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Using a self-consistent electron-positron elastic scattering amplitude developed previously,
we present a cutoff-independent dispersion calculation of the two-body-intermediate-state
correction to the electron magnetic moment. The complete second-order (in n, the Gne-
structure constant) contribution to the anomalous part of the magnetic moment, K = 2 (g -2),
due to two-body exchange is It&2~ —z & ) = (-0.940)a /7( . The coefficient of the second-order
term has the proper sign but is considerably larger than the experimental value (-0.328).
The large difference between our result and the correct value indicates that many-body
effects may be as important as two-body exchange in dispersion calculations for electro-
dynamics. We conclude that the published cutoff dispersion-theoretic estimates of the
higher-order corrections to the electron magnetic moment based only on a consideration of
the two-body intermediate state are not likely to be correct.

Using a self-consistent electron-positron elastic
scattering amplitude developed previously, ' we
present a dispersion-theoretic calculation of the
two-body- intermediate- state contribution to the
electron anomalous magnetic moment. The result
is cutoff-independent and includes all second-order
(in n, the fine-structure constant} corrections due
to two-body exchange. This note, then, represents
a first step toward an exact dispersion calculation
of the anomalous magnetic moment of the electron
which does not refer to the usual perturbation
formalism. We note that there have been other at-
tempts toward a dispersion calculation of the elec-
tron magnetic moment. However, the most recent
of these have either relied on cutoffs to regulate
the behavior of the dispersion integrals" or they
have been dependent on an analysis of the discon-
tinuities of Feynman graphs to determine the nec-
essary absorptive parts. ' Also, the intent of Refs.
2-3 is not to attempt an exact calculation but to
achieve an estimate of the higher-order correc-
tions without the complexity of a full calculation.
In any case, the work presented here is completely
independent of the usual formulation of perturba-
tion theory and is free of arbitrary cutoffs. In-
stead, we employ the general formalism of ana-
lytic S-matrix theory. For example, in Ref. 1,
using a low-energy theorem, analyticity, and a
requirement of self-consistency, we were able to
construct a satisfactory second-order electron-
positron elastic scattering amplitude. In addition
to analyticity, cutoff independence, and self-con-
sistency, the amplitude exhibits Regge asymptotic
behavior and a f'.nite Jacob-Wick expansion. The
purpose of this note is to apply the results of Ref.
1 to a calculation of the electron magnetic moment.
Thus, in a sense, the calculation presented here
represents a continuation of our previous work.

At this point, one might question the necessity to
present a partial evaluation of the second-order
term, even though the approach is based on ana-
lytic S-matrix theory rather than the usual Feyn-
man-diagram techniques, since the perturbation
calculation of the third-order correction to the
electron magnetic moment is essentially complete. '
There are, in fact, several reasons why the anal-
ysis presented here should be of value. In the
first place, one of the principal reasons for doing
dispersion calculations in electrodynamics is to
test different methods on familiar problems for
which solutions are available and to determine
precisely what are the predictions of the new ap-
proach. We also note that since an individual
Feynman graph may contribute to several unitarity
diagrams, the results of this calculation could not
have been anticipated by any argument based on a
study of perturbation theory. There is no simple
way to infer the value of a particular unitarity dia-
gram to a given order from the sum of Feynman
diagrams. Thus, in a sense our results are new.
Since our calculation is free from cutoff ambigu-
ities and, presumably, exact, we feel that it may
aid in uncovering the foundations of an analytic S-
matrix theory of electrodynamics. A final consid-
eration is that the results presented here strongly
indicate that previous attempts' to estimate the
higher-order corrections to the electron magnetic
moment using dispersion theory are not likely to
be correct. Our work indicates that the many-body
intermediate states neglected in these calculations
may be fully as important as the two-body state. '
We feel it is appropriate at this time to indicate
that a failure to give a correct estimate of the
third-order term does not imply a general failure
of dispersion theory but only of the particular ap-
proximations which have been employed previously.
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FIG. 1. Unitarity diagrams for the electron vertex
amplitude: (a) Two-body (electron-positron) inter-
mediate state, (b) three-body contribution.

Our approach to the dispersion calculation of the
electron anomalous magnetic moment is essential-
ly that of Drell and Zachariasen. ' Their paper
contains most of the necessary background to our
work although their aim is somewhat different.
Thus, we will consider unitarity contributions to
the imaginary parts of the electron form factors
as given in Fig. l. We note that each successive
diagram is of order o. with respect to the previous
one due to the two additional vertices, but that
each diagram may contribute to all higher orders.
In this note we will consider only the two-body
contribution, diagram 1(a). We will, however, go
beyond the lowest-order contribution of this dia-
gram and evaluate exactly its second-order cor-
rections. We can do this relatively easily since
an analytic second-order electron-positron elastic
scattering amplitude is available from our previ-
ous work. Since, presumably, the complete sec-
ond-order contribution to the magnetic moment is
known exactly from perturbation theory, we thus
obtain the magnitude of the three-body contribu-
tion to the second-order magnetic moment without
the necessity of a laborious calculation. Eventual-
ly, of course, it will be necessary to evaluate the
second-order contribution of diagram 1(b) explic-
itly to show completely that our dispersion ap-
proach will give the correct experimental value.
However, in order to evaluate this term we would
have to extend our formalism for the construction

of self-consistent electromagnetic scattering am-
plitudes to include production processes. Although
work is in progress toward that end, it will be
some time before it is completed. Meanwhile, we
feel that the results of this work are significant
enough to warrant publication at this time.

In order to evaluate the unitarity diagrams of
Fig. 1, we need an explicit expression for the ver-
tex amplitude. It is convenient to work in the he-
licity representation so that the vertex can be
written

&& I &(e' + e —) ) I )(i g) = 3&& I a (t) I z, )(.2)D,'=,' ( e, y),

where the (e I a(t) I X, )(g are linear combinations of
the electron form factors and the D~, (e, p) are ele-
ments of an irreducible representation of the rota-
tion group. Equation (1) is just the Jacob-Wick
expansion' of the vertex amplitude in which 0 and

P specify the angles of incidence of the incoming
electron (positron). The photon, without loss of
generality, is assumed to be emitted along the
positive z axis. The explicit form of the
&ala(t) IA., )(,) in terms of the form factors can be
obtained relatively simply from the expression for
the vertex given in Ref. V. Also, in order to eval-
uate diagram 1(a), we need the Jacob-Wick expan-
sion of the elastic electron-positron scattering
amplitude, which we write in the form

&x, )(, I H(s, t, u) I)(, )(,) = P(2J+1)&)(., )(, I
a'(t) l), )(g

(j) )Dv).(e 0) ~

(2)

Using (1) and (2) and the orthogonality properties
of the D matrices, the unitarity diagram 1(a) can
be evaluated to yield the equation

lm(IEla(t) l)(i)(g =2wpRe Q &ala*(t) I)(..)(.,)&)(..)(, l))'='(t)
I )(, )(g . (3)

TABLE I. p'(t), g(t), and G(t) are defined in Eqs. (7), (8) of the text. The functions of which G(t) is a linear com-
bination are displayed in Eq. (9).
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In Eq. (3), p(t) = [q/(2v)'W] 8(t-4) is the two-body phase space. 8(z) is the Heaviside function and

q=-,'(t-4)' ' is the c.m. momentum of the incoming electron (positron), W =a t is the total energy. We

choose units such that m, =8 = c=1. Note that in order to ensure reality of the imaginary part of the form
factors we have chosen one-half the sum of incoming plus outgoing boundary conditions for the sum over
intermediate states. This is necessary in any approximation which neglects some intermediate states or
uses approximate amplitudes. Finally, Eq. (3) can be solved to give the following expressions for the form
factors

q' ImF, (t) = 2wp Re[A»(t)F2R(t ) +A»(t)«FRR(t)]

= 2 p Re tf (I'—),—f'„'„(tl ~ + f (I ) '„E;(t)tf ,(I) f„„(tl -+ f „(t) E;(I)}
(4)-q'«ImF, (t) = 2)fp Re[A»(t)F2R(t) + A»(t)«FRR(t)]

=2epRe f,,(I) f''„(tl -f„(I) E,'(t)+ f,', (t) ——,'tf'„(t) ~ f,', (t) eE(I)),

In Eq. (4)

f,', (t}-&-.'-,'It '(t& I-.'-.'&+ &-.'-.'II'(t) I--.'--.'&,

A'. (t) = 2(-,'-.' Ih'(t) I-R-.'&,

f,', (t) =&--,' ,'ll '(t) -I ,' ,'&+&----,'-R
I

'I( )tI R -R&

(5)

are parity-conserving partial- wave amplitudes'
(parity and total spin diagonal), F,(t) and F,(t) are
the usual charge and magnetic moment form fac-
tors, respectively. «=-,'(g- 2) is the anomalous
part of the magnetic moment. We note that only
the J= 1 amplitudes contribute to the form factors.
Moreover, the singlet state and the triplet J=L,

f, (t) =
&RR Ih'(t) I RR&

—&Rz i&'(t) I-R - z&,

f (t}=&-RR lt't'(t) I-RR&- &-~RR lh'(t)
I R-R&,

(6)

do not appear in Eq. (4). We see that our expres-
sions (4}-(5}are essentially the same as Eqs.
(18}-(20)of Drell and Zachariasen. However, we
do not write the amplitudes f (t)(Rin terms of trip-
let phase shifts and a mixing angle since the elec-
tron-positron elastic scattering amplitude does not
exactly satisfy a simple elastic unitarity condition
at any energy. This is due not only to vacuum-
polarization effects but also to the fact that elastic
and inelastic thresholds coincide. In view of its
simplicity, one might question why Eq. (4) has not
been used more extensively in dispersion calcula-
tions of the electron magnetic moment. (We note
that an analytic solution can be simply obtained in
terms of the helicity amplitudes. '

) The answer is
simple; the usual perturbation expansion of the
electron-positron elastic scattering amplitude does
not have a finite Jacob-Wick expansion. Thus, in
using (essentially) this equation Drell and Zachari-
asen were forced to employ the Coulomb amplitude
obtained from the nonrelativistic Schrodinger
equation to do the integration over the forward an-
gles. The results of this integration were then

matched to the results of an integration over the
nonforward angles using the relativistic Born
term. Even for the lowest-order corrections to
the form factors this procedure is rather cumber-
some and, in any case, it is not possible to obtain
the higher-order contributions in this fashion.
Thus, it has not heretofore been possible to do a
pure dispersion calculation of the higher-order
corrections to the electron magnetic moment with-
out introducing cutoffs. (Note that while the pro-
cedure of using a "sidewise" dispersion relation
introduced by Drell and Pagels obviates the diffi-
culty in doing the angular integrations, the high-
energy behavior which results necessitates a cut-
off.) However, in a recent paper' we introduced
a self-consistent, analytic electron-positron elas-
tic scattering amplitude which is accurate through
second order. Moreover, this amplitude is cut-
off-independent and has a well-defined Jacob-Nick
expansion. We also note that while the perturba-
tion expansion of the electron-positron elastic
scattering amplitude does not have a finite Jacob-
Wick expansion, the partial-wave projections of
our self-consistent amplitude can be expanded in
a regular power series in n. Thus, it provides a
suitable basis for the calculation of the contribu-
tion of diagram 1(a) to the electron magnetic mo-
ment. It is only necessary to project out the J= 1
helicity amplitudes; the form factors can then be
evaluated using Eq. (4).

In considering the partial-wave projections of
the scattering amplitude given in Ref. 1, we note
first that only the real parts are necessary for the
evaluation of diagram 1(a) through second order.
The argument is elementary. If we remember that
F,(0) =F,(0) = 1, then we see that in Eq. (3) the real
part of a (e I a(t) I

A., X & is on the order of unity. Ac-
cording to Fig. 1, however, the imaginary part
is of first order in a. Since the lowest nonvanish-
ing contribution to the imaginary part of the elec-
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tron-positron elastic scattering amplitude is of
second order, we find that, in taking the real part
of the product and neglecting higher-order terms,
only the real part of the helicity amplitude contri-
butes. This result will simplify our procedure
somewhat. In the following we will not present the

details of the calculation of the partial-wave pro-
jections of the spin-2-spin--, ' elastic scattering
amplitude given in Ref. 1. The process is exceed-

ingly tedious and the general problem has been
treated in detail in the paper by Goldberger,
Grisaru, MacDowell, and Wong. ' In our case,
most of the integrals encountered are familiar to
dispersion theorists or are given in Appendix A of
Ref. 1. In any case, the integrations are straight-
forward. We find that, neglecting terms of higher
order, "the second-order expression for the real
part of the J=1 helicity amplitudes can be written

Ite&~. ~, Ih'(f) I~i ~& = 4" ~ Re&~~g IP(f}—«'"q(t) l~, ~&+ 6"(o) Its&&. ~, IG(f) I ~, ~& . (7)

I'p (0) =1+« ", where « "=n/2w is the Schwinger correction to the electron magnetic moment. P(t) is a
polynomial in t; G(t) is essentially a linear combination of I'i'&(t), the first-order vertex function and
Eii"(t) and E,"&(t), the first-order electron form factors. Q(t) has the form

e(t) =R(f)+ f}.f'(f),
=0

(s)

where Pa=2(y-P~), P, =-2(2y-~), P~=+, P, =-2. y=0.577. . . is the Euler constant. The I (t) are qua-
dratic functions of Legendre functions of the second kind. The argument of each Q, (z) is I/v=E/q, the

reciprocal of the relativistic velocity of the incoming (outgoing) electron (positron). R(t) is a ratio of poly-
nomials. P(t), R(t), G(t), and the I'(t) are given in Tables I and II. For completeness, we also give the
first-order expressions for I'i'&(t), Ei, '&(t), and E~')(t), although these are also given in Ref. 1. We have

TABLE II. The I (t) are defined in Eq. (8). Each I~(t) is a quadratic function of the Q, ,
where Q, =Q& (1/b) is a Legendre function of the second kind. The argument of the Q& is
the reciprocal of the relativistic velocity of the incoming (outgoing) electron (positron).
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TABLE III. 6' (t), $(t), and 9(t) are defined in Eqs. (10), (11).

q 2A]~

q 2Aii

q Ai2

q A2i

q A22

(y-1)(t —2)+qt

2t1

(1-V)(t -2)

(v-~)(3t —8) —3(t+8)q '

4{y-PB) —4q

-(t + 2)I'( ) (t) + ~a(3t —8)&(i)F(i)(t)j

-2(&t)r «&(t)

1(t+2)K(i)p(i) (t)

Et,"(t)= E(1, 1; —,*;—,'t),
2 2

E'"(t) =I+ z'"E'"(t) g y t' 'z'" -Q-y, t' '-. z'",
A=O

1(z)(t) 1(i)(0)+ (t)E(z)(t) g P tl-& (x) g P
tx-& & (&)

where E(u, P;y', z) is a Gauss hypergeometric function, and y, =-,'P, -f, y, =248, —s, y, =-,P, ++. The P~ are
introduced in Eq. (8).

Finally, the particular linear combinations of helicity amplitudes which appear as coefficients of the
form factors in Eq. (4) can be written

—2ReA))(t) = 2Re[d'U(t} —z ' f) o(t)]+ I', ' (0)Re9),(t), (10)

where

Z, (t)=dt„(t)+ Z P.tt„(t) .

The explicit forms of the t)', ~(t), $,~(t), 9„(t},
and tt, ~(t) are given in Tables III and IV. We note
that (P„(t), g,~(t), and 9,)(t) are finite" at t = 4, so
that the coefficients p(t)q 'A„(t) are well behaved
at threshold. Thus, there is no reason to intro-
duce a photon mass or infrared cutoff. The asymp-
totic behavior of these terms, neglecting logarith-

mic contributions, is such that q 'A»(t) —t ' for
large t, while the three remaining coefficients ap-
proach constant values. This implies that E,(t)
requires one subtraction (which we have already
noted in Ref. 1} while E,(t} satisfies an unsub-
tracted dispersion relation. This corresponds to
the usual situation in which the electron charge is

TABLE IV. The 8"(t) are defined in Eq. (11). Again, each 8~(t) is a quadratic
function of the Q&. Contributions to Ai2 and A22 are omitted since they would only
contribute to third order.
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q Aii
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$(t + 2)Q p + (t 8)Q f + 3 (t + 8)Q
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q A2i
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F22 (0) =— —ImF2' (t) =1.
4

(i2)

This integral (12) can be evaluated analytically.
We find that the contribution of diagram 1(a) to g"
is given by

2~'" —~'" =['(a- 7r-)t(2)+ l(2~-P)]—.

Q 2
= (-0.940)—2

where &(2) = —,
' v' is the Riemann zeta function of

argument two.
Our result for the coefficient of the second-order

term is nearly three times the experimental value
(-0.328). Excluding the possibility of computa-
tional error, "we see that retaining only the two-
body intermediate state [diagram 1(a)J does not
give a satisfactory value for the electron magnetic
moment. We conclude that the contributions of

a parameter of the theory while the anomalous
magnetic moment is completely determined.

We are now in a position to evaluate the second-
order corrections to the form factors which result
from diagram i(a). If we insert the explicit values
for the A„(t) and the lowest-order form factors in-
to the right-hand side of Eq. (4), we obtain the sec-
ond-order expressions for the absorbtive parts.
The complete form factors are obtained as usual
by a simple dispersion integral. In particular, the
second-order contribution to the anomalous mag-
netic moment is just the coefficient of F,(0), where
we impose the condition

multiparticle intermediate states may be as impor-
tant in electrodynamics as that of the two-body
state. Of course, this result should not be partic-
ularly surprising. A basic concept of dispersion
theory is that "distant" (i.e., multiparticle) singu-
larities may be neglected for suitably restricted
values of the energy. However, in electrodynamics
the physical threshold is common to both elastic
and inelastic intermediate states. Thus, there is
no a Priori reason to suppose that many-body ef-
fects will be small. All cuts may contribute sig-
nificantly to the dispersion integrals. One aspect
of the calculation presented here is that these con-
siderations have now been placed on a quantitative
basis. There is no ambiguity due to the presence
of arbitrary cutoffs. Finally, we conclude that the
published cutoff-dispersion-theory estimates of
the higher-order corrections to the electron mag-
netic moment based only on two-body exchange are
probably not reliable. There is some uncertainty
due to the difference in approach, but. the relative
importance of many-body intermediate states
should not be drastically affected by the choice of
dispersion variable. At least, there is no compel-
ling physical argument that the reverse is true.
In any case, our results indicate that a pure dis-
persion calculation of the electron magnetic mo-
ment may be more difficult than anticipated. On
the other hand, we have introduced the possibility
that the higher-order corrections to the anomalous
magnetic moment of the electron can be evaluated
without the introduction of cutoffs or other arbi-
trary parameters and without reference to the
usual forms of perturbation theory.
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