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A relativistic quantum many-body theory, which includes the strong interactions between
elementary particles in curved space-time, is constructed. Using a generalized statistieal-
density operator, which incorporates the effects of gravitation as given by Einstein's field
equations, as well as observables constructed from a generally covariant Lagrangian for
matter fields, the definition of an N-point function of second-quantized matter fields is pre-
sented. The Yukawa coupling of a spinor field is then introduced. Coupled integral equations
for the fermion and boson two-point functions in terms of the vertex function are given, which
contain density and temperature effects in curved space-time; they are coupled to Einstein'
equations through the expectation value of the energy-momentum density operator. Renormal-
ization to effective masses and charge, as well as regularization, are discussed. The curved-
space-time statistical-density operator is examined in the flat-space-time limit, and also in
the nonrelativistic limit. The former agrees with previous work in relativistic statistical
mechanics. The introduction of temperature and density as boundary conditions on flat-space-
time N-point functions is carried out yielding a relativistic formalism, which may be applied
to the calculation of such quantities as the equation of state of a superdense system of strong-
ly interacting baryons. The nonrelativistic limit suggests a new approach to the statistical
mechanics of Newtonian gravitation, in which such parameters as temperature become func-
tions of coordinates. The relativistic flat-space-time limit is applicable to neutron stars at
densities p & 10 5 g/cm consisting of strongly interacting matter.

I. INTRODUCTION

Second-quantized many-body theory, high-energy
theory, and general relativity are three areas of
physics with little overlap. Their apparent mutual
exclusiveness results from the lack of measurable
phenomena in our solar system where more than
one of these effects is of major significance at a
given time. This is not the case in astronomy and

cosmology. Astrophysicists have suggested that
superdense matter is formed in the final stages of
stellar evolution for sufficiently massive stars, '
and possibly in the initial stages of stellar and ga-
lactic evolution as envisioned by Ambartsumyan. "
It is also used to describe the initial stages of some
cosmological models. 4 The discussion of such phe-
nomena as these requires a knowledge of the mac-
roscopic properties of superdense matter. For
densities in excess of about 10"g/cm', the dynam-
ics will be determined by strong interactions. In
special cases, not necessarily at super-nuclear
densities, curved space-time will make significant
contributions to the description of the system. In
general a correct study of the phenomena associat-
ed with superdense matter must therefore combine
elementary-particle, many-body, and space-time
theories in a fundamental manner. It is the pur-

pose of this paper to develop such a formalism-
a relativistic quantum many-body theory in Rieman-
nian space-time —and to discuss its consequences
for the theory of superdense matter.

That there might exist stars with densities great-
er than the density of a white dwarf was suggested
as early as 1932 by Landau. ' Two years later
Baade and Zwicky' observed that the remnants of
supernovae might contain such objects as their
core. Until this time, it had been believed that all
stars evolve, through sufficient mass loss, to the
white dwarf stage, which was assumed to repre-
sent the final stage of stellar evolution. However,
it was shown by Qppenheimer and Volkoff' in 1939
that another stable configuration of higher density
existed for masses below about 0.7'. The central
densities which they found were in the range 10"
& p &10"g/cm~. As a consequence of such high den-
sities, the principal constituent in the stellar core
is found to be neutrons. Thus the concept of a neu-
tron star was born. Subsequent investigations have
indicated that beyond the neutron-star stage there
exist no configurations of matter in its ground state
which are stable against gravitational collapse to a
singularity.

Although the idea of a neutron star was theoreti-
cally attractive, it received little attention before



RELATIVISTIC QUANTUM MANY-BODY THEORY IN. . . 297

1959, except as a source of interesting fundamental
problems associated with such an anomalous object.
With few exceptions it was commonly believed that
white dwarf stars represented the final stage of
stellar evolution after the exhaustion of nuclear
fuel and the ejection of sufficient mass to bring the
total below the Chandrasekhar mass limit. In 1959
a renewed interest in neutron stars as being the
end product of supernovae was taken by Cameron. '
The discovery of pulsars in 1968 stimulated inter-

est in attempts to understand the detailed proper-
ties of these objects." Finally the observation of
a pulsar among the remnants of the Crab Nebula
has virtually placed the neutron star in the list of
physically accepted entities.

With the renewed interest in neutron stars, there
has developed a similar interest in the states of
matter beyond the Landau-Oppenheimer-Volkoff
mass limit Mopy As seen by a distant observer,
a star of mass greater than M~pv that has exhaust-

TABLE I. The table illustrates various effects which become important at successively higher densities for matter
in curved space-time. T'he entries do not necessarily refer to a single system, although they may represent different
stages in the evolution of a star of mass greater than the mass of 105' baryons, as it undergoes gravitational collapse
to a singularity. The five columns contain (1) the density range in g/cm3; (2) the corresponding interparticle separation
l =— (m/p) 3 in terms of the baryon mass m =2x lp g; (3) the nature of particle interactions; (4) the field-theoretic
nature of gravitation; (5) and the macroscopic nature of matter as described by the equation of state.

Density
(g/cm3)

l =(m/p)»2
(cm) Interaction

Gravitational
field Equation of state

p & 1015

1015& p & 1017

10i7 &~ & ]p20

1020 &p & ]P49

1p49 &p & 1p93

p &10"

l &10 ~3

l Z10-"

l&10"

l &10 '4

l &10 33

= 8G/c')"'
10 33

Nonrelativistic;
description in
terms of po-
tentials valid.

H,elativistic; de-
scription in
terms of poten-
tials invalid.
Strong interac-
tions and decay
important.

Strong interac-
tions and decay
important.
Hadronic matter.

Extreme rela-
tivistic interac-
tions; hadronic
matter; quarks,
partons, ('P).

c numbers

c numbers

c numbers

c numbers

c numbers

q numbers

Determined by atomic and nuclear physics in
flat space-time. No gravitational contribu-
tions. Macroscopic nature (such as mass-
radius relation, etc.) determined predom-
inantly by Newtonian gravity.

Determined by strong interactions and weak
decay of baryons in flat space-time. No

gravitational contributions on microscopic
level. Macroscopic nature determined by
Newtonian gravity.

Determined by strong interactions and weak
decay of baryons in flat space-time. No
gravitational contributions generally on
local level, but macroscopic nature deter-
mined by generally relativistic equations,
for example, generally relativistic equa-
tion of hydrostatic equilibrium, etc. Non-
linear gravitational effects become impor-
tant at the center.

Extreme relativistic energies. The descrip-
tion of interactions is uncertain, but pos-
sibly including such exotic states as quarks,
or parton models, etc. If collective effects
exist whose range of correlation is great-
er than 104 cm, then curvature contri-
butes locally to interactions and determines
the equation of state. General relativity
governs all.

Whatever interactions exist contain signifi-
cant contributions due to the curvature of
space-time, even in the absence of collec-
tive effects.
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ed its nuclear energy sources will appear to asymp-
totically approach its Schwarzschild radius; as
seen by a comoving observer, the star will col-
lapse in a finite time to a singularity. That a phys-
ically reasonable equation of state might stop such
an effect is unlikely, but cannot be ruled out. "

Interest in superdense matter has developed in
other areas as well. Ambartsumyan has suggested
that it might play a significant part in the initial
stages of stellar and galactic formation. Contrary
to the popular consensus of astrophysicists, he has
hypothesized the formation of stars and galaxies
from superdense protostellar bodies to states of
lower density. This has led to the study of systems
composed of hyperons with average densities in ex-
cess of 10" g/cm'.

Finally, there is the question of early cosmolo-
gies, which take as their initial state matter and
radiation at temperatures of the order of 10"'K,
the subsequent formation of the elements, and the
still undetermined question of the total baryonic
change of the universe.

In spite of their differing origins, the problems
mentioned above contain the common characteris-
tic of being determined primarily by strong inter-
actions in curved space-time (see Table I). The
latter enter via the equation of state. In a11 calcu-
lations of the equation of state oi superdense mat-
ter, the strong interactions as well as gravitation
have been ignored. The interactions, when they are
included, are treated in a nonrelativistic manner.
Decay processes are taken into account phenomeno-
logically, and no distinction is made between ele-
mentary particles and bound states. The asymptot-
ic behavior of the equation of state is usually
bounded or approximated by arguments based on
causality. "

For densities at or somewhat below nuclear den-
sities 10"s ps 10"g/cm', various nuclear poten-
tials have been used to describe interactions, and

the equation of state obtained through the use of
nonrelativistic many-body theory. " Above p = 10"
g/cm' relativistic effects and strong interactions
must be included. However, in this region previ-
ous calculations have essentially been those of a
noninteracting relativistic Fermi gas. In some in-
stances, interactions have been simulated by ex-
cluding some of the volume, which acts as a rela-
tivistic hard core of the particle. In order to ap-
preciate the inadequacies of these models, it need
only be mentioned that the interparticle separation
for densities p-10" g/cm' is roughly one-third
that in normal nuclear matter (p-2. 5 &&10" g/cm').
Furthermore, the average energy per particle at
such densities is about 200 MeV. Consequently
nucleons may be converted into hyperons via weak
decay, with subsequent energy loss in the form of

neutrinos.
A correct calculation of the equations of state at

high densities must include strong interactions.
At these densities it is not possible to make a dis-
tinction between strong interactions and strongly
interacting particles. The latter are the manifesta-
tion of the strong interactions and if we neglect
these forces, then we neglect the basis of the very
existence of these particles.

It is usually argued that a clean separation exists
between gravitational effects, as described by c-
number fields, and the interactions between ele-
mentary particles, particularly if early cosmolo-
gies and the final stages of stellar evolution ac-
companied by gravitational collapse are ignored. "
This assumption is based on the argument that
gravitation will contribute significantly to elemen-
tary particle interactions only when the curvature
of space-time is comparable to the particle's Cump-
ton wavelength, and this does not happen until den-
sities of the order of 104' g/cm' are reached. For
higher densities curvature described by c-number
fields contributes significantly to the interactions.
This line of reasoning ignores the potential impor-
tance for superdense matter of collective effects.
Superdense matter consisting of strongly interacting
fermions and bosons may exhibit such effects as
superconductivity, superfluidity, ferromagnetism,
and Bose-Einstein condensation, to mention but a
few. The occurrence of such phenomena would sug-
gest that gravitation contributes significantly when
the curvature of space-time is comparable to the
range of correlations. The latter are usually inter-
mediate between the dimensions characteristic of
the system's microscopic and macroscopic size.
It is reasonable then to expect the curvature of
space-time to contribute to interactions at a densi-
ty much lower than 10"g/cm', as is usually as-
sumed. As an example, consider the situation in
which the range of correlations is comparable to
the dimensions of a neutron star core, say z, -104
cm. The density at which curvature is expected to
contribute significantly to the interactions between
particles is then found to be p-102o g/cm'.

It is as yet uncertain as to whether such densi-
ties are reached inside neutron stars. Neverthe-
less, it is certain that they will be reached for
stars which are unable to shed sufficient mass to
lie below the Landau-Qppenheimer -Volkoff limit. '
Curved space-time must be included in the calcula-
tion of the macroscopic properties in this central
crush region.

Quantum space-time effects may well be the
principal factors in determining the final issue of
gravitational collapse. " The fundamental length at
which such effects become important is usually as-
sumed to be L-(AG c/')"'-1 0" cm. This corre-
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sponds to a density of about p-10" g/cm', above
which the metric must be described by a q-number
field, and Einstein's equations become quantum
field equations. As long as we restrict ourselves
to systems whose density is p «1093 g/cm', the
problems of quantization of space-time do not
enter, and gravitation may be described by e-num-
ber fields.

The most natural quantities that lend themselves
to the union of general relativity, high-energy theo-
ry, and many-body theory are thermodynamic
Green's functions. Green's functions have the ad-
vantage over other formalisms of being more trans-
parent due to their physical interpretations. In ad-
dition, this formalism is common to all areas of
physics, and has a graphical representation which
simplifies an otherwise complicated subject. The
development of elementary particle physics" and
thermodynamic many-body theory" in terms of
Green's functions has been investigated extensively
in the literature. Their covariant generalization
can be achieved in a straightforward manner. In
this approach the strong interactions are taken in-
to account by means of a relativistic Lagrangian.
Curved space-time is included consistently by re-
quiring that the equations be generally covariant in
a Riemannian manifold. The relativistic Heisen-
berg equations of motion lead to an infinite set of
coupled equations for the Green's functions. The
boundary conditions on the Green's functions give
the many-body effects.

Before proceeding with the development of the
formalism, a review of existing methods of treat-
ing relativistic dense systems will be given. We
shall not dwell here on the various nonrelativistic
many-body techniques which have been highly suc-
cessful in treating ordinary nuclear matter (10"
& p & 10"g/cm'). In this density region the use of
potentials to describe interactions is valid, and
relativistic effects are small. The problems as-
sociated with this region are primarily of a calcu-
lational nature, or involve questions of construct-
ing an aopropriate empirical potential best suited
to the descriptions of nuclear matter. They are
not problems of principle, as is the case of densi-
ties above p-10" g/cm', or as in the presence of
strong gravitational fields.

The first fully relativistic many-body theory in
flat space-time was developed by Fradkin" and co-
workers. Relativistic thermodynamic Green's func-
tions were defined as solutions of the relativistic
equations of motion. The treatment is field-theo-
retic in nature and includes interactions through a
general nonderivative coupling. The approach is
essentially an extension of the method first devel-
oped by Matsubara, in which the time dependence
of the Green's function is replaced by an imaginary

time. As a result the time-development operator
e '0' and the density operator e 8" are formally
alike. The many-body effects are then introduced
as boundary conditions on the imaginary time de-
pendence of the Green's function. Although this ap-
proach is a very powerful one, especially for cal-
culations, it breaks the covariance of the theory at
the very beginning, and is therefore not a useful
starting point for a many-body theory in curved
space-time.

In a recent paper, "a flat space-time relativistic
many-body theory is developed from a different
viewpoint. Starting with time-dependent Green's
functions, the method of Martin and Schwinger is
generalized to include relativistic dynamics. The
approach retains the Lorentz invariance of the
fields, and therefore serves as a useful starting
point for a generalization to include gravitation.

Various discussions of the equation of state of
superdense matter have been given in the litera-
ture, although none of them is based upon a many-
body theory which includes gravitation through the
curvature of space-time. "

The formalism to be developed'in the following
sections represents the first work of its kind which

(i) includes relativistic interactions as given by
a theory of elementary particles;

(ii) incorporates both the finite density and finite
temperature of a system from the principles of sta-
tistical mechanics;

(iii) and includes the effects of gravitation
through Einstein's general theory of relativity.

This approach not only unifies three fundamental
branches of theoretical physics in a natural and ap-
pealing manner, but leads to new effects which can
result only from such a formulation. Specifically
it introduces into the calculation of the macroscop-
ic properties of a many-body system effects due to
the fundamental structure of particles, which are
themselves directly coupled to macroscopic prop-
erties of the system under study. This is a point
of central importance for the problem of super-
dense matter and gravitational collapse, since it
becomes artificial to distinguish between interpar-
ticle and intraparticle interactions at densities
such that particle separations are on the order of
their Compton wave length. The fact that elemen-
tary particle interactions, which determine indi-
vidual particle structure, are also of importance
in discussing superdense matter has not been suf-
ficiently emphasized in the past, "and our ability
to incorporate them in a fundamental manner is
considered to be one of the major achievements of
this work.

Other features of interest which result from our
ability to include elementary particles in a natural
manner are
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(i) the direct dependence of macroscopic proper-
ties on the mass, spin, parity, and other quantum
numbers of the constituent particles, in addition to
the coupling constants;

(ii) the possibility of including gravitational con-
tributions to interactions between particles from
first principles;

(iii) the possibility of including all density- and

temperature-dependent collective effects in a man-
ner analogous to the well-tested nonrelativistic
many-body theory;

(iv) the unification of interparticle and intrapar-
ticle renormalization effects (density-dependent
and self-interaction-dependent, respectively) at a
fundamental level;

(v) and the adaptability to our formalism of ex-
isting approximation techniques developed in ele-
mentary particle theory and thermodynamic many-
body theory.

We shall develop and discuss the relativistic
many-body formalism of finite-temperature and

finite-density systems in four sections (see Fig. 1).
In Sec. II a generally covariant Lagrangian for spin-
one-half fermions and spin-zero bosons will be writ-
ten which includes a Yukawa coupling. The resulting
equations of motion are coupled to Einstein's field
equations yielding a self-consistent set of equa-
tions for quantized matter fields, and the c-num-
bers g„„which describes the curvature of space-

time. Next, a generalized N-point function of the
quantized matter fields is defined which includes
curvature. A generalized statistical-density oper-
ator is also defined which includes the curvature
of space-time through the metric; its nonrelativ-
istic and special relativistic limits are discussed.
Section III contains a discussion of the flat-space-
time limit of the results presented in the second
section. In particular the relativistic fermion and
boson two-point functions are constructed, which
contain finite temperature and density effects as
boundary conditions on the noninteracting Green's
functions. The results are discussed, and the role
of particle and antiparticle states explored. The
relativistic formalism in curved space-time is pre-
sented in Sec. IV. Coupled equations for the fer-
mion and boson two-point functions in curved space-
time are written in terms of the three-point func-
tion. These are then coupled to Einstein's equa-
tions through the pressure and density. The latter
are expressed in terms of the two-point function.
Finally, it is shown that the many-body effects
may be introduced through boundary conditions on
the homogeneous part of the Green's function. The
latter is written in terms of geometrical factors
containing the effects of curved-space-time and the
flat-space-time noninteracting Green's function.
The renormalization to effective masses and
charge is then discussed in Sec. V, where it is em-

Genera I Relativity Theory Statistical Mechanics

Gravitation

')(

Special
Retativity

Finite
Density

I

)(
Finite
Temperature

Boundary Conditions

Elementary
Particle
Theory

Green's Function

)(

Complete Lagrangian = Equations of Motion

Energy-momentum
Density Tensor Hami I ton i an = Phase Space

FIG. 1. Flow chart summarizing the stages at which relativity, elementary particle theory, and statistical me-
chanics enter into the specification of boundary conditions for the Green's function. It is assumed that a theory of each
is initially given.
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phasized that these quantities will in general de-
pend upon. the geometry of space-time.

Notation

The notation to be used throughout the following
sections will be summarized below. The signature
of g&, is -2. Tensor indices are denoted by lower-
case Greek characters n, P, . . . =0, 1, 2, 8, while
spinor indices are denoted by lower-case Latin
characters g, b, . . . = 0, 1, 2, 3. The summation con-
vention is assumed for both types of indices. Lat-
in indices in parenthesis (a) will be used to de-
note different objects, and are not to be confused
with tensor or spinor indices. Finally, we have
set k = c =1, but have retained the gravitational
coupling constant g. Partial differentiation is de-
noted by a comma and covariant differentiation by
a semicolon.

In some applications the inner product of two 4-
vectors aj" and b" will be denoted by a ~ 5 —= a "b
Frequently a function of the 4-momentum p" will
be denoted f(p). In flat space-time p'=y"p„. Flat-
space-time y matrices will always be denoted by y,
whereas in curved space-time they will be written
as y(x}. Quantities referring to antiparticles will
be denoted by the same symbol as their particle
counterpart with a, bar (e.g. , antiparticle Fermi
momentum P'F).

[q&(x), y(x')] = [rr" (x), rr'(x')] = 0 (2.4)

for all spacelike separations (x~ —x'„)' &0, and that

do "(x')[Zs"'q (x), Zs"'rr„(x')] = 1,
~ Z(x)

(2.5)

where Z(x) is a spacelike hypersurface drr" dv„&0
containing the space-time point x". The differential
tensor surface area is given by do" and is orthogo-
nal to the timelike unit vector g":

g„do" =0. (2.6)

The fermion field operators r}(x) and p(x) satisfy
the anticommutation relations

and the gravitational Lagrangian density 4~ is giv-
en by

z, = (-g)"'f~

(re . s res, +r rTs r res] ~

(2.2)

All spinor indices have been omitted above.
Quantization of the erluations (with respect to mat-

ter fields only) will be accomplished by imposing
generally covariant commutation relations on the
fields. In particular, it is required that the real
boson field operator y(x) and its conjugate momen-
tum rr" (x) satisfy the commutation relations

II. ELEMENTARY PARTICLES IN CURVED SPA.CE-TIME

A. Covariant Equations of Motion

{y,(x), rjl, (x')] =Q.(x), q, (x')J = 0

for spacelike separations, and

(2.7)

In order to discuss the behavior of a many-body
system of elementary particles in curved space-
time, the equations describing their dynamics will
be written in a generally covariant form. " Since
the discussion will be field-theoretic in nature, a.

covariant Lagrangian will serve as the most con-
venient method of introducing particle dynamics
and gravitation. The equations of motion will be
given, and the effects of curved space-time in-
cluded by coupling the energy-momentum density
tensor for matter fields to Einstein's field equa-
tions. Throughout the discussion continual refer-
ence will be made to the Yukawa coupling between
spin-one -half particles.

The generally covariant Lagrangian density is

Z(x) =Z, (x)+Z, (x), (2.1}
where the dynamics of elementary particles are in-
troduced through ZE

= (-g) ~ Z: g(x)(iy" (x)[s„-r„]-m]y(x}:
+-'.(-g)"'Z, :(y(x) '"

q (x),.„—g'q (x)'}:
—(-g)"'z, 'z,z,"'g„:Tr(x)y, (x)q(x)cp(x):

+ (-g)"'Z, em: g(x) q(x): + (-g)"'6g': y(x)y(x):
(2.2)

cp(x),
dy(x') = Z, '6(x —x')

(2.9}

and

(q,(x), q, (x')),=, =i(.(x), q, (x')], , = 0,

(g,(x), g,'(x)). ..=Z, '6.,6(x-x'). (2.10)

The commutation relations (2.4) and (2.5) and the
anticommutation relations (2.7) and (2.8) contain
field-operator renormalization coefficients Z, and

Z3. The term Z, is the coupling-constant renormal-
ization factor. Mass renormalization counterterms
5m and 5p,

' for fermions and bosons, respectively,
are included. The renormalized strong-interaction
coupling constant is denoted by g„. The spinor ad-
joint is defined in terms of the Hermitian adjoint

drr" (x')jZ,"'g,(x), [Z,"'p(x')y„(x')],]= 6„
+ Z(x)

(2.8)

on the hypersurface Z(x). Under the restriction
that the spacelike hypersurface Z(x) be given at
constant time x, = t, the usual equal-time commuta-
tion relations result:

[y(x), rp(x')], , =[jo(x), j(x')], , =0,



302 R. L. BOWERS AND R. L. ZIMMERMAN

rP(x) by

qv~(x)y'„(x) = Fj),(x) . (2.11)

The generally covariant Dirac gamma matrices
y" (x) are defined by the anticommutator

(y,"(x),y,'(x)j= 2g""(x)5„.
The pseudoscalar y, (x) is by definition

r'(x) = y, (x) = ir'(x)r'(x)r'(x)r'(x).

(2.12)

(2.13)

while covariant differentiation of tensor quantities
is given by a semicolon:

»., -=A~, +I.~„A', (2.14)

Ap v =Ay v I pvA), ~ (2.15)

The space-time affinity I"I„'~ is given in terms of
g„„and its derivatives by

v~fr vX 2g Lgva, X Aa, v gv'A, a) ' (2.16)

The covariant derivative of a spinor of rank one is
(the spinor indices a, b = 0, 1, 2, 3 are included in
the definitions below)

(,( ) x„= y, (x) .„—r', „q,(x),
q'( )x, „=y'(x) „+r;„q'(x),

(2.17)

(2.18)

where the spinor affinity I' (spinor indices omit-
ted) is defined in terms of the space-time affinity
and the metric tensor by

Normal ordering of the operators appearing in
(2.2) is denoted by colons.

In addition to the quantities defined above, (2.2)
and (2.3) contain geometrical factors reflecting the
coupling between the gravitational field Idescribed
by the components of the matrix tensor g, (x)J, and
the distribution of matter in space-time described
in part by the fields g(x) and y(x)]. The determin-
ant of the metric tensor is denoted by g= det(g„,).
Partial differentiation is denoted by a comma:

~A~ &A~A~, =- , , A„, =-

x x

expressed in the form

ft„,=r „.„-r„,.-I"„I„'„-r,.r„', . (2.20)

The equations of motion in covariant form are

1iy"(x)[a„—I'„(x)J -mjy(x)

= q(x) 6m + iZ, 'Z, "'g„y'(x)q(x)(p(x)

(2.21)

for fermions, and

rp(x) '" „+.g'q&(x) = (p(x) 5g' i Z,—'Z,g„fi(x)y'(x) q(x)

(2.22)

for boson fields. Variation of the metric tensor
yields Einstein's field equations

1 av+pv 2gpv~ —8' KT&v v (2.23)

In the following development the renormalization
coefficients Z„Z„and Z, will not be retained.
Their appearance does not alter the discussion at
this point. It is to be emphasized that renormaliza-
tion has not been neglected. The significant contri-
butions to these constants resulting from the ther-
modynamic nature of the system are discussed in
Sec. V.

In the equations above it has been assumed that
the fields g(x) and y(x) are q numbers. The metric
tensor has not been quantized, and is to be con-
sidered as a set of c numbers. Equations (2.21)—
(2.23) therefore represent a, mixture of quantum
and classical fields —quantized matter in classical
space-time. Because of this mixture of quantum
and classical fields, the energy momentum density
tensor T„", must be a c number, since the left-hand
side of (2.23) contains only c numbers. Defining
the energy-momentum density tensor T„, which is
a functional of the fields p(x) and y(x), we shall
take its average (over a suitably defined set of
states) as the definition of T„'"„The existe.nce of a,

suitable set of eigenstates will be assumed. De-
noting an arbitrary quantum-mechanical average
by ( ), (2.23) becomes

R„,——,'g„,R = 8mg(T„, ) . — (2.24)
—r„'l.r'(x)r, (x) -r, (x)r'(x)] j . (2.19)

In general all spinor indices shall be omitted in
the following sections. There should be no confu-
sion between the affinity (Christoffel symbol) I'„",
bearing three indices, which describes the proper-
ties of space-time, and the spinor affinity l „bear-
ing one index (with two spinor indices understood),
which describes the geometry of a fictitious spin
space.

The quantity p appearing in (2.3) is the curvature
scalar, and is related to the Ricci tensor p„, by
contraction: A=g"'P„, . The Ricci tensor may be

The specification of. the average appearing in
(2.24) will occupy the next section.

Before proceeding, it may be mentioned that
(2.21)-(2.23) are reminiscent of the semicla, ssical
second-quantized theory of radiation encountered
in quantum mechanics, where the equations de-
scribing particle dynamics involve q-number fields,
while the electromagnetic field is described by
Maxwell's equations, which represent c-number
fields. Furthermore, as in the Hartree-Fock mod-
el of the atom, where the potential is determined
by wave functions which in turn are determined by
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TABLE II. The major elements of the formalism are compared with their flat-space-time limits. The second column
summarizes the general (curved-space-time) behavior of each element. The last column gives its behavior in the limit
of flat space-time.

Curved space-time Flat space-time

Metric tensor

Gravitation

Space-time affinity
(Christoffel sym-
bol)

Spinor affinity

Mechanics of
material objects

Second-quantized
matter fields
g(x) and cp(x)

Matter Lagrangian
density g E

Gravitational
Lagrangian
density g &

Equations of motion
for g„

Dirac gamma
matrices

Replaced by curva-
ture of space-time.

Generally nonzero
in any coordinate
frame.

Generally nonzero
in any coordinate
frame.

Relativistic includ-
ing contributions
from the curvature
of space-time.

Functionals of g»
in addition to
other rnatter fields.

Functional of g(x),
cp(x) and g ~.

Functional of g

Einstein's equations

g» determined
dynamically by
matter content
of space-time
through fields g {x)
and y(x) .

y&(x) generally co-
ordinate-dependent,
as determined by
curvature of space-
tirne.

Heducible throughout space-time to
=diag(1, -1, —1, -1).

Absent.

Vanish identically for a special
choice of coordinates (inertial
frames) .

Coordinate-independent representa-
tion in special inertial frame.

Relativistic —no gravitational con-
tributions.

Functionals of other matter fields.

Functional of g(x), y(x).

Functional of g~, vanishes
identically.

Einstein's equations in absence of
matter —special relativity.
Geometry ss determined by g&,
is absolute.

yt" may be chosen to be coordinate-
independent in special inertial
frame.

Energy-momentum
density tensor T»
(operator)

Determined by P&,
contains contribu-
tions of curvature
to interactions.

Determined by Pz, no contributions
from gravitation.

Energy-momentum
density tensor T&,

'

f; (x)

Expectation value
of T» over quan-
tum states of f; (x).

Operator functional
of P(x) and y(x) and
the c-numbers g„
whose ensemble
average gives known
observables over a
hypersurface Z or
for all x&. Contains
contributions due to
curvature.

Expectation value of T» over quantum
states of f;(x).

Operator functional of g(x) and y(x)
whose ensemble average yields
known observables over Z or for
all x~. No gravitational effects.
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TABLE II (Continued)

Curved space-time Flat space-time

A, ; (x)

Statistical operator
P

Lagrange multipliers in-
troduced with f;(x). De-
termined in terms of en-
semble averages. Con-
tain contributions due
to curvature.

Maximizes the "informa-
tion entropy" subject to
constraints introduced
through averages of f, (x).
Contains contributions
due to curvature.

Operator functional of g(x) and y(x)
whose ensemble average yields
known observables over Z or for
all x~. No gravitational effects.
Reduce to relativistic functions
of such thermodynamic quantities
as temperature, chemical poten-
tial, etc.

Operator functional of g(x) and y(x)
whose ensemble average yields
known observables over Z or for
all x~. No gravitational effects.
Reduces to ensemble average from
relativistic statistical mechanics.

the potential, (2.21)-(2.24) consist of a set of cou-
pled equations that must be solved self-consistently.

In the limit of vanishing curvature (no gravita-
tion), the metric g„„ is reducible by means of a,

general coordinate transformation to the Minkowski
form q„„=q"' = di ag(1, -1, -1, -1) valid throughout
space-time. In this limit a Cartesian coordinate
system exists such that the space-time and spinor
affinities l"

&
and I'„vanish identically. As a con-

sequence, the generally covariant Dirae y matrices
reduce to the coordinate-independent values y&,
which satisfy the anticommutation relations

(y, y 'I=21", (2.25)

B. N-Point Functions

A compact method of investigating the gen-
eral properties of a system of particles (macro-
scopic or microscopic) may be obtained by con-
structing the v. or Green's functions for that sys-
tem. It will be recalled that having once construct-
ed the Green's functions for a system it is possible
in principle to obtain expressions for any (and all)
observables in terms of them.

In order to discuss Green's functions within the
framework of (2.21)-(2.23) it will be necessary to
define three quantum-mechanical averages of a
"time-ordered" product of N second-quantized
field operators (N-point functions) which are in
fact the T or Green's functions for the system. A
general N-point function will be defined in the

and all covariant derivatives reduce to partial de-
rivatives. The Riemann curvature g and the Ricci
tensor also vanish, so that the Lagrangian Z = ZE
reduces to the usual flat-space-time pseudoscalar
coupling in quantum field theory. The relation be-
tween the above element in curved and in flat space-
time is summarized in Table II.

&0 ~TA(x, )B(x,)C(x, ) * N(x„) ~0)

&0 I 0)
(2.26)

For a many-body system (including gravitation),
described by the ground-state wave function
~@„,„,. . .„)and consisting of N, particles of the.
first type, N, particles of the second type, . . . , and

Heisenberg representation. Consider N Heisen-
berg field operators A. (x, ), B(x,), . . . , N(x„), where
some or all of the operators may represent the
same field, defined at the space-time points
x,", . . . , x„" (some or all of the events x,". may be
identical). A "time-ordering" operator T is next
defined which, when acting on the set of operators
above, places them in "chronometric" order. By
"chronometric" order we mean that if a parameter
s, defined along a possible timelike world line of a
particle relative to an arbitrary hypersurfaee, is
associated with each operator, then T places the
operators in order of increasing s from right to
left. A factor of (-1) is to be a,ssociated with each
interchange of any two fermion operators. In terms
of the definitions above, the N-point function is giv-
en by the quantum-mechanical average of the time-
ordered (quotes dropped) product

&TA(x, )B(x,) ~ N(x„)) .
The states entering into the expectation value

will in general depend on the nature of a specific
problem. Three possibilities will be considered:
(1) a small number of particles in vacuum (ele-
mentary particle theory); (2) a many-body system
assumed to lie in its ground state (T = 0); and (3)
a many-body system at finite temperature.

In the relativistic quantum field theory of ele-
mentary particles (including gravitation) the aver-
age is taken over the vacuum state ~0)„and the N
point function is defined by
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N„particles of the nth type, the N-point function of
the Heisenberg field operators is defined by

sumed to correspond to physical observables.
Therefore

(f;(x))8
= I';(x) (2.32)

(Tx(x,)a(x, ) X(x„)),
1= —tr(PTW(x, )a(x, ) X(x„)).

(2.28)

The partition function Z is

Z, = trp,

where the density operator p is
k-1

p = exp- Q 'd(x- )g"'x,.(x)f,. (x) .
j=O

(2.29)

(2.30)

The terms used above to describe Z, , p, and the
ensemble average in (2.28) are motivated by the
fact that they describe exactly the flat space-time
limit of these quantities, as will be seen below.
The subscript P on the left-hand side of (2.28) is
shorthand for the ensemble average (2.28)-(2.30).
The trace (tr) appearing a.bove is to be taken over
a complete set of eigenstates of the operators en-
tering into the definition of p.

The approach outlined above is motivated by the
original work of Shannon and Jaynes" in nonrela-
tivistic statistical mechanics, and is a direct ex-
tension of that work to include relativistic dynam-
ics and gravitation. The original work, based
upon the concept of information entropy offers a
convenient axiomatic starting point for a relativist-
ic generalization of statistical mechanics. In ar-
riving at (2.28)-(2.30) it has been assumed that the
pr obabilitie s

(2.27)

Finally, for the many-body system not neces-
sarily in its ground state, the average is to be tak-
en over a grand canonical ensemble, and the N-
point function is of the following form:

T'"'(x) = d'" (x)+A. "'(x)T„,(x) (2.33)

in the notation of (2.28). It is to be emphasized
that the E,.(x) may be specified either over a hyper-
surface, Z(x) (such a,s the one used in defining the
commutation relations earlier), or for all values
of the coordinates ~t'. The first instance corre-
sponds to an initial-value problem, while the latter
describes situations where several of the con-
straints may be time-dependent. In any case the
constraints are imposed in a covariant manner.

Although Jaynes emphasizes that the basic fea-
tures of the information entropy approach provide
a starting point for a theory of irreversible pro-
cesses, "we shall restrict our attention in this
paper to equilibrium processes in curved space-
time. Since the nonrelativistic limit of (2.28)-
(2.30) yields an N-point function formally identical
to the Gibbs grand canonical ensemble average, it
is reasonable to expect, in equilibrium, that one
of the parameters will contain a generalized tem-
perature. " We shall therefore tentatively set X,(x)
= P(x). Consequently the function f,(x) will be ex-
pected to contain the Hamiltonian density operator.
The chemical potential and number operator may
be introduced in the same tentative manner.

In order that the integrand of (2.30) be covariant,
the products A, (x)f,.(x) must transform as scalars.
For this reason the Hamiltonian density K(x) is not
equal to the function fo(x), since it is only one com-
ponent of the energy-momentum density tensor:
X(x) = T"(x). To get around this difficulty, T„,
must be contracted with a second-rank tensor to
make a scala, r. The natural choice, which intro-
duces the physics of the problem, is to define an
orthonormal set of tetrads &

' & (g = 0, 1, 2, 3) in
terms of the observers frame of reference, and a
second set X~'~" in terms of the reference frame of
the system. The two sets of tetrads evaluated at
the same point x" are then used to form the scalar

are non-negative and normalizable:

(2.31)
which represents the energy-momentum density
tensor of the system with respect to an observer.
The @=5 =0 component, defined as the projection
of T„, onto the timelike axis A.

' " and +A.
' of the

system and observer will be taken as the observed
energy density, so that

and that they be consistent with all known con-
straints placed on the system. The latter are rep-
resented by the average values E,(x), i =1,2, . . . , k, .

of an arbitrary (though in most practical instances
small) number of functions of operators f, (x). The
operators entering into the functions f, (x) are as-

(2.34)f, (x) = T""(x)= X"'"( )dx' "(x)Tq,(x) .

In terms of (2.34), the first term in the argument
of p will be
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d'x(-g)"'P(x))(."»(x)X'o'(x)T„(x)
axis, it follows that

f, (x) = y[3C(x) + v6', (x)] . (2.38)
(2.35)

The density operator p is therefore given by"

which, by construction, is a scalar with respect to
arbitrar y coordinate tr ans for mation. V(v)= exp (fd x()'(x)v(ee(x)+vs, (x)}). (2.39)

C. Special-Relativistic Limit

d'»=d„") =(I, o, o, o), (2.36)

The second unit vector, representing the system
S', may be taken as the tangent to the world line
of the center of mass of S', which will be assumed
to travel along the x' axis with velocity p relative
to S. The Lorentz transformation

from S to S' yields the unit vector

d'"=(y, -yv, o, o), (2.37)

where y= (1 —v') "'. Inserting )), '" and +A')' into
f, (x) one finds

f = ) ('X")T"'(x) +) ('d") r"(x)

= y'I '(x) +yvT"(x) .

Since T"(x)=X(x), the Ha. miltonian density, and
T"(x)= 6', (x), the momentum density along the x'

Several examples will be considered which are
illustrative of the method outlined above. It will
be assumed that the system of interest in each
case is described by a classical energy-momentum
density tensor. A quantum system could equally
well have been considered, since the methods ap-
ply to them with the obvious modification that ob-
servable quantities be replaced by operators, and
the average be taken With respect to a complete
set of eigenstates.

The integrand in (2.35) is particularly simple in
the case of flat space-time. The result, which
yields the special-relativistic form" of the density
operator p illustrates the procedure used in con-
structing ensemble averages in general, and
serves as a check of our method. Considering flat
space-time, the metric tensor g&, may be diagonal-
ized g„,=)) „where )), = diag(l, —1, -1, -1), from
which ( —g)'~'= 1 follows. Setting f, = 5,fo(x), the
scalar

f ( ) ) (0))((0) t )))I(
)

represents the projection of the energy-momentum
density tensor onto two timelike unit vectors tan-
gent to the world lines of the observer S and of the
system S' under consideration. The first unit vec-
tor, representing the observer, is taken to be of
the form

Noting that the parameter P(x) plays the role of a
temperature in the above expression, we examine
[assuming A, (x) and g„, to be constant]

1
lntrp(v) = —tr(p(v)y(H+ vP, }],

5P(x) -q() ~ Z

P; (d'x (P, (x—},

respectively. Integrating over three-space yields

Sin Z, 1—,d'x, " = —trp(v)y(H+vP, )
- X;(x).g v

= (y(H "P,)&, (2.40)

The dependence on P(x) of the average above is de-
noted by the P subscript, but (2.40) is independent
of position for g„,= q„,.

It will be noted that (2.40) bears a strong formal
resemblance to the average energy density of a
system moving with velocity v (apart from the fac-
tor y), and reduces for v =0 to the classical aver-
age energy with p(0) given by the Gibbs distribution
function. Since the system is assumed homogene-
ous, we shall set P(x) = P, independent of x. The ob-
servations above strongly suggest that the Lagrange
multiplier P, be associated with the temperature
parameter of the system, and we therefore set
(k = Boltzmann's constant)

P(x)=P, =(kT) '.
The density operator p of a homogeneous system

S', in motion along the x' axis with velocity p rela-
tive to an observer S, is therefore given in the ab-
sence of gravitational fields (g„,=)I„„)by"

p = exp[- poy(H + vP, }]. (2.41)

Z„= trp(v},

where 6/5P(x) denotes the functional derivative
with respect to P(x). In arriving at the expression
above, it has been assumed that the Lagrangian
multiplier p(x) = p(x, t) is independent of time in
thermodynamic equilibrium, and the identity

5p(x')/5 p(x) = 5'(x —x')

has been used. Finally the Hamiltonian II and mo-
mentum P, (along the x' axis) are defined by

H = )/d'x X(x),



RELATIVISTIC QUANTUM MANY-BODY THEORY IN. . .

D. Arbitrary Curvature

The extension of the discussion above to include
arbitrary gravitational fields (g&„4q&„) follows
similar lines, although new features result from
the nonzero curvature of space-time. By way of
illustration, let a background metric g„„be as-
sumed given. The first departure from the dis-
cussion above results from the coordinate depen-
dence of f,(x), not only through the energy-momen-
tum density tensor, but through [—g(x)]'i' and the
unit vectors X')'(x) and )).' "(x). If the observer
and the system are located at different points x"
and x, respectively, then it will in general be
necessary to transport the members of the two
tetrads to a common point when evaluating fo(x).
For example, the timelike unit vector +X')"(x') may
be parallel transported to the event x~:

&(0) & &&0)v
pv

where the prime on the index means that it depends
on the coordinates x'". The two-point tensor g„,
is a function of x and x'8. In such circumstances
f, will be given by

f =x"')("' g r»0 p v p

and is no longer dependent on x& alone, but on the
path connecting g~ and x'~ as well.

The examples above make evident the inapplica-
bility in curved space-time of an earlier assump-
tion that P(x) (or indeed any of the Lagrange multi-
pliers) is independent of x"; although in the case
of certain symmetries the independence of P(x) or
one or more of the coordinates may be established.
An example of the latter is afforded by spherically
symmetric time-independent space-time, where
P(x) is expected to depend only upon one coordinate
~ =x'. This would yield, in the case of a star in
quasistatic equilibrium, a P(x) = P() ) which varies
in the radial direction and is, on the time scale de-
fined by the system, independent of x'. However,
it will be recalled that at any point x", space-time
may be described by the Minkowski metric and

f,(x) reduces to the special-relativistic form dis-
cussed above. Therefore in a small enough neigh-
borhood of x" it is still possible to associate P(x)
with a, temperature parameter. "

The partition function Z(g) will now depend upon
the geometry of space-time. In analogy with (2.40}
the thermodynamic quantities will be given in
terms of functional derivatives of Z(g), and will
also depend upon gravitation. Consider, for ex-
ample, the average of T(0') (x) [in the sense of
(2.28)-(2.30)]: In curved space-time we have

In flat space-time (g= )}=det))„, ), (2.42) reduces to
the usual thermodynamic expression for the aver-
age energy density of a system at temperature 7
=(Pok) ', further motivating the association of.

p(x} with a temperature parameter. Similar tech-
niques apply to any remaining I agrange multipliers
))., (x).

In the functional derivatives with respect to P(x)
above it has been assumed that g&, is held constant
[as well as the X,.(x) for i 40]. Consider the func-
tional derivative of Z(g) with respect to g„, for
fixed )).,(x) [including P(x)] and fixed f,.(x). Then it
is trivial to show, using

()(-g)"' = -l(-g}'"g'"&g„„,

that the parameter P(x) is given by

1 () ln Z(g)Px =-. —— ~&u2F, (x) ()g„, "' „,(„)~,(„)

The average energy F,(x) of matter at the point x('

is defined in accordance with (2.32):

I;(x)= —trpf, (x) .

E. Newtonian Limit

Returning to the general form of f,(x) and p, we

mention two problems which may be explored in
terms of the formalism outlined above. As long a"
attention is restricted to curvature of space-time
which is small compared to macroscopic dimen-
sions of the system under consideration, the linear-
ized version of Einstein's theory may be used. The
results would be of interest for two reasons: (1)
They permit the calculation of relativistic correc-
tions to the equations of statistical mechanics; (2)
the leading-order correction M((/) c' is proportion-
al to the Newtonian potential due to a gravitating
mass M. Consequently the nonrelativistic limit in-
cludes the effects of classical (Newtonian) gravity
as the correct limit of the theory of gravitation.
Such an approach may shed light on the difficulties
associated with gravitational fields in classical sta-
tistical mechanics.

Basically the approach to eit:her problem above
begins with the assumption that the metric tensor
may be written as"

Npv ='Opv+&pv ~

neglecting terms of order It' and higher. The devi-
ation of g„, from flat space-time is given by y„„
which satisfies the linearized equation

y„„'„= 2(((r„„,'))„,r"-.) . --
5 lnZ(g) 1 „(„)

p( )
=

~) trp(g)T" (x). (2.42) The timelike unit vector describing an inertial ob-
server is given by (2.36),"
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)).(o)" = )).(,)„=(1,0, 0, 0),
while the timelike unit vector X' " describing the
reference frame of the system may be taken as the
timelike solution of

X'„'(x)X,(,)(x) = ))„„+)„,(x) + O(((') .
Expanding in powers of K,

V() =&~&)+~~()(x)+o(~'),
j.'a)

O~fj '

In terms of +)(.
' " and )).

o ' above, (2.34) becomes

f, (x) = T"(x) + (d) '„"T'" + O(~')

= 11 + A,' (x)]K(x) + A ', (x)6"(x) +O(K ),
(2.44)

where d"(x) =T"(x) (i =1,2, 3). It will now be as-
sumed that the velocity of the system v (with re-
spect to the observer} is small v'/c' «I and will
in fact be set equal to zero. It could be included,
but it does not change the over-all approach below.
The A~„'~ then describes a system at rest at x" with
respect to the inertial observer A, „' . As a conse-
quence no special-relativistic effects will appear
in (2.44). The corrections due to small departures
from flatness are seen to be proportional to g. The
correction to the Hamiltonian density, proportional
to h~')(x}, will be discussed below. The second cor-
rection, proportional to the momentum density
6"(x), is multiplied by hIo)(x) which by a. proper
choice of coordinates may be made to vanish for a
static, spherically symmetric matter distribution.
It is expected, however, to contribute for a non-
static field such as that produced by a rotating
body.

It is straightforward to show that (2.44) takes the
following form for space-time described by the in-
terior Schwarzschild solution:

center of the mass M to the system. Denoting the
Newtonian potential by y(r) = M-w/r, the density
operator p may be written

p= exp-
)

d'xP(x)X(x) 1++, +O()(') .y(r)
c

Notice that since the metric is static and Z(x) is a,s-
sumed to describe a system at rest, the integral
appearing in p is over three dimensions. Then the
Ha.miltonian density is T" =X(x) = pc' with p(r) the
density of the system. If p(r) is assumed to be
nearly constant over a small region 0 located a dis-
tance g from the mass M and zero elsewhere, then

p is approximately

p= e&p -pc'[I+(p(R)] d'x p(x)
40

+ pc* d'x ()(ir)rI .
~ n

The first term in the exponential is the rest ener-
gy density plus the gravitational potential energy
per unit volume at R. We might interpret the inte-
gral

—
(

d'x P(x) = (T) '
0 ~g

as the inverse average temperature. The second
term in the exponential above would then represent
corrections due to the inhomogeneity of the system
due to the gravitating mass M.

An alternate interpretation results if the integral
appearing in p is written as

d'xX(x) 1+, P(x)
y(r)
c

d'x p(x) 1+, c'P, — ' d'x p(X)r P,
y(R).

. . - y(R)
+0 8

2

f,'"'(x) = 3C(x) 1 —, 3 —, +O(g'),
2C X'p J'p

where the matter distribution is of radius ~p &x,
density p, = const, and mass M= 4mp, r, '/3. We rec-
ognize in the term proportional to g the ratio

zM z' gravitational potential energy
2

— 2— rest energy Newtonian

in the Newtonian limit for a system inside a spheri-
cally symmetric distribution of uniform density pp
and mass M.

Repeating the analysis above for the exterior
Schwarzschild metric, it is trivial to show that

where r= (x'+y'+a')"' is the distance from the

Ppmc' 1+ 2
— —

Pp d xp x r(p(R) y(R)
~a

having required that P(x) = (3„ independent of %.

The leading term is the product of the rest energy
of the system times the temperature T defined by

T -&-yP, &+ ~,

Defining the temperature in the absence of gravita-
tion T, by T, = (kP, ) ', it follows that

T, = T,/(1 -Mx/Rc')

which will be recognized as the Newtonian limit of
the temperature"

T, = [~„(R)]"'T„
where g» = 1 —2MK/Rc'.
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It is interesting to note that the two formally dif-
ferent definitions of temperature result from the
same initial approach. This should serve to empha-
size the operational nature of any definition of tem-
perature in the presence of gravitational fields.

The thermodynamic average (2.28)-(2.30) has
been postulated for systems in curved space-time,
and its validity suggested by the nonrelativistie and
flat space-time limits. Nevertheless it would be
comforting to construct other arguments which
would compare its general-relativistic character
with existing theories. One such approach might
be to find a connection between quantities contained
in the formalism above and the results of general
relativistic kinetic theory. It might then be possi-
ble to relate such parameters as P(x) [and the re-
maining A, (x)] to quantities in kinetic theory which
are physically defined in curved space-time, rath-
er than in the flat-space-time limit only. This, it
is felt, would lend solidity to the definitions above,
and may go a long way towards the formulation of
a general-relativistic statistical mechanics.

III. RELATIVISTIC MANY-BODY THEORY:
FLAT SPACE- TIME

and

r" (x) =y",

(3.1)

(3.2)

where y" satisfies (2.25). For simplicity a Carte-
sian coordinate system

x" =(i, x, y, a)

The equations of the preceding section constitute
the starting point for the construction of a relativ-
istic quantum many-body theory in curved space-
time. These equations lend themselves easily to
the construction of integral expressions for the
Green's functions. However, efforts to include
boundary conditions are frustrated by the relative
complexity of Fourier decompositions of the non-
interacting curved-space-time Green's functions
compared to their flat-space-time counterparts.
Fortunately it is possible to circumvent this diffi-
culty by working in terms of expansions of g„,
about q„„which contain fur =-tions of the geometry
and flat-space-time propagators. As will be seen
in subsequent sections, the thermodynamic bound-
ary conditions may be imposed through these flat-
space-time propagators. For this reason it will be
necessary to construct the flat-space-time thermo-
dynamic Green's functions. The complete curved-
space-time Green's functions will then be presented.

The requirement that space-time be flat is satis-
fied if

will be used throughout this section, in which case
q„, is the Minkowski metric

1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

(3 3)

and the y" will be coordinate-independent. The
equations of motion (in terms of unrenormalized
fields) follow from (2.21) and (2.22), where covari-
ant derivatives reduce to partial derivatives":

(iy" 8 „-m + 5m) q(x) = igoy'q(x)y(x),

(»& „+p,
' —5g') y(x) = -ig, q(x)y'q(x) .

(3.4)

(3.5)

A. Fermion Two-Point Function

S(x —x') = -i(Tg(x)P(x')), (3.6)

where the fact that the system is homogeneous has
been used. Equation (3.6) satisfies the equation of
motion

(iy" 8 „—m, )S(x -x') = 5'(x —x'), (3.7)

where mp is the bare mass of the fermion. In or-
der to construct the Green's function, one follows
the usual procedure, defining the Fourier trans-
form of S(x —x'):

d4~S(x-x')= e "'" *'S(p)
1T

(3.8)

where p ~ x = p„x"= q„,p"x" Substitut. ing S(x -x')
as given by (3.8) into the equations of motion, it
follows that

( )
p+mo 1 1
2E Pp —E Pp +E

P P

(3.9)

We have defined the 4-momentum p& = (p', p) with
p'=p„denoted the energy by E- = (p'+m, ')'", and
set

The construction is complete as soon as the bound-
ary conditions defining the behavior of S(p) in the
neighborhood of the singularities pp +Q and the
nature of the states entering into the expectation
value of (3.6) have been specified. The three ex-
amples mentioned in the preceding section will be

The immediate purpose will be to construct from
(3.4) and (3.5), for the case of a noninteracting sys-
tem (g, =0), the thermodynamic two-point functions
for relativistic fermion and boson fields. By ther-
modynamic we mean that the system is at finite
density and finite temperature.

Consider first the two-point function for spinor
fields:



R. L. BQWERS AND R. I . ZIMMERMAN

considered.
lf the definition (2.26) is adopted, with N= 2,

&(x,) = ill(x), and B(x,) = itl(x') and the vacuum is as-
sumed normalizable, then one choice of boundary
conditions results from the addition of an infinitesi-
mal imaginary part te (e -&0) to the energy

E -E —ie.
P P

The result, Sz(p), is the familiar Feynman (or
causal) propagator which describes the motion of
free particles and antiparticles forward in time. "
The poles of S„(p), which depend on m, and p, are
shown in Fig. 2.

For a many-body system in its ground state, the

finite density of the medium through mrhich the par-
ticles propagate may be introduced in the same
manner that finite density is introduced in the non-
relativistic construction of zero-temperature
Green's functions. " The ground state, for the
case of N~ particles and N, antiparticles corre-
sponding to the field i(l(x), is IC„„-)which will be
assumed normalizable. In the ground state all
fermions and antifermions will lie in their lowest
states consistent with the Pauli exclusion principle
(assumed to hold in the absence of interactions for
particles and antiparticles separately). " The maxi-
mum momentum, the Fermi momentum, of each
noninteracting system is given, at zero tempera-
ture, by the expressions

Zm po
Pp = 3s no = 3w N~/V &

P~ = 3x no = 3n N~/P. '

(3.10)

(3.11)
-Ep+ I E'

X

—Ep + I%, Ipl + pF
X

—Ep —I&, Ipt + pF

ZITI P

, Irn p

(c)

X

Ep-IN

Re po

sp-ie, lgl & pF

Ep + lc,

libel

& pF
0

Ep -i~, Ipl & pF

ep tie, llfl & p~
0

Re p4

Re p~

The number density of particles and antiparticles
has been denoted by n, and n„respectively. Equa-
tions (3.10) and (3.11) hold for fermions of spin
one-half. The magnitude of the Fermi momentum
(which for free particles in flat. space-time is iso-
tropic) has been denoted by ps and p~ for particles
and antiparticles, respectively. Note that there
are two distinct Fermi seas which are filled.

The Pauli principle dictates that no particle with
momentum lpl &p~ may be added to the system,
with a similar constraint for antiparticles with mo-
mentum lpl &p~; nor may particles with lpl &)7~ be
removed from the system, etc. In order that these
constraints may be included as boundary conditions
on S(p), as well as the requirements of causality
which lead to the particle-antiparticle interpreta-
tion of the poles Rep, =+E, the infinitesimal imagi-

pnary functions -id~ and -i5~ of the momentum p
and Fermi momenta p~ and p~ shall be added to the
positive- and negative-energy poles respectively
of (3.9):

E E —i6
P 7

—E -E +imp .
P P

FIG. 2. The poles in the complex po plane of the two-
point function S(p) are shown for three cases: (a) the
relativistic elementary particle causal propagator Sz{p),
where positive- (particle) and negative- {antiparticle)
energy states appear; (b) the nonrelativistic causal prop-
agator for a thermodynamic system, where the antipar-
ticle states are absent. The position of the pole depends
upon the sign of lpl -pz, lying below the real axis (X) for
lpl&p~ and above (0) for lpl &pz (holes); (c) the relativistic
thermodynamic causal propagator Sz{p, pz, pz), where
both particle and antiparticle states appear as in (a).
However, the finite density of the system results in two
new states corresponding to holes. The position of pos-
itive- and negative-energy poles with respect to the real
axis depends as in (b) on the sign of Ipl-pz and Ipl-pz.

The functions 5 and 5~ are defined such that

The momentum and density dependent poles which
result are shown in Fig. 2. The consequence of
these restrictions is a relativistic noninteracting
Green's function describing the behavior of an add-



RELATIVISTIC QUANTUM MANY-BODY THEORY IN. . .

ed fermion (particle or antiparticle) to a system
of N~ particles andF~ antiparticles in its ground
state, and is easily shown to have the momentum-
space representation

and

IPI&p
n (P)=

0 III &p,
(3.13)

rv~(p) =

lpl&P .
(3.14)

Finally, Sz(x —x; p, p) is given by the Fourier
transform of (3.12) according to (3.8).

Physical arguments have been used to motivate
the definition of the fermion two-point function. It
is possible to derive (3.12) from (3.6) using the
average (2.27), and the solutions to the Dirac equa-
tion. The procedure is straightforward and will
not be given here. The general method is identical
to that used in the case of bosons, which is outlined
in Appendix A. Such derivations serve as guides to
the construction of Green's functions. However it
is to be empha, sized that (3.12) may be taken as the
definition of S~(p, pz, Iy~), thus liberating it from
any limitations of quantum field theory.

The final step in developing a relativistic nonin-
teracting thermodynamic Green's function in flat-
space-time is the generalization of (3.12) to cover
systems which are not constrained to lie in their
ground state. This is most easily effected by ex-
amining the boundary conditions imposed on Sz(p)
in the discussion above. Noting that the step func-
tions n~(p) and n~(p) defined by (3.13) and (3.14)
may be interpreted as particle and antiparticle dis-
tribution functions at zero temperature, and recall-
ing that the principle effect of finite temperatures
results in assigning states with momenta IpI&p~
and IpI &p~ a nonzero probability of occupancy, it
is obvious that nz(p) and nz(p) should be general-
ized to the temperature-dependent Fermi-Dirac
distribution functions:

1
expiP(Z —g)]+I ' (3.15)

p'+m, 1 -n~(p) n~(p)
2E p, -Z +te p, -p. -t'e

P p P

1-n (p) n (p)
p +E —ic p +F +is

P p

(3.12)

The density of particles p= m~, and of antiparticles
p=mono are parametrized by the Fermi momenta

p~ and p~ through (3.10) and (3.11). At zero tem-
perature the noninteracting fermion functions nz(P)
and nz(p) are defined by"

n p;p)=
1

expI P(E —p)] +1
P

(3.16)

The temperature is related to P by Boltzmann's
constant k through the relation P= (kT) '. The par-
ticle chemical potential p is related to the number
density in the usual way:

d (3.17)

A similar result relates the antiparticle chemical
potential p to n, :

n, =~ =2 2, n~(P, P). (3.18)

The factors of 2 above account for spin. The rela-
tion between nz(p, P) and nz(p, P) are shown in Fig.
3. The energies E- and E, and the chemical po-
tentials p and p in he exponentials of (3.15) and

(3.16) are physical quantities which are positive.
For free particles with energies E = (IpI'+m, ')"',

P
the chemical potentials are

))(p~) = (p~'+ m, ')"',
P(P~) = (P~'+m, ')"'.

(3.19)

(3.20)

Ep
hol es

%C
nz(p, p)

nF( p, p)

EF

I

l

I

I

I

I

antiholes

FIG. 3. The particle and antiparticle distribution func-
tions nz(p, P) and nz(p, P) are shown as a function of
the physical energy E& for a given temperature. There is
a gap for 0 & E& & rnc . The physical energy is positive
for both particle and antiparticle states. In general, the
Fermi energy Ez need not equal E~. The unfilled states
with IpI&p& correspond to holes in the particle Fermi
sea. The anfi11ed states with IpI&pz in the antiparticle
Fermi sea correspond to what might be termed "anti-
holes. " In the absence of interactions the particle and
antiparticle systems behave as separate independent com-
ponents, each of which contribute to the pressure, densi-
ty, etc. of the system.



R. L. BOWERS AND R. I . ZIMMERMAN

Replacing the step functions in (3.12) by the tem-
perature-dependent distribution functions nz(p, P}
and n~(p, P}, we arrive at the relativistic thermo-
dynamic two-point function with momentum repre-
sentation:

p'+m, 1 -n~(p, P) n~(p, P)

P P P

I-n (P, P) n (p, P)
Po+E —zE po+E +Sf

5P P

(3.21)

At finite temperature the density of the system is
parametrized by the chemical potentials p, and p
through (3.17) and (3.18). Equation (3.21) will be
denoted in coordinate space by S~(x —x', p, p; P),
where p and p are the particle and antiparticle
densities, respectively.

The physical significance of the poles in (3.21)
should be obvious. The singularities p, = E-+ i&

correspond to quasiparticles of energy E- = ( ~p~'

+m, ')'~', momentum p, and spin —', . At zero tem-
perature n~(p, P) reduces to n„(p) given by (3.13).
The first term is then nonzero, corresponding to
the addition of a particle, with momentum outside
the Fermi sea I&p~, to the N-particle system
For ~p~&p„ the numerator of the first term vanish-
es, and the second term describes the removal of
a particle (E &0) from the N-particle system. But
this is just the relativistic extension of the well-
known quasiparticle state of many-body theory.
The states resulting from the removal of a particle
with energy E &E~ will therefore be called "holes. "

P
These states are not to be confused with the parti-
cle-hole interpretation of the Dirac sea of negative-
energy particles, since we are talking only about
the positive-energy part of the propagator. The
difference, it will be recalled, between "particle"
and "hole" states in the quasiparticle sense is mea-
sured with respect to the Fermi sea, and no ener-
gy gap exists between the two; whereas the differ-
ence between particle and antiparticle states in the

Dirac theory is measured with respect to zero en-
ergy, and an energy gap of 2m'' does exist between
the two. Therefore the first two terms of (3.12) de-
scribe the quasiparticles of a noninteracting sys-
tem of N relativistic fermions at zero temperature.
A similar analysis shows that the remaining two
terms of (3.12) with poles p, = -E +is correspond

P
to antiparticles of energy E &0, momentum -p,
and spin 2. For ~p~ &Pz, the third term describes
the addition of an antiparticle to the system of N
antiparticles. If ~p~&Pz, the fourth term describes
the removal of an antiparticle of energy E &E~

P.from the system of N antiparticles, which is to be
interpreted as the addition of an "antihole, " in anal-
ogy with the quasiparticle convention established
above. The quasiparticles of an antiparticle sys-
tem are seen to be contained in the negative energy
part of S~(p, p~, p~). Relaxing the constra. int on the
temperature, the distribution functions nz(P, P) and

n~(p, P) make allowance for holes and antiholes with
momenta above the Fermi momenta p~ and p'~, re-
spectively, and the addition of particles or antipar-
ticles of momenta less than p~ and p~, respective-
ly. The four possible quasiparticle states of an N
particle and N antiparticle system are summarized
in Table III.

Examination of the poles of Sz(p, p; P,;P) in Fig. 2
shows that there exists a fundamental physical dis-
tinction between the singularities resulting from the
relativistic nature of the theory (p, = +E +i@), and
those resulting from its thermodynamic or finite-
density nature (p, = +E +is). In the nonrelativistic
limit the negative-energy poles do not contribute,
and the mell-known fermion thermodynamic Green's
function results:

lim S~(p, p,, g P) = G~~~(p, (u; P)

I-n (p, P) n (p, P)
(d —$(p) +l6 (d —h(p) —ZE

where the energy 8(p) =p'/2m, nz(p, P) is given by
(3.15) with E-- S(p), and the chemical potential is

TABLE HI. Collective states of the fermion two-point function as determined by the poles of Sz(p; p, p) in the corn-
plex po plane. From left to right the columns give (1) the pole in the complex plane; (2) the half-plane in which the in-
tegration is closed, with the real axis as part of the contour; (3) the restrictions on the momentum; (4) the resulting
state in terms of the quasiparticle nomer clature of many-body theory. The third column applies only to the case of
zero temperature, and would be replaced at finite temperature by a probability assignment through nz(p, P) or nz(p, P).

Contour closed in Momentum Quasiparticle state

E —sc
P

E~+ bC
P

-E +ie
P

lower half plane

upper half plane

upper half plane

lower half plane

fpl&p~

I Pl &P&

IPI&p&

lil &p~

"particle"

"hole"

"antipar ticle"

"antihole"
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measured with respect to zero energy. The rela-
tivistic zero-density limit, in which the terms con-
taining the singularities p, = +(E-+ i e) vanish, re-
duces to the fermion propagator from relativistic
quantum field theory:

lim S~(P, g, p; p) = S„(p)
N, M~0

+ PPgo

~0 +

It is easily shown that the Fermi momentum and
energy transform as the components of the 4-mo-
mentum pz&= (E~,pF), with a similarly defined Pz"

for antiparticle components of the system. It fol-
lows therefore that if in one frame of reference a
guasiparticle with 4-momentum p" = (E-, p) exists
such that Ez &E~ and ip~&p~, then under the Lor-
entz transformation which takes p" -p'" = (E~, p')
and P~-p~" = (E~,p~), one finds Ef,&E' and ~p'(
& pF. Consequently an elementary excitation re-
mains an elementary excitation of the same type
under a Lorentz transformation. Since the distinc-
tion between noninteracting particles and antiparti-
cles is well known to be invariant, it follows that
the concept and type of quasiparticles for a nonin-
teracting system of particles and antiparticles is
Lorentz-invariant. The problems associated with
the transformation and invariance of thermodynam-
ic quantities, such as temperature, free energy,
etc. , in flat-space-time have been discussed in the
literature. "" The reader is referred to the arti-
cle by Balescu for a historical review of this prob-
lem, as well as a discussion of relativistic statisti-
cal mechanics in flat-space-time.

B. Boson Two-Point Function

The two-point function describing the propagation
of a spin-zero boson in a relativistic system of N~
particles and N~ antiparticles will now be discussed.
For noninteracting systems, only the number of bo-
sons present will enter into the argument, so that
N~ and Ã~ will be understood to denote bosons only.
The presence of fermions will enter only when in-
teractions between fields are considered in the
next section.

In the interests of generality, a complex pseudo-
scalar field y(x) will be considered, whose equa-
tion of motion in flat-space-time is given by (3.5):

(8 "s„+p.,')a(x -x') = -5'(x -x') . (3.23)

The Fourier transform a(k) is defined according
to earlier conversion by

a(x —x')=, e '"" "'S(k)
" d'k

(2v)' (3.24)

As in the previous section translational invariance
has been assumed. The 4-momentum is k" = (k', k).
The solution to (3.23) in momentum space is easily
shown to be

1 1 1
a(k) =

2(d ko —(d ko + co~
(3.25)

(3.26)

1
I p( ) I

(3.2'I)

At a critical temperature, the chemical potentials
equal the lowest energy of the particles present in
the system and Bose-Einstein condensation occurs.
Above this temperature, g and ( are determined by
the relations

in terms of the single-particle energy ur =(k'
k

+ p, ,')"', subject to suitable boundary conditions
at k'= p.,'.

The boundary conditions which are to be intro-
duced in (3.25) may be deduced (with a bit more dif-
ficulty, due to the nature of the statistics imposed
on fields of integer spin) along lines similar to
those of the preceding section. Such an argument
is, however, indirect. The relative simplicity of
the pseudoscalar field makes it an ideal vehicle for
a digression into the general method whereby finite-
temperature and finite-density Green's functions
may be derived within the framework of relativist-
ic quantum field theory. The method is of signifi-
cance in that it is simple, straightforward, and

may be applied to fields of arbitrary spin and
charge. The details are given in Appendix A.

The average appearing in (3.22) is given by
(2.28)-(2.30). The trace is over a complete set of
states labeled in part by the energy &- and the num-
ber of bosons N~ and antibosons Ã~. Define the
chemical potentials g and g of the boson and anti-
boson systems through the relations

N~ dk
(2 ), ne(k, p), (3.28)

a(x -x') = -i(Ty(x)y*(x'))

and is a solution of the equation

(3.22)

with a similar equation for the complex conjugate
filled y "(x). The unrenormalized ma, ss is denoted
by p.„which is the same for both fields. The bo-
son two-point function is defined by

Ng " d Jmt.
'

( ), n~(k, p), (3.29)

where V is the volume. Below the critical temper-
ature the chemical potentials are given in terms of
the number of particles in the condensate. "

In terms of the quantities defined above, the bo-
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son two-point function for a finite density and tem-
perature system is given (Appendix A) by"

1+n, (k, P) n, (k, P)

u

1+n, (k, P) n, (k, P)
kp+ cL) p zc kp+ 4) g

+zE'

whose Fourier transform is denoted by b,z(x —x';
N, N; P). The number density or chemical potential
of each subsystem may be used to parametrize the
thermodynamic nature of the Qreen's function.

In the limit of zero density, the terms na(k, P)
and na(k, P) vanish, and (3.30) reduces to the boson
propagator in relativistic quantum field theory'.

lim b,,(k, g, g; P) = ~,(k)
Np, Ng ~p

1
—Pp +zc

Next consider the nonrelativistic limit, in which

~~ =(lkl'+~. ')"'- &(k)+v. .

The negative-energy terms vanish in the limit
p.p- ~, leaving

trivially be taken, yielding results in agreement
with those in the literature. In the case of flat
space-time it is found that the N-point functions
are determined by an infinite hierarchy of coupled
integral equations which contain higher N-point
functions (consistent with a given interaction). The
thermodynamic nature of the problem is then in-
troduced through the homogeneous terms in these
integr al equations.

The resulting set of equations for the Qreen's
functions (in flat space-time) may be attacked by
conventional methods of perturbation theory. Re-
normalization to physical quantities (which are in-
dependent of density and temperature) is achieved
in the usual manner, although slight complications
occur if renormalization to effective masses, etc.
is desired. This will be discussed in more detail
in Sec. V. The point to be emphasized, however,
is that the thermodynamic nature of the equations
results in no fundamental changes in the approach
to the equations, although it does complicate the
algebr a consider ably.

The equations have been investigated to second
order in g for a system of baryons with a Yukawa
coupling, the results of which will be published in
a later paper.

1 1+n (k) n (k)
2p, o (u —$(k)+ie &u —8(k) —i.e

IV. RELATIVISTIC MANY-BODY THEORY:
CURVED SPACE- TIME

This may be compared with the nonrelativistic
limit of S~(P, p, p, ; P) given earlier. It will be seen
that although the denominators are identical, apart
from a difference in rest mass, the numerators
reflect the different statistics which the two fields
obey.

C. Interactions

The noninteracting relativistic Qreen's functions
developed in this section contain the boundary con-
ditions on density and temperature for a many-body
system of fermions, bosons, and their antiparti-
cles. It is now a simple matter to introduce inter-
actions (in flat space-time) between these particles
relativistically. Recalling that the functional-de-
rivative approach developed by Schwinger has been
applied in a I orentz-invariant manner to the theory
of elementary particles, "and that it has also been
applied to nonrelativistic many-body system, " it
is natural to consider the generalization of this
technique to the thermodynamic region discussed
above. Just such an extension has been developed
by Fradkin. " The extension to include gravitation-
al fields (in a manner consistent with Einstein's
equations) is straightforward„and will be found in
the next section. Its flat-space-time limit may

The previous restriction on the metric will now

be lifted, and the general ease of a re1.ativistic
system of interacting elementary particles in
curved space-time considered. As will be shown,
the curvature of space-time is expected to make
significant contributions to the strong interactions
and to the thermodynamic nature of the system as
a result of its finite density. It is to be emphasized
that only c-number metrics will be considered, and
the quantum nature of space-time will be ignored.

The equations determining the exact interacting
thermodynamic two-point functions in curved
space-time will be presented first. Curved-space-
time two-point functions in the absence of elemen-
tary particle interactions'will be examined, and the
question of boundary conditions considered. It will
be shown that the finite density and temperature of
the many-body system (including particles and an-
tiparticles) may be introduced through flat- space-
time propagators. It is partly for this reason that
we have dealt so extensively with the special ease
of Minkowski space in the preceding section.
Physically it is not surprising that the thermody-
namic boundary conditions enter through flat-
space-time propagators, for they are a conse-
quence of the local dynamics that have been as-
sumed, as well as of the local nature of the statis-
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TABLE IV. Existing methods of constructing Green's functions are summarized in the table above. From left to right
the columns list (1) a representative reference to the approach; (2) the dynamics which are included; (3) the thermody-
namic nature of the system, determining the type of states that enter into the definition of the Green's function; (4) type
of Green s function as determined by the way in which boundary conditions are imposed; (5) whether or not gravitation
is included within the formalism.

Reference Dynamics
Thermodynamic
nature of system

Green's
function Space-time

8ogoliubov
and Shirkov ~

Fradkin"

Fradkin b

Martin and
Schwinger c

Utiyama ~

Relativistic

Relativistic

Helativistic

Nonrelativistic

Relativistic

Zero density

Zero density

Finite density
and temperature

Finite density
and temperature

Zero density

Time
dependent

Time
dependent

Imaginary
time

Time
dependent

Time
dependent

Flat

Flat

Curved

' N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Interscience, New York, 1959).
E. S. Fradkin, in Quantum Field Theory and Hydhodynamics, edited by D. V. Strobel'tsyn (Consultants Bureau,

New York, 1967).
'P. C. Martin and J. Schwinger, Phys. Rev. 115, 1343 (1959).

R. Utiyama, Phys. Rev. 125, 1727 (1962).

ties (Fermi-Dirac or Bose-Einstein) imposed on
identical particles. Since it is always possible to
find a coordinate transformation which eliminates
the effects of gravitation at a point, the local ef-
fects discussed above may be introduced in flat
space-time. This will be shown in detail below.
This does not imply that gravitation will not con-
tribute to interactions, for the simple reason that
the latter give extent to point particles. It is there-
fore impossible by coordinate transformations to
eliminate gravitational contributions to the interac-
tions of physical particles.

A. Interacting Two-Point Functions

Equations for the exact interacting two-point
functions corresponding to the fermion fields g(x)
and the boson field y(x) will now be given for a
relativistic thermodynamic system in curved
space-time. The equations of motion for the fields
g(x) and y(x) are given by (2.21) and (2.22), and are
coupled to Einstein's field equations through (2.23).
In the pressure of interactions, the curved-space-
time fermion two-point function will be denoted by
G(x, x'), while the corresponding boson two-point
function will be denoted by D(x, x').

Equations defining G(x, x') and D(x, x') may be

derived by a modification of the method of func-
tional derivatives developed originally by Schwin-
ger. Table IV summarizes the areas in which this
approach has been used. Restrictions on the met-
ric which enable one to generalize the flat-space-
time derivation to include gravitation are discussed
in the literature. The fundamental difference be-
tween the zero-density curved-space-time equations
and those needed to describe many-body systems
lies in the use of (2.28)-(2.30) for the N-point
functions. The generalization to include many-body
effects in curved space-time is straightforward.
For this reason the results will be stated below.
The derivation of G(x, x ) is outlined in Appendix

B, from which the extension to describe other
fields and higher N-point functions is obvious.

Starting with (2.21) and (2.22) and the definition
of an N-point function (2.28)-(2.30), it is found
that G(x, x') and D(x, x') satisfy the following equa-
tions, where the particle and antiparticle densities
of the entire system are denoted by p and p. Other
thermodynamic parameters will enter as well; for
example, a generalized temperature which will
be position-dependent. We denote it symbolically
by P. The fermion two-point function is the solu-
tion of

(-g)"'((«"(«) (««-& (««i)-~+&~} (( ,«'; i;))) =«&'«( - )-(«z«)" f& ( (;)"-&(') '*( -, «'; «'Gi, ((«)««

(4.1)
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The self-energy operator, whose density and temperature dependence is understood, is given by

Z (x x') =(g'y'(x) fd zf d y G (x y p p P)[-g(y)]"'r, (x', y]z)d) (x z p p 4)[-g(z)]"'

where the vertex function is defined in terms of the three-point function by the relation

(y )( )rp(xy)p(z))z fd='4 f4'rr f4'gG, (»(; p,, i; g)I 4((-)]"'& ((rr.I(,)[-g(p)]'"

(4.2)

The temperature and density dependence of the vertex function is understood.
The boson Green's function D(x, x') satisfies the equation

(4.3}

(-g)"'[4'z. —r„'»4" p —rrp']' G,(, ', p, ,pg=)- (4— ') —'(-g)"'fd' [-g( )]"'rr(, )yy, (, ';p, p;g).

(4.4)

The polarization operator is defined in analogy with the self-energy by

G,(x, x') =-rg'rz '(x)fd'y f4'z G, (x, y; p, p, d)i-g(y)]"'&(y, »
]
»')[-4 (z)]'"G (z, x ;pp; p'), , (44)

where the density and temperature dependence is understood.
The dependence of the two-point functions on the higher N-point functions is contained in the vertex func-

tion appearing in (4.2) and (4.5).
Equations (4.1) and (4.4) may be written in the form of integral equations containing the noninteracting

two-point functions in curved space-time. They are

G (xx';p, p;g)=G (xx';pp; p)+fd', yfd'zG "(x )r;pp; 4)[-g(y)]', 'g (y, z)[-g(z)f"'G (z, x';p, pp)

(4.6)

for fermions, and

G (x, x';p, p) 4) G'(xx'; p=p; g) +f, yfd4 (zyr'; x py;dp)I-g(y)] 'yrp(y, z)[-g(z)]"'G,(z, x'; p, p; g)

(4.7)

for bosons. The equations above serve as a con-
venient starting point for iterative solutions for a
given metric tensor. Such an approach may be
simplified by diagrammatic analysis as in flat space-
time. Graphical representations of the integral
equations for G(x, x') and D(x, x') (4.6) and (4.7) and
for the self-energy and polarization operators (4.2)
and (4.5) are given in Fig. 4.

The results above, together with the noninterac-
ting curved-space-time functions D~~](x, x'; p, p; P)
and G[FG](x, x",p, p; P) to be discussed below, con-
stitute a relativistic finite-density and finite-tem-
perature many-body formalism describing strongly
interacting elementary particles in curved space-
time. These equations allow in principle for the
determination of the single-particle Qreen's func-
tions D~(x, x'; p, p; P) and G~(x, x", p, p; P), which
contain all relevant information about such matters
as particle spectrum, elementary excitation spec-
trum, effective masses, pressure, density, and
others.

The system of equations (4.1)-(4.5) represents a
complete set of coupled equations for the two-point

functions Gz(x, x'; p, p; P) and Dz(x, x'; p, p; P), in
terms of the three-point function and the metric
tensor g„,. In order to complete the description
of a many-body system in curved space-time, we
show how the equations for g&, (x) (Einstein's equa-
tions) depend upon the matter distribution through
the Green's functions. In the usual approach to
Einstein's equations, the microscopic (nongravita-
tional} behavior of matter is introduced through the
energy-momentum density tensor T„'",, whose form
is assumed a ~iori. Equations (2.23) are then
solved for g„„subject to suitable boundary con-
ditions on the curvature of space-time. The dis-
tribution of matter, as given by T„'",, may there-
fore be considered to determine, through Einstein's
equations, the structure of space-time. In the ap-
proach of this paper T„'", is not assumed, but must
be calculated in terms of g„,. In fact what is
given is a description of allowed elementary parti-
cle interactions through a Lagrangian as well as
the amount of matter present in space-time, from
which the actual distribution (T'„",) and g„, are to
be determined. The upshot, from a mathematical
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G(x, x') G'~'(x, x') G (x,y)~ G(x, x')

G(y, q)

(a)

o(y,f)
~yg

y5(y) r, (q, I z)

the equations of statistical mechanics, in that they
admit the following approximations:

(i) the subvolume of the entire system is macro-
scopically large, but small compared to the curva-
ture of space-time;

(ii) the subsystem is in equilibrium;
(iii) the first law of thermodynamics is assumed

to hold in each subsystem.

It is then possible to express the pressure, vol-
ume, temperature, and partition function in the
form

D(x, x )

+ 77
0"'(x,x') 0 '(x,y) D(z, x')

InZ =P(x)P(x)V.

G(y, f)

7T = y5(y) I's(~, fix)

G(y, q)

(b)

FIG. 4. Diagrammatic representation of the integral
equations (a) for G(x, x') and (b) D(x, x') and for the
self-energy and polarization operators Z(x, x') and
II(x, x'). Heavy lines correspond to exact Green's func-
tions; light lines to noninteracting curved-space-time
Green's functions. The exact function I'&(x, y(s) is rep-
resented by a shaded vertex; the bare vertex by O.

The notation P(x) and P(x) is understood to signify
the location, within the entire system, of the sub-
volume V, and should not be interpreted as coordi-
nate dependence of these quantities within that sub-
volume. Furthermore Z, is evaluated within V,
and its parametric dependence on x will be under-
stood. If we next define the chemical potential of
the system by p, (p„;x) —this may be done in terms
of the two-point function —it is possible to show
that the pressure, within the subvolume at the
point x, is

p(P~)
P(p, , x) —P(0, x) = d p'n, (x, )(')

0

p(p~, x)

lim
x'~x+0 0

point of view, is that the equations determining the
metric and those determining the matter fields are
coupled through T„'"„and must be solved self-con-
sistently, ' from the standpoint of physics, the re-
sult is a more nearly fundamental description of
matter in space=time.

B. Equation of State

A less exact, though interesting situation is one
where contributions to the interactions between
particles due to curvature are negligible, "but
where it is desirable to include the relativistic
nature of particle dynamics and couplings in con-
structing the energy-momentum density tensor.
The procedure is equivalent to calculating the
equation of state for the system, given the relativ-
istic particle interactions. Consider for simplic-
ity a collection of fermions of mass m and ignore
the possibility of real bosons in the system. Such
will be the case if it is assumed that the curvature
of space-time is small across a particle, although
it need not be small over a sample containing a
large number of particles. In the following we
shall, however, assume that it is small over a
region containing many particles. The restric-
tions above result in a significant simplification of

x try'(x) G„(x,x'; p. ', P).

In the limit, x'- x+0 specifies that the hypersur-
face containing x'~ occurs "after" that containing
x". The term P(0, x) represents the pressure at
zero density, and is assumed to be zero. Next
consider the density p, (x) of matter (in the sub-
volume located at x) as seen by an observer mov-
ing with 4-velocity u~(x). Then in terms of the
number density n (x), as seen by a comoving ob-
server

p, (x) =mn, (x)

=m trX( ) (T((x)y" (x) t(t(x)) ()

= -im lim try (x)G~(x, x'; p', P) .
x ' ~x+0

Finally we assume that it is possible to character-
ize the system by the equation of state for a per-
fect fluid

P =P(p„P) .

The energy-momentum density tensor is then
given by

T„",(x) = p, (x)u„(x)u„(x) + P(x)[u„(x)u„(x)—g „„j,
which is expressible in terms of the two-point
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function through the relations above. Consequently, Einstein's equations become

Php)
)t „—-', ry, ,rt=rtxrx ttm rxtxy'(x)(' (x, x';rr, )t)xr(x)x„(x) r(X. 'try (x)G (x, x';X, rt)(xr(x)x„(x) —g„,]Ix ' ~x+0 0

It is to be emphasized that this procedure, as a
result of the restrictions mentioned above, does
not contain the contribution of gravitation to inter-
actions, but does describe relativistic interacting
particles through the two-point function G~(x, x',
p. , P). An analysis which includes curvature on

the microscopic level is possible, though more
difficult because of the possible coordinate depen-
dence of the Lagrange multipliers X, (x) appearing
in the partition function. The most general ap-
proach would involve the construction of T&„ from
a variational principle and the Lagrangian density
for matter fields in covariant form. The expecta-
tion value 7„„=T„", would then be decomposed in
terms of various N-point functions and the result
coupled to Einstein's equations.

C. Noninteracting Curved Space-Time
Two -Po&nt Functions

D "(x,x') = i Zg 'trItpT(p(x)y(—x')). (4.8)

The noninteracting field 91(x) is assumed for sim-
plicity to be real. The density operator p is given
in general by (2.30) and need not be specified in
more detail for the following discussion, except to
note that it is independent ot coordinates. Similar-
Jy the noninter acting fer mion two-point function
1n curved space-tlIHB 3.8

In writing expressions for the interacting curved-
space-tlI'Ile two-polllt fullctlolls (4.6)—(4.7)t QIle

has in mind the possibility of iterative solutions
based upon a knowledge of the homogeneous two-
polnt futlctloI18 G~ (x, x; p, p, p) atl(i Dp (x, x; p, ptp),
plus an ansatz for the vertex function I', (x, y ~z).
It is assumed that the homcgeneous (erIQ is just
the nonxnteractzng curved-space-tame two-point
function which results from setting the strong-in-
teraction coupling constant g =-0. The solution of
the noninteracting equations for the two-point func-
tions in Qat space-time is trivial; however, the
presence of gravitation makes the equivalent prob-
lem in curved space-time more difficult due to
the requirement that (2.23) also be satisfied for
T;;",, (g=0). Throughout the following discussion it
will be assumed that the metric is given, and that
together with D "(x,x') and G "(x,x') it is a self-
consistent solution for g=0 of (2.21)-(2.23).

Using the results of previous sections, the non-
interacting boson two-point function in curved
space-time is defined by

(4.10)

(-g)"'(iy~(x)[S„- I'„(x)]—mJ G'"(x, x') = 5'(x - x'),

(4, 11)

respectively. Et is immediately obvious that the
two-point functions depend upon curvature, and
in the absence of gravitation (g „„=q„,), that they
may be reduced to (3.7) and (3.23). The latter
suggests that the two-point functions be expanded
in terms of the space-time interval II(s, s') which
is defined as the geodesic measure connecting
x"(s) and x'"(s'). Such an expansion has been dis-
cussed in the literature" for the vacuum Green's
function. Denote v(s, s') by

dx" dx'
o(s, s') = —,'(s —s') dsg„„d (4.12)

where s is the path parameter, and set

(4.13)

In the last line the convention used is as follows:
covariant differentiation with respect to xt' is de-
noted by (; p, ) as usual; covariant differentiation
with respect to x'" is denoted by (; p. '). It then
follows that the two-point function in curved space-
time is given by

n

D'"(x, x') =~(x, x')'" Pw„(x,x'), ~(x- x')
n=o 8 Po

„q""(x„—x„')(x, —x,')
2O(x, x') (4.14)

subject to suitable boundary conditions yet to be
specified. The coefficients A„(x, x ) are given in
terms of o(x, x') and the geodesic parallel displace-
ment matrix I(x, x') by recurrence relations. ' The
term 6(x —x'} is just the flat-space-time boson
two-point function satisfying (3.23) and given by
(3.24) and (3.25). Lumping all factors, except
b, (x —x'}, appearing in the right-hand side of (4.14)

(4.9)

where Ij)(x) is the noninteracting spinor field. The
partition function Z, =trp. The two-point functions
D~'~(x, x') and G~')(x, x'), subject to suitable bound-
ary conditions to be examined below, are solutions
of the noninteracting equations of motion, which
from (2.21)-(2.22) are easily shown to be
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into the term C„(x,x'; po), we write

D~"(x, x') =-e(x, x', po)a(x —x') . (4.15)

We hasten to emphasize that the above relation is
purely formal, and that 6(x, x'; p.,) must be deter-
mined self-consistently through Einstein's equa-
tions and D~o (x, x'), which it serves to define.
Setting aside the question of geometrical singu-
larities in 8(x, x', po), it will be observed that the
analytic behavior of D~o~(x, x') is determined pri-
marily through the behavior of A(k) at ko = Po'. The
finite density and finite temperature of the system
are consequently introduced into D~o~(x, x') through
the boundary conditions on b, (k). From the dis-
cussion of Sec. III it will be seen that the causal
propagator describing the behavior of a boson in
a many-body system in curved space-time is
given by

DF (x~ x i p~ pi P) &(x~ x'i po)b, F(x —x ~ p~ p~ P)

(4.16)

In order to break away from quantum field
theory, (4.10) and (4.11) may be taken as defining
relations for the two-point functions in place of
(4.8) and (4.9). The boundary conditions are then
imposed through (4.16), which are a result of
Einstein's equations and (4.10) and (4.11).

Once the boson propagator D~o~(x, x') is known it
is straightforward to construct the spinor two-
point function G~'~(x, x'). From the tensor equations
(4.10) and (4.11) and a knowledge of their proper-
ties in flat space-time it is possible to generate
G '~(x, x') from D~'~(x, x') by operating on the latter
with

D"'(x, x') = g C„(x,x'; po') a(x —x'; p,,) .
n=0

The coefficient C„contains, apart from the mass
differentiation operator, geometrical factors de-
scribing the structure of space-time. The factor
&(x —x') is independent of the geometry S. ince the
flat-space-time propagator is independent of cur-
vature, we may go one step further and define the
symbolic operator 8(x, x'; p,,). When operating on
the flat-space-time propagator 8(x, x', po) gener-
ates its curved-space-time equivalent:

(iy" (x)[s„-I'„(x)]+m,),
where po is replaced by m, in D~"(x, x'). There-
fore

G'"(x, x';m, ) =(f~ (x)[S„-I'„]+m,]D'"(x,x';m, ),
(4.17)

which, by (4.15), may be written as

G"'(x, x', m, ) =(iy "(x)[s„—I'„]+m J e(x, x'; mo)

&&a(x-x', mo).

As in the case of D~"(x, x') above, the analytic
structure of G~o~(x, x') will be determined by the
poles of b.(x —.x';mo) in momentum space. Exam-
ination of (3.9) for S(P) and (3.25) for b, (k) shows,
apart from a trivial change of integration variable
and mass, that the analytic structure of the two
is identical. It is therefore possible to introduce
fermion statistics and the finite-density and finite-
temperature boundary conditions through the term
A(x —x",m, ). The result may be denoted formally
in terms of the operator S(x, x', m, ) which when
acting on the flat-space-time fermion propagator
S~(x —x';mo) converts it into the curved-space-
time propagator:

G"'(x, x', p, P, P) =S(x, x';m, )S,(x-x'; p, P;P).
(4.18)

Equation (4.18) formally denotes the introduction
of thermodynamic boundary conditions through the
flat-space-time Green's function. The operator
S(x, x';m, ) is to be determined self-consistently
through Einstein's equations and G~" (x, x') which
it serves to define.

The usefulness of the covariant Taylor series
expansion (4.14) is obviously limited to small
values of the space-time interval cr(x, x'). This
in no way limits its applicability in treating bound-

ary conditions, and is aptly suited to the discus-
sion of renormalization. ' It will be noticed that
(4.16) and (4.18) contain unrenormalized (bare)
masses.

The expansions above allow us to write the inte-
gral equations for G~o~(x, x') and D~o~(x, x') in terms
of flat-space-time propagators. For the case of
fermions, (4.18) and (4.6) yield

G~(x, x'; p, p; P) =S(x, x'; mo)S~(x- x'; p, p; P)

+
~

d'y J(d'z S(x,y;mo)S~(x-y;mo)[ —g(y)]"'Zc(y, z)[-g(z)]"' G~(z, x'; p, p; P),

with similar expressions for the boson two-point
function, the polarization and self-energy oper-
ator, and the vertex function. It is evident from

these equations that the many-body effects may in
fact be introduced through the homogeneous part
of the flat-space-time noninteracting Green's
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functions.

V. RENORMALIZATION

A feature basic to all many-body theories, in-
cluding those dealing with virtual particles, is
the process of renormalization, by which is meant
the replacement of the mass and charge of each
particle entering into the theory by its observed
value. It is encountered both in elementary parti-
cle physics, as well as in nonrelativistic many-
body theory. Basically renormalization results in
a shift in the values of the mass and charge as a
result of interactions. Before turning to a discus-
sion of the effects of curved space-time on the
renormalization procedure, it is advisaole to
clarify a point concerning the removal of diver-
gences in relativistic quantum field theory. As
mentioned above, all theories (whether or not they
contain divergences) involve renormalization. For
a many-body system this means that the relevant
masses are the effective masses, which depend
not only upon coupling constants, but al.so upon
density and temperature. For nonthermodynamic
systems (e.g. , small numbers of elementary parti-
cles interacting in vacuum) the relevant masses
are the physical masses.

As is well known, many relativistic fieldtheories
exist, where infinities arising in the calculation
of radiative corrections to any process may be
eliminated in the course of renormalization to
physical masses and charges. That this is by no
means the rule is evidenced by pseudoscalar-
meson theory involving derivative couplings,
where regularization is not accomplished by re-
normalization. It is to be emphasized that the two
processes, renormalization and regularization,
are distinct. "

The renormalization of the many-body theory in
curved space-time will be discussed in terms of
the fermion and boson two-point functions and
vertex operator discussed in the preceding section.
The question of regularization will then be con-

sideredd.

The formal renormalization procedure is basic-
ally identical to that used in flat space-time. Re-
normalzzation coeff~cxents z» z» and z, zn addi-
tion to mass counterterms 5m and 5 p, , are intro-
duced, either in terms of fields or N-point func-
tions. Defining renormalized quantities by a sub-
scripts, one sets

y(x) -Z,"'ys (x),

y(x) =Z,"'qrR(x),

gR g™-1Zg 1/2

The two-point functions are then

u(x, x') =Z,O„(x,x'),

G(x, x') =Z, G„(x,x')

and the vertex function is

r, (x, y~z)=Z, 'r, '(x, y~z).

In order to illustrate some of the consequences
of renormalization in curved space-time, the
specific example of mass renormalization will be
used. Throughout the discussion it will be assumed
that the metric is given, and that the results of
renormalization are consistent with it. In flat-
space-time renormalization is most easily dis-
cussed in momentum space, where it is trivial to
solve formally for the wave-function renormaliza-
tion coefficients in terms of the two-point function
on the mass shell, and the vertex operator. The
simplicity of this approach results in part from
the fact that the noninteracting two-point function
takes a trivially manageable form as a function
of momentum. That this is apparently not the case
in curved space-time is suggested by (4.14). Due
to the absence of translational invariance in gen-
eral, the Fourier transforms of G~(x, x') will be
of the form Gz(p, p'). The effective mass m, tq is
then defined as being the zero of the inverse
Qreen's function on the mass shell:

lim G~(P, P'; o.) '=0.
P2,t'2 ~ m, ff

Similarly the boson effective mass p, ,« is given by.

the solution of

lim D„(k, k';n) '=0.
2

The parameter n in the argument of the two-point
functions denotes the density of all particles and
antiparticles in the system, as well as the tem-
perature of the system. Any other thermodynamic
variables which enter will also be understood to be
included. It is to be emphasized that m, ff and p ff

as defined above are density- and temperature-
dependent. Furthermore, as the density is de-
termined by the metric g&„ it follows that the ef-
fective masses will in general depend upon the
curvature of space-time. This is a highly signifi-
cant result for the study of superdense matter,
where curvature may be expected to dominate
elementary particle interactions. "

The renormalized coupling constant, determined
in part by the vertex function, is also expected to
be a function of density and temperature in general.
This raises the intriguing question as to possible
effects on the strength of interactions and bound
states resulting from extreme curvature in super-
dense matter.

It is well known that the infinities arising from
the radiative corrections in the relativistic quan-
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turn field theory of point interactions are unaffected
by the inclusion of c-number gravitational fields.
This has been shown in the Literature for quantum
electrodynamics. " The divergences persist in
the presence of c-number gravitational fields and
the regularization procedure is identicaL to that
used in flat space-time. Since the proof depends
upon the equivalence principle and the point nature
of the interaction, it is expected to hold for the
pseudoscalar coupling discussed above. Conse-
quently, the curved-space-time many-body theory
may be regularized by the introduction of three
quantities: two wave-function renormalization
coefficients and a vertex renormalization coef-
ficient (we ignore the effect associated with the
term" Xy, where A. is a coupling constant, which
is of importance for m-m scattering). The bare
quantities mo, po, and go may be eliminated in
favor of their physical counterparts p+ppysp /phys&

and gphy The latter are independent of density
and temperature, being just the flat-space-time
vacuum parameters normally appearing in rela-
tivistic quantum field theory. It is then possible
to express the physical parameters m.«, p, .«, and

g ff in terms of known quantities:

meff meff(mphyssgphyss &) s

j eff jeff(Pphyss8physs +) s

jeff Jeff (8physs mphys s gphyss +) s

where a denotes the density and temperature of the
system. The procedure above yields a system of
equations which are regularized and which depend
upon physical parameters (mpl y etc. ). They con-
stitute a reasonable starting point for any calcula-
tion involving the two-point functions of a system
of strongly interacting superdense matter in
curved space-time.

VI. CONCLUSION

The result of the previous sections constitute a
relativistic many-body theory, which includes the
strong interactions as given by a theory of ele-
mentary particle physics, as well as the curva-
ture of space-time as determined by Einstein's
theory of gravitation. The discussion has for sim-
plicity been limited to the case of a single spin-one-
half field coupled to a single real spin-zero field
via a Yukawa coupling. The exact two-point func-
tions G(x, x'; p, P ) and D(x, x'; p, P) were dei'ined
as solutions of a set of coupled integral equations,
higher N-point functions, and Einstein's equations,
and depend upon a generalized temperature param-
eter P, as well as the density p of particles and
antiparticles in the system. It was shown that the
many-body effects could be introduced as boundary
conditions on the homogeneous part of the Green's

function G~"(x, x'; p, P) and D '(x, x',' p, P). The lat-
ter are expressed in terms of the corresponding
homogeneous part of the flat-space-time propaga-
tors, and geometrical factors which are function-
als of the metric tensor.

Renormalization and regularization of the equa-
tions was discussed. The renormalization of ob-
servable parameters to their effective values was
emphasized. The effective masses and charge will
consequently depend upon the geometry of space-
time.

In developing the N-point functions in curved
space-time a generalized definition of the statisti-
cal density operator was given, which includes
contributions due to gravitation. Its special-rela-
tivistic limit was shown to agree with previous
results, and its nonrelativistic limit taken. The
latter contains, as corrections to the interaction
between particles, the Newtonian potential energy
of the gravitational field. Furthermore, a posi-
tion-dependent temperature parameter was main-
tained throughout. Further investigation of the
physical significance of the temperature param-
eter, as weLl as other thermodynamic parameters,
in the presence of gravitational fields (as intro-
duced through the curvature of space-time) is
needed. This may be approached either by exam-
ining specific thermodynamic models such as the
exchange of energy between two systems, or by
making contact with general-relativistic kinetic
theory. Such work will be of interest not only as
it affects the generally relativistic formalism, but
also for any insight which it might yield concern-
ing the position dependence of such concepts as
temperature in the presence of gravitational fields
in the Newtonian limit.

A major accomplishment of this work is re-
flected in the fact that it makes no fundamental
distinction between interactions and interacting
particles. At no point in the discussion is it
necessary to separate self-interactions which give
rise to particle structure from the interparticle
interactions reflecting the many-body nature of
the problem. Our approach takes into considera-
tion not only the interactions between particles in
determining the macroscopic behavior of a system,
but contributions due to the particle's structure as
well. Finally it does so in curved space-time,
thereby including gravitational contributions to the
interactions.

Although the entire discussion was developed
a,round a spin-one-half and a real pseudoscalar field,
the method is quite general and may be applied to
systems composed of particles represented by
other fields as well. The generalization to include
more than one field of a given type is trivial.
Other interactions than the Yukawa interaction may
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also be included through additional terms in the
Lagrangian density. In fact, (2.2) may be general
ized to include as many additional fields and inter-
actions as may be of interest for problems of as-
trophysics or cosmology. As an example we have
investigated the equation of state for superdense
matter in flat space-time, using a Lagrangian
density which includes fields representing the first
SU(3)-symmetric baryon octet, and the first eight
mesons in the SU(3)-symmetric pseudoscalar and

, vector octets. An SU(3)-invariant coupling is in-
cluded. The results will be discussed in a subse-
quent paper.

The extension to include gravitation is formally
straightforward, and results from writing the
equations for the additional fields in generally co-
variant form, and coup1. ing them to Einstein's
equations through the energy-momentum density
tensor.

The formalism of the previous sections in the
flat-space-time limit represents a relativistic
many-body theory which is appl. icable to systems
where nonrelativistic theories fai1.. In particular,
it offers a method of studying the equation of state
of superdense matter in a realistic way, which
takes into account in a field-theoretical way the
inter actions between elementary particles. This
makes it possible to extend calculations of macro-
scopic properties of matter beyond the limit
p-10" g/cm', which'marks the terminus of work
based on potentials. There is every reason to
expect that the macroscopic behavior of super-
dense matter will show collective effects analogous
to those familiar at normal densities. Obvious
examples are: effects of screening on the equa-
tion of state; plasma oscillations and vibrational
modes in neutron stars and in gravitational col-
lapse;~ bounds placed in the equation of state due
to causality, ' superfluidity, and superconductivity
due to charged constituents in the stellar cores;
ferr omagnetism~; and Bose- Einstein condensa-

The authors wish to thank members of the In-
stitute of Theoretical Science for their comments
and interest in this work. One of the authors is
indebted to Professor M. Girardeau for bringing
to his attention the work by Jaynes, and for inter-
esting discussions on its possible extension to in-
clude gravitation. Members of the Center for
Relativity Theory are also to be thanked for dis-
cussions of various aspects of this approach.

APPENDIX A

The boson two-point function A~(k, g, t; p) given
by (3.30) will be derived within the framework of
relativistic quantum field theory. The solutions of
the IQein-Gordon equation in flat space-time are

3

p(x) =f )2,2 ),)„,[a(k)e "'*~ I '(k)e"'*],
2(d ] (277

(A1)
3

rp"(x)=J
)~ (2 ),)„,)a (ic)e"*~ )(%)e "'*),

(A2)

where b ~ x=&@),t —k ~ x. The operators a(k), b(k),
etc. satisfy the commutation relations

[a(k), a (k')] =b(k —k') =[b(k), b (k')],

[a(k), a(k')] =[b(k), b(k')] =0.

(A3)

(A4)

All other combinations have zero commutators.
Substituting (A1)-(A2) into (3.22) gives

tion of integer-spin particles such as pions in
stellar interiors, to mention but a few of the ef-
fects which have been discussed in the literature.
The treatment of such topics as these at densities
p& 10" g/cm' requires a fully relativistic many-
body theory of strongly interacting matter, such as
the one presented above.
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~,(x —x') =-te(t —t')(q (x)q *(x')), —te(t' —t)(q +(x')q (x)),

d k
3
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~ I ~ I

~
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~ ~ t
e ~ I6'0

((a(k)a+(k)) &~'b ""e '~&& ~ )y(b~(k)b(k))
(277) 2' 2CO), (d +tE

(~k)) -i)) (x-x ') «u(t-t') +(b(k)b&(k)) fk (x-x ') I tv(t t')]-
(A5)

In arriving at (A5) use has been made of the com-
mutation relations, and the time-ordering operator
has been written in terms of the step function
8(t —t'). Finally an integral representation for
8(t —t') has been used to introduce the integration
over a&. The expectation values appearing in (A5)
are reducible, through (A3), to the two terms where

=H, (a, p), (AV)

(a (k)a(k))z =—Z, 'trfexp[ —P(v), —g)]a (k)a(k)}

=n, (t, P), (Ae)

(b (k)b(k))8 ——Z, 'tr(exp[ —P(&o~ —g)]b (k)b(k)].
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Z =tr exp[ P((dq —g)]

Z =trexp[-P((o(, —g)].
(AS)

(A9)

In each term of (A5) change the variables of inte-
gration as follows: in the first term let k, =or&+&;
in the second term let k, = + —co I, and k- —k; etc.
Then it is possible to write the right-hand side of
(A5} in the form

d'kdk, ;,.(, „) I+n~(k, P) n~(k, P)~

~ ~

(2w) 2(d) k() —(()), +i6 k() —(() (
—i6

1+n, (k, P) n, (k, P)
ko + CO p

—S E ko + (d g + 'L 6

(A10)

The fact that ~), =&@ -„has been used. From (3.24)
it follows that b,~(k, g, g; P) is given by (3.30) as
asserted.

Similar results obtain for any integer-spin field
possessing at least one quantum number distin-
guishing the particle from its antiparticle. For
fields possessing no internal symmetries (e.g. ,
photon and neutral pion) the particle serves as its
own antiparticle. Then a(k) = b(k), etc and .(A6)-
(AV) reduce to ne(k, P) =ne(k, P). Furthermore,
such particles may be created in arbitrary num-
bers so that the corresponding chemical potentials
( and g appearing in the distribution functions
vanish identically.

A derivation along similar lines may be used to
construct fermion two-point functions which include
temperature and density effects. It should be ob-
vious that fields of arbitrary spin may be treated
in this way, in some instances trivially. For ex-
ample, the propagator for a massive spin-one field
which satisfies the equation of motion

(a, a'+m, ')(p" (x) =0,

a)'y„(x) =0

has the momentum representation

z(~,)

S(u„u,) =T exp -i d'xZ, '„((x)
Z (ug) I

(B3)

where u, and u, are real parameters measured
along a timelike world line, and Z(u, ) and Z(u, ) are
spacelike hypersurfaces. The time-ordering op-
erator is defined in Sec. II. The parameters u,
and u, are to be chosen such that

(I)'(x) =S(u„—~)q(x)S(u„—~) ',
cp'(x) =s(u„-~)y(x)S(u„-~) ',

where x =x'(u, ). Setting S(~) =S(~, -~) it then
follows that

as( )
aq(x)

= -is(~, x') y'(x)S(x', -~)

(B4)

(B5)

since their presence in no way alters the general
approach.

Assume that P(x) and y(x) satisfy (2.21)—(2.22),
respectively, with Z, = Z, = Z, = 1, and define G(x, x')
and D(x, x') according to (2.28)-(2.30). Next in-
troduce the following external fields with appro-
priate statistics:

q(x), q(x), fermions

A(x), bosons

from which the Lagrangian g,„, is constructed:

Z.,t (x) =q(x)(1)(x) + P(x)tt(x) +A(x)y(x) .
In the Heisenberg representation, g(x) satisfies

(-g}"'(iy&(x}[a„-r„(x)]—m + am

-igy, (x)q (x)j y(x) =tl(x),

(B2)

which couples P(x) and p(x) to q(x). In general,
P(x) and qr(x) will depend on q(x) and A(x). One
therefore transforms to a new representation de-
fined by the requirement that in it the (I)'(x) and
cp'(x) be independent of external fields. The trans-
formation is accomplished by the operator

The introduction of thermodynamic boundary con-
ditions for D„,(k) results from their introduction
via A(k); specifically A(k)- h~(k, g, g, P) as given
by (3.30).

APPENDIX B

= -is( )y(x) .
In a similar fashion it may be shown that

6's(-)
( ) ( )

=-S(~)y(x)(1)(x}.

Consequently (B2) may be written in the form

(-Z)'I'(6" (*)(8„-&„(*))

(86)

(B7)

The equation determining an N-point function
characterizing a many-body system in curved
space-time may be derived by the method of func-
tiona1. derivatives. As an example the construction
of the equation for the fermion two-point function
G(x, x'} will be outlined below. Wave-function and
charge-renormalization coefficients will be ignored

—m + am +gy, (x)
»(-)

6A(x) aq(x)
= -is(~)q(x) .

(BS)

The two-point function may now be written in
terms of functional derivatives:
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a(x, x') = -f (Ty(x)y(x)),

. (T0'(x)T('(x') S(")&()
(TS(~))8

z. 5 S~

S, ~q(x')~q(x) „-„,'
where the expectation value is defined according
to (2.28)-(2.20) and S, =(TS(~)). It should be noted
that the many-body nature of the system enters the
derivation at this point. Operating on (B8) with

iS, '5/t)q(x') and then setting q(x) =q(x) =0 yields

(-g)"' ' "( )[a„—I'„( )]

~+~m+gy, (x), G(x, x) =~'(x, x').
6Ajxj

(Blo)

It is next possible to show that the last term on
the left-hand side of (B10) is proportional to the
three-point function, which may be written as

(yd(x)d(y)y(z)), = jd (jd'z J d'd g(x, ()(-g(()]"'y((|tl()(-g(z)]"'G(y,z)l g(d)]' -D(z; d) (B11)

Equation (B11) serves as a definition of the vertex function I', ($, q ~
g). It is then convenient to define the

self-energy operator by-

E(x x') =(g y (x)f d z Jl d y d(x y)(-g(y)I"'r(x'y(z)yy(xz)(-g(z)("'.

In terms of the self-energy operator Z, (x, z), (B10) takes the form

(B12)

(Bls)( g)'i (zyz(x)(Z„—yz)-m zdm) G(x, x') = Z'(x —x') —(-g)'"f d'z g,(x, z)G(z, x )(-g(z)I"'.
A similar approach, starting with (2.22), leads to the equation of motion for the boson two-point function

D(x, x') and the polarization operator given in Sec. IV.
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