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The equivalence theorem for Bogoliubov-Parasiuk-Hepp-Zimmermann —renormalized Laglangian field

theories is proved by means of Feynman graphs. The transformation of Green's functions under a
transformation of the Lagrangian vertex is also derived.

I. INTRODUCTION

For a period of over three decades, the equiva-
lence theorem on Lagrangian field theories has
been discussed, ' proved, ' and widely employed. '
In the modern version, it deals with the equality
of the scattering matrices constructed from two
Lagrangian densities, go and g', which are related
by

&'(0') = &.(y),
where the field p'(x) is obtained from P(x) by a
local transformation

(1.2)

Treating the functions f(P) of local operators
P(x) also as local operators, Kamefuchi et el
showed that the canonical commutation relations,

5(x,) (x), y(0) =is'(x),

imply that p' and bp/5$' also satisfy the same
canonical commutation relations, so that the Ham-
iltonian densities are equal:

X Q, =X'

From this follows the equivalence theorem. On the
other hand, Salam etal, .' proved the theorem by
employing the Feynman-path-integral representa-
tion of vacuum expectation values of time-ordered
products. Both proofs are only formal in nature
and not rigorous. The first proof suffers from the
fact that products of distributions at equal space-
time points do not exist in general, while for the
second proof Feynman path integrals may diverge
for quantized field theories.

In this communication, we will present a pertur-
bational but rigorous proof of the equivalence theo-
rem, based on Feynman-graph expansion of vacu-
um expectation values of time-ordered products,
together with the Bogoliubov-Parasiuk-Hepp- Zim-
mermann" (BPHZ) renormalization. To describe
the theorem exactly, it is inadequate to interpret

the terms in a Lagrangian density as Zimmer-
mann's normal products. ' Rather, as in our earli-
er papers, "the Lagrangian density is treated as a
vertex, which is a generalization of Zimmermann's
normal products. Vertices have been defined and
discussed at length for scalar fields in Ref. 8 (to
which the reader will be referred time after time),
and for Dirac fields in Ref. S.

In Sec. II, the equivalence theorem will be stated
and shown to follow from Lemma 1, which is a
statement about how the Green's functions trans-
form under (1.1). Lemma 1 will be proved in Sec.
III and generalized in Sec. IV. The paper ends
with a short discussion (Sec. V) on the power of
the BPHZ renormalization in the proof of Lemma l.

II. EQUIVALENCE THEOREM ON BPHZ-
RENORMALIZED THEORIES

In the language of vertices (described in Ref. 8),
the analog of a transformation of a classical func-
tion takes on a slightly more complicated form,
because the information contained in the excess-
subtraction functions of vertices must be trans-
mitted. Let w= [(f„.. . , f„),n.] and v
= [(g„.. . , g„),p] be two simple vertices and
let j be an integer between 1 and N (the order of
w), inclusive. Then we use the notation
[(f„.. . ,f „v,f„„.. . ,f„),n] for the simple
vertex [hi'], y~~'] which is defined in Ref. 8." We
will call this vertex the rePlacement of the jth
field in the simple vertex w by the simple vertex
v. Generalizing this to more than one replace-
ment, we define

to be the replacement of the ith field in
[(f„.. . , f, „v,f,+ „.. . ,f„),o.] by u. Further
replacement can be defined inductively (pro-
ceeding from right to left). By performing for-
mal sums, this concept is easily generalized to
the case where the v's are vertices.

To express explicitly the fact that a vertex 8' in
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general involves the basic fields Q', . . . , P" and

their derivatives, we use the notation W(P). For
any set of vertices V', . . . , V", we denote by W(V)
the vertex obtained from W(P) by performing the
replacements P' —V', e„g' —9&V', etc. This is
the analog of a transformation of a classical func-
tion.

Now we enunciate as follows.
Lemma 1. For any set of nonderivative vertices

V', . . . , V", a. Lagrangian vertex g, (P) determines
another Lagrangian vertex

(2.1)

Then up to any fixed orders in V and 2,'"'(p) [the
interaction part of go(p}], the BPHZ-renormalized
vacuum expectation values of time-ordered
products" (Ol T[ ~ ~ ~ ] l0}

' constructed from g' are
related to those constructed from 2, by

(2.4)

By definition, [P'+ V'}; is a normal product of the
operators fP'};, and is therefore relatively local
to (P };v. Hence fP'};o is relatively local to

Furthermore, they have the same single-
particle spectrum. It then follows from the work'
of Haag, Nishijima, and Zimmermann that (Q'};
and (y'};o describe two theories with identical
scattering matrices.

III. PROOF OF LEMMA 1

We shall restrict ourselves to scalar fields, as
the reader can easily extend the proof to include
spin--,' Dirac fields described in Ref. 9.

Let the Lagrangian vertex g, be of the form

3[(yi yi) &mass] ~ pint(y) (3 I}

(2.2)

If the operators Vo~, as defined by P', do not
have single-particle states, that is,

(The reader is referred to Ref. 8 for the definition
of n~'~. } 8', as defined by (2.1}, can be separated
into four parts:

(Olv,'p(x)l%')' =0 (2.3) 2'=2, +2, + 2, +2„ (3.2)

for all single-particle states l4}, then, when we

apply the Lehmann-Symanzik- Zimmermann"
(LSZ) reduction formula, to both sides of Eq. (2.2),
the operators V,' on the left-hand side do not sur-
vive. Hence we obtain the equivalence theorem on
BPHZ-renor'malized theories: The scattering
matrix constructed from g' is identical to that
constructed from P„ if L", and Z, are related by
Eq. (2.1).

In general Eq. (2.3) may not be valid; however,
we can invoke a powerful property of Haag-Ruelle
theory" to obtain the equivalence between f,o and

Since the two theories defined by , and Q'
have identical asymptotic Hilbert spaces, we can
identify the operators of these theories by their
matrix elements; that is, two operators are equal
if their matrix elements are equal. Then Eq. (2.2)
and the LSZ reduction formula show that the op-
erator (P'};oas defined by P, is equal to the op-
erator (p'+ V'}; as defined by i,"

where

g, -=g [(a„@',8" V'), 0)-pin, ' [(p', V'), o "'),

(3.3)

C, = -', g[(s„V', s"V'), 0] —-', gm, '[(V*, V'), a "'],

and

g —@~i(y+V) pint(y)

(3.4)

The V's appearing in parts of vertices in g' will
be called brooms.

The vertices in Q, are of two types, shown re-
spectively in Figs. 1(a) and 1(b). In Fig. 1(a), we
have already used Lemma 1 of Ref. 8 to transform
the derivative on V' to that on @' (analogously to

g2yl

FIG. 1. (a) a broom with a momentum stick; (b) a
broom with a mass stick. FIG. 2. An L-broom derivative of Zo~'(p).
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FIG. 3. Broomsticks in a graph.

(b)

partial integration). In Fig. 1(b), the dashed line,
separating the vertex into two parts, indicates ex-
plicitly that the effect of e ' is to increase the
degree function" 5(y) by 2 for any graph y con-
taining both the left and the right parts of the ver-
tex. These vertices look like brooms with sticks,
and so we will call the former a broom with a
momentum stick, and the latter a broom with a
mass stick. All the vertices in g, have brooms.
Thy can be obtained by replacing and number l of
basic fields (or their derivatives} of a simple ver-
tex in 20'(Q) by I brooms without sticks (or their
derivatives). We will call such a derived vertex
an I-broom derivative of go~'. A typical one is
shown in Fig. 2.

Replacing the momentum stick of a broom in a
graph I', [Fig. 3(a) j by the corresponding ma. ss
stick, we obtain the graph I' of Fig. 3(b). Be-
cause of the presence of a dashed line, I has the
same subtraction scheme as T', . By this we mean

that the degree function of any subgroup of Fig.
3(a) remains unchanged upon replacing the momen-
tum stick by the mass stick. The BPHZ renormal-
ization of the graph I', is an operation g on the un-
renormalized integrand Ir and yields the renor-
malized integrand NI „. Therefore this operation
on I~ is identical to that on I~; hence in the sumIa
SI~ +SI~ it is meaningful to factor out the opera-Ia ~m

tion g,

dlf r +SIr = tR(1r +I r ),
and denote the sum I~ +I~ by I~, where the graphr, r rp~
I'~ is shown in Fig. 4. The pair of short lines
across the stick of the broom in 1 ~ means
(-s'-m, '). Such a combination is called a broom
pair. Therefore,

(3.'I)SIT +der =SIz

Abstracting away the common parts of these
graphs, the definition of a broom pair takes on the
symbolic form of Fig. 5. In a manner similar to
the proof of Ward- Takahashi identities in Ref. 8,
we find' that the factor (-s —m,.'} on a broom pair
cancels a similar factor in the propagator and

g2 pl

-m;.2

FIG. 4. A broom-pair vertex in a graph. FIG. 5. Definition of a broom pair.
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(l ~"
i

v i+I ~ "fN)

FIG. 8. The broomstick identity.

useful in proving Lemma 1.
For simplicity and essentially without loss of

generality, we will assume that there is only one
basic field p in the theory and that 2, '(p) has the
simple form

FIG. 6. Creation of the vertex [(f&, ...,f; f V fj+ f,
~ - f~»&j

generates an over-all minus sign. Thus

SI„=-SEA, (3.8}

where A (Fig. 6) is obtained from I'~ by shrinking
the broomstick of the broom pair, and generating
the vertex [(f„.. . ,f, „V~,f„„.. . , f„),o], which
is the replacement of the fth field in [f, a] by V~.

It may happen that, in F„F, and F~, a field of

[ f, a] other than f, is also joined to the broom. In
this case, shrinking the stick will produce a graph
with a "bubble" (Fig. 7}. However, Ref. 8 shows
that the BPHZ renormalization annihilates any
graph with bubbles. Hence we can drop all such
graphs from our considerations.

Abstracting away the common parts in F~ and A,
we obtain the broomstick identity of Fig. 8, which
must be understood to be valid only when "im-
mersed" in a larger graph. This identity will be

(3.9)

where 1V is an integer, and g is a coupling con-
stant.

The left-hand side of Eq. (2.2) is constructed
from the interaction part of Q'. Up to any order
in g and V, we divide the contributing graphs into
five mutually exclusive classes, as follows:

Class 0. A graph containing no brooms is a
ciass-0 graph.

Class 1. In a class-1 graph, at least one exter-
nal vertex" is either the head of a broom or a
broomstick.

The rest of the graphs belonging to the left-hand
side of Eq. (2.2) do not have brooms at external
vertices, but each graph has at least one broom.
We further divide them into three classes.

Class 2. In a class-2 graph, any broom has a
stick, and any stick is attached to the tail of
another broom, but these sticks form closed
loops.

Class 3. A class-3 graph contains at least one
broom which either is part of a simple vertex
of p, or has a stick joined to 2, '(p+ V).

Class 4. A class-4 graph does not contain any
simple vertices of P3 nor a broomstick joined to

FIG. 7. A bubble graph. FIG. 9. A partial sum over class-1 graphs.
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FIG. 10. A class-2 graph with a loop of m broom
pairs.

2, '(P+ V), but contains at least either a simple
vertex of g, or a stick with two brooms, one at
each end.

FIG. 12. Binomial representation of a partial sum
over class-3 graphs. The (N -l) Q propagators have been
omitted for clarity.

We will now consider the contribution to the left-
hand side of Eq. (2.2) from each of these classes.

Class 0. These graphs are exactly those con-
tributing to the right-hand side of Eq. (2.2). Thus
we prove (2.2} by showing that the other four
classes of graphs do not contribute.

Class 1. Their contribution can be considered
as partial sums, each as shown in Fig. 9. The
broomstick identity then implies that each partial
sum is zero.

Class 2. These diagrams can be partitioned into
groups like the one shown collectively in Fig. 10,
where a closed loop is formed from m sticks (of
broom pairs). Upon applying the broomstick
identity (m —1) times onto the loop, we produce
a graph containing a big broom with a loop replac-
ing the stick (Fig. 11), whose integrand is anni-
hilated by the BPHZ subtraction scheme. Hence
the contribution from class-2 graphs is zero.

Class 3. Let l be an integer between 1 and N,
inclusive, and consider a subset 8", of class-3
graphs, each with a common part A. and a variable

IE6
N!SIn(~ ...~ ),(~, , ... , ~,)~ fj,... ,s)

(3.10)

where the graphs II(J, ~ ~ - J,} are expressed in
Fig. 12 analogously to a binomial form. In this
diagram, the (N —I) p propagators have been sup-
pressed for the sake of clarity. In Eq. (3.10), N!

internal part satisfying the following conditions:
(i) It is of order g, and (ii) it has I brooms and
(N —I) other P propagators. Such an internal part
then contains an m-broom derivative of gP(p)
with 0 &m & l, and the sum of the BPHZ-renormal-
ized integrand over graphs of 8", can be expressed
analogously as a sum of graphs II(j, ~ ~ ~ J,}:

FIG. 11. Graph with a loop replacing the stick.
FIG. 13. A group of class-4 diagrams whose sum is

zero. B is a part common to all graphs of a group.
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is the multiplicity of each graph, and the summa-
tion is over all the different positions in which the
"factors" (a "factor" is enclosed by a broken line
in the diagram) can be attached to the central ver-
tex labeled by g. [The ith combination replaces
the J;th field of g, &(P).] Now the broomstick iden-
tity says that each factor in Fig. 12 is zero; hence

(3.11)dtfr=o.
I Ging

Now the class-3 diagrams can be partitioned into
subsets 6", , each characterized by a fixed part A
and an integer l. Therefore it follows that the
class-3 graphs also do not contribute.

Class 4. These graphs can be partitioned into
groups like that of Fig. 13. The sum of integr ands
over a group is easily seen to be zero by applica-
tion of the broomstick identity.

We have now proved Lemma 1 for the simple
case of Eq. (3.9}. Generalization to more than one
basic field only involves unessential complication
in bookkeeping. If g, &(&t)) has more than one sim-
ple vertex, we prove Lemma 1 merely by repeat-
ing the above procedure once for each simple ver-
tex of 1'.0~&(p). Derivative coupling can be similar-
ly treated. [When Dirac fields are included, we
need not consider, in the definition of a replace-
ment, the fermion signature factor in Eq. (1.4) of
Ref. 9. Since g' and g, are Lorentz scalIars, those
V's corresponding to Dirac fields must contain an
odd number of Dirac fields, so that the fermion
signature fa.ctor is +1.]

IV. GENERALIZATION OF LEMMA I

Instead of p, we may consider vertices in gen-
eral in the right-hand side of Eq. (2.2). The graphs
contributing to

(olT[A($+v),p(x)B($+v),&)(y) ]lo)",
where A(P), B(&f)), . . . are vertices, may be divid-
ed similarly to those in Sec. III into five mutually
exclusive classes. The argument in Sec. III again
applies here and shows that the sum of amplitudes
over class-0 graphs is

(olT [A(4).,(x)B(y)., (y) "]lo)",
while graphs of classes 1-4 do not contribute.
Hence a generalization of Lemma 1 is the follow-
ing.

Lemma Z.

«IT [A(y+ V).,(x)B(y+ V)„(y) ~ ~ ~ ]l0)"

=(ol T[A(p),~(x)B(p),~(y) ~ ~ ~ ]l 0)'&&,

(4..1)

up to any fixed orders in Co~&(P) and V.
Both Lemmas 1 and 2 are statements about the

transformation of Green's functions under the in-
duced transformation (2.1) on the Lagrangian ver-
tex.

V. DISCUSSION

We have rigorously proved Lemmas 1 and 2, and
the equivalence theorem for BPHZ-renormalized
theories. Besides yielding a finite value for each
graph, the BPHZ renormalization scheme nicely
puts away all bubble graphs, which are produced
on applying the broomstick identity (Fig. 8) in the
proof of Lemma 1. [There are no bubble graphs
in the right-hand side of Eq. (2.2).] Since the es-
sence of the proof is the property of graphs, we
con]ecture that if bubble graphs are allowed as for-
mal expressions for integrals (even though they
do not exist}, and if not ig'"( but i@,f&( (see footnote
18) is used to construct Feynman graphs, then
Lemma 1 again holds, but only formally. Another
impetus for this conjecture is that the Feynman-
path-integral method formally proves Lemma 2
(and therefore also Lemma 1), and that the per-
turbational expansion for a Feynman path integral
allows bubble graphs. To show that Lemma 2
follows formally from the Feynman-path-integral
method, perform the transformation

0 -%+V'(4)

on the integration variables in the Feynman path
integral, "

l e )

II dd' d(d(*))" d(d(*)»dd (fd' d «(d( ))..t=l

and formally obtain the relation

(8 2)

N NIIdd' d(d(*)& &dd(*)) d
' d' d. .„&d( )) = ndd') d(d(*) &'(&t( \&) '&&(d(*)+)'(d(*)))t= I t=l

xexp i d'uC, ff(p u )
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Upon treating these Feynman integrals as vacuum
expectation values of time-ordered products, this
relaticn is identical to Eq. (4.1).

Earlier, in Refs. 8 and 9, we have demonstrated
the feasibility of using i+~' and not -QC~' in con-
structing Feynman graphs. While the use of -iX '

has been shown' to be equivalent to the use of
ig,'~, the difference between g ' and g, ff' is a sin-
gular term proportional to 5e(0). Charap" and
Honerkamp and Meetz4 have demonstrated the ef-
fect of this term on soft-pion amplitudes. What
we can learn from their papers is that this term
is in fact the first subtraction term of a BPHZ
renormalization on these amplitudes. Hence this
term is a primitive imitation of BPHZ renormal-
ization, and need not be included. Therefore, we
do not use i, ff in a BPHZ-renormalized theory;
in any ease, its singular nature precludes its use
in any rigorous theory.

For the purpose of satisfying the renormalization
conditions, let the sum of the counterterms of go

be of the form given by Zimmermann, ' but in the
context of vertices:

@counter(t(r) —tt[(atty e t(t) 0] e it[(y y) ()] (5 2)

Then in order that go and 2' be equivalent (same
scattering matrices), the counterterms of g' must
be given by the transformation (2.1);

gr counter gcounter (~ + y) (5.4)

Thus, there is no standard form of counterterms,
and we are willing to conjecture that perhaps the
scattering matrix of a Lagrangian theory depends
also on the form of its counterterms.
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