(P"}'&=&(Pf")'&+&(P.")'&

In the usual way it follows that

(41}

and hence

+ k dok 2 1+ d3k,

" k'
I do(k) I'
(d(%)

(34)

(36)

(pp )'
+ Z Vx

p()P 2

(H) —E, =(F ~ F)+—', (F(F(E)(F),

(F
~
(PP)' ~F) = 2M[2 &H& —2E, —e].

This formula has been derived by Gross' in a dif-
ferent way. In the present case, it follows that

The expectation value of (P'~)' is easily calculated:

and since

y k Ip, (k) I'd,
6)f ' (d'(k) (36)

0.08

0.06
(-V'+ m') V(x) = -g'p(x),

.P.(k)
'2(k)

—V(k) )

it is easily seen that

M *—M =—,V(x)V' V(x) d 'x
Sg

(37)

0.02

V')( x 2d3x

m2
F( ) Ft ) ~ .F(*))d' (38)

0,05 O. I 0

yM

O. I 5 0.20

FIG. 2. The function K(m/yM) defined in Eq. (40).
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(g((P'„')'(g) = fk*(d(l') (' d'k

y O'
I p(k) I' &,

4v 2 (k)'(k)

Op
ysl6, 2s

-0.02

y M' "k Ip(K}l
4v '

& (k'(K)

Clearly

((P'~)') = y'M'F (m/yM),

((7'~)') = y'M2F, .(m/yM) .

(43)

(44)

E
-0.06

y M

The center-of-mass energy is not reducible to a
function of m/yM. Figure 3 shows the center-of-
mass energy divided by y'M as a function of
m/yM for various values of y. The total energy
obtained by subtracting E, from (H) is shown
in Fig. 4, with E, taken to be zero.

IV. EXCITATIONS

-o.oe

-0.10

-0. 12 I

0.05
I

0.10

m

yM

0.15 0.20

For the case of a scalar-meson field, the ex-
cited states of the system occur when the function

f (x} in Eqs. (11) is taken to belong to an eigenvalue
6 higher than the lowest one. These fermion ex-
citations can be calculated from the self-consis-
tent field Eqs. (11); if it seems desirable, addition-
al Lagrange multipliers can be used to ensure or-
thogonality of an excited state to all lower states.
The static meson field in one of these states with
fermion excitation is not very different from that
in the lowest state, so that orthogonality of the
states comes essentially from orthogonality of the
fermion wave functions f(x).

When the meson field is charged, it has long
been known that in the static-source limit with
strong coupling there are excited states of the
meson cloud; the excitation energies of certain of
these states have been calculated. The self-con-

0.06--

FIG. 4. The total energy Ez in units of y2M for various
values of y. The curves labeled 2s are for the excited
2s state, the others for the ground state.

sistent-field method has also been used to treat
these mesonic excitations in the static-source lim-
it, and there is no difficulty in principle in extend-
ing the results of II to the case of a nonrelativistic
recoiling source. It seems likely that the spec-
trum of mesonic excitations for a recoiling source
is very similar to that for a static source. More-
over, it is to be expected that each state with only
fermion excitation forms the basis for a band of
states, each having the same fermion excitation
but with varying degrees of mesonic excitation.

Since, as was noted earlier, the ground-state
energy is of the order of -0.05y'M, the energy of
a fermion excitation may be expected to be of or-
der 0.02@'M. The energy of a mesonic excitation
is of order m/y for y&2. The ratio of spacing
within a band to spacing between band bases is of
order

0.04—
Ec.m,

y M
2

0.02— y*l6

0.05 0,10
m

yM

0.15

FIG. 3. The center-of-mass energy ((P &) )/2M+ jn
units of y2M plotted versus m/yM for various values
of y.

50m 50m
Xy'M y'M* M (45)

Because the fermion field is spread out and is
not a point source, the orthogonality difficulties
pointed out in II do not arise for a recoiling
source. The problems that do arise come from
nonorthogonality of approximate states whose ex-
act counterparts must be orthogonal. For exam-
ple, the approximate state that has a 2s fermion
with its self-consistent meson field is not orthog-
onal to the approximate ground state; the meson
parts Ig„) and ~g„) are quite similar, but they
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are different, so that V„(x}and V„(x) are differ-
ent and f„(x) and f„(x) are not orthogonal. As
noted above, extra Lagrange multipliers can be
used to ensure orthogonality, but this is a cumber-
some procedure. It seems better to accept the
fact that the exact eigenstates of H are orthogonal,
but that the self-consistent approximations to the
same states are not. The approximate states can-
not give good results for quantities that are sensi-
tive to the orthogonality properties of the eigen-
states.

V. MESON SCATTERING

of the eigenfunctions fo(x) of the operator -V'/2M
+ V,(x) of Eq. (11) and the residual meson field
rp(x) —yo(x) in terms of plane waves. Here the sub-
script (superscript} nought is used to indicate that
V, is calculated with po(x}, the fermion density in
the ground state s„and f';(x} is an eigenfunction
of an operator that depends on V,(x); similarly,
&to(x) is the static-meson field in the ground state
s, . It is clear that b(k), d(k}, etc , a. ll require
such subscripts. When the expansions are substi-
tuted into H, the result is

Ho =E —moo+ g coct(i)c,(i)

In the case of the scalar meson field, where
there are no mesonic excitations, the inelastic
scattering of mesons leading to final states with
fermion excitation is easily calculated in the Born
approximation. Consider the inelastic scattering
of a meson with momentum p off the ground state,
so with the final state consisting of a meson with
momentum q and fermion state sz,

5'&; =&q, s'"'Ip, s, ) (46)

It is relatively simple to constructH, andH, so
that

H H() +H~

ff,'Ip, s, ) =Zip, s, ), (47}

with E given by (12). This is achieved, as in I, by
expanding the fermion field operator g(x) in terms

+ ekbt k, k d'k,

(48}
H', =-gg d'k Co(&(k): co(j)co(i):bo(k)+H. c. ,

ij

lp so&. =bo'(p)c.'(0) lg. &,

I q, s~ &, = bz (q)cz (f ) I gz &,
(49)

where the subscript a denotes the self-consistent-
field approximation to the state in question. Now
the Born approximation to 7.

' is

C', , (k) =
J e, (*)f'; ( )d'(k)d'*,

with P, representing summation over discrete
and integration over continuum states. The oper-
ator co(i) annihilates a fermion in the state f, (x).

In terms of the 5 and c operators

Ty& = (q s)(IH (Ip so&

= -g g &g& I b&(q)bo(k)bo (p) I go & C(, (k) & 0
I c&(f):c, (j)co(i):co (0) I

0 ) d 'k
i, f

—g Q &gz lb&(q)boy(k)b, (p) lg, ) C,',*(k)(0lcz(f):c, (i)c,(j):c, (0) I0)d'k.
i,f

For the fermion matrix elements, it is easy to see that

(oIc&(f):c.'(j)c.(i):c."(o)Io& =(o Icy(f)c.'(j) Io&6; .

(50)

6 i 0 f X f X fe3e X ~ (51}

The meson matrix elements are

&gg lb'(q)b. (k)bo'(p) Igo& = &gy lb'(q) Igo& b(k —p)

= [df(q}-d.(q}]&gf lgo&5(k -p},
&g& Ib&(0)bo (k)b. (p) I g. &

= 6(k -q)[do (p) —dP(p)] &a& I g.&+ 5(q —p)[d.*(k) —d,*(k)]&g& I g.)

+[d~($) —do((|)] [do(p) —df(p)] [de(k) —dy*(k)] &gy lgo),

(d/ (d) = eP(--,' j Id(i) —d(k) I' d'k

Elastic scattering is a second-order process. It is best calculated in this case by using unitarity and
the inelastic T matrix to give a dispersion relation for the real part of the elastic T matrix.
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A possible theory of hadrons in terms of a massive-quark field theory is proposed. Some consequences

for deep-inelastic phenomena are worked out.

I ~ INTRODUCTION

The problematic aspects indicated by SLAC ex-
periments' and their scaling behavior have insis-
tently hinted at the relevance of a picture of had-
rons in terms of constituents, the most popular
ones being Feynman's partons. ' However, these
objects seem to have puzzling and disturbing char-
acteristics, such as their small mass and their
invisibility. '

Attempts to construct a quark field theory of the
hadrons have recently appeared in the literature,
most notably by the Cambridge school'; unfortu-
nately these approaches do not provide any answer
to the aforementioned problems. In fact they look
all the more unsatisfactory if one tries to think
about the alleged constituents of the hadrons in
realistic terms, and to use them to build up a co-
herent picture which explains the basic facts of
scaling without running into serious contradictions
with experiments.

A possible theory of hadrons in terms of a mas-
sive-quark field theory was proposed in 1969.'
The preliminary results of that study exhibited
some attractive features, but the details of the
particular model considered were somehow un-
realistic.

The motivation for looking at a field theory of
quarks is the standard set of arguments in favor
of the quark model (e.g. , SU„current algebra,
etc.), which suggest that the quark is a relevant
degree of freedom of hadronic matter. On the
other hand, the impressive list of negative results
in quark searches' requires the quarks, if they
exist at all as particles, to have a very large

mass [&25 GeV according to CERN Intersecting
Storage Rings (ISR) experiments"], or else the
forces have to be so singular as to prevent the
quarks from coming out of hadrons even though
they can be kinematically produced. ' We do not
think that the latter possibility is particularly ap-
pealing in view of the linearity of Regge trajecto-
ries. '

If we then subscribe to a massive-quark field
theory (one can eventually take the limit M, -~
and get rid of "real" quarks) we are led to con-
sider dynamical field-theoretical equations, such
as the Bethe-Salpeter (BS) equation, to describe
the binding of quarks to form physical particles. '
In order to solve a BS equation we need as an in-
put a BS kernel, and it is here that dynamics
creeps in in a crucial way. We feel, however,
that the dynamical situation in the case of super-
strong (in the limit infinite) binding may well be
considerably simpler than in the intermediate-
binding case. This fact appears to be suggested
by the regularities of the spectrum of hadrons,
the smallness of their widths as compared with
their masses, exchange degeneracy, linearity of
Regge trajectories, the nonexistence of exotic
states, etc.

Thus one can try to guess a simple form for the
kernel in the BS equation for the qq scattering am-
plitude which embodies these basic features, and
this was indeed taken up in Ref. 5.

From these attempts we are now going to ab-
stract some properties which, in our opinion,
should be at the basis of any realistic quark field
theory of hadronic matter.

(i) Hadronic wave functions. We can associate


