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2The scalar XOP' interaction and the Fermi interaction Go(gf) are studied for space-tii:. ae

dimension d between 2 and 4. An unconventional coupling-constant renormalization is used: 'Ao =uoA'
(&=4—d) and G O=goA-' ", with u 0 and g 0 held fixed as the cutoff A-- oo. The theories can be

solved in two limits: (1) the limit N —oa where $ and i|f are fields with N components, and (2) the ~

limit of small e, as a power series in e. Both theories exhibit scale invariance with anomalous
dimensions in the zero-mass limit. For small e, the fields $, $, and $+„"+ $ all have

anomalous dimensions, except for the stress-energy tensor. These anomalous dimensions are calculated
through order c2; they are remarkably close to canonical except for P'. The (PQ) interaction is
studied only for large N; for small e it generates a weakly interacting composite boson. Both the $'
and (tt Q)2 theories as solved here reduce to trivial free-field theories for e~ 0. This paper is
motivated by previous work in classical statistical mechanics by Stanley {the N —~ limit) and by
Fisher and Wilson (the e expansion).

I. INTRODUCTION

The purpose of this paper is to discuss a num-
ber of quantum field theories in space-time di-
mension d less than 4. To be precise, the scalar
field theory X,p' will be considered in 3.99 dimen-
sions (d =4 —e with e small). Both the scalar
theory and the Fermi interaction Go(pp)' will be
discussed for the larger range 2& d & 4, but with
the restriction that lt) and p have N internal com-
ponents, with N large. A related problem, the p'
interaction in 6+ & dimensions, has been discussed
by Mack.

These theories will be renormalized in an un-
conventional manner such that the renormalized
theories are scale-invariant at short distances
with anomalous dimensions. ' In the case of the
X, fjt)' theory, the unconventional renormalization
consists of writing A, =u, A', where A is the cut-
off, and holding u, (rather than Xo) fixed as A- ~.
This means &,—~ as A- ~. Conventionally one
would have held Xo fixed, resulting in a super-re-
normalizable theory (for d& 4) with free-field be-
havior at short distances. In the case of the Fermi
interaction, the unconventional renormalization
consists of letting 'Gp goA and holding go fixed
as A- ~, i.e. , letting G,- 0 as A-~. This proce-
dure eliminates nonrenormalizability problems.
In both cases the fixed constant (uo or go) is di-
mensionless; the basic idea is to hold the dimen-
sionless coupling constant fixed as A- ~.

In both theories there will be an eigenvalue con-
dition of the Gell-Mann-Low type' for the dimen-
sionless bare coupling constant. (For a review of
the Gell-Mann-Low theory, see Ref. 4.) By satis-
fying this eigenvalue condition one obtains a theory

which is scale-invariant with anomalous dimen-
sions at short distances. There are no free cou-
pling constants in the exactly scale-invariant theo-
ries (skeleton theories) In t.he case of the Fermi
interaction there is an arbitrary renormalized
coupling constant which is important at low mo-
menta and serves to break the scale invariance .
In the case of the u, A'(t)' theory, the eigen-
value for uo is small if e is small: uo is of order

The theory can therefore be solved by pertur-
bation theory in e. What happens in practice is
that one calculates an ordinary Feynman-graph
expansion in uo, with each individual graph ex-
tended to noninteger d in an obvious manner. "
Then one gets logarithms as for d =4; additional
logarithms are generated when individual graphs
are expanded in powers of e. At the eigenvalue
for uo all these logarithms exponentiate. In the
case of the P' theory the eigenvalue condition for
u, is important only to ensure exponentiation with-
in the & expansion. When the theory is solved non-
perturbatively, as in the N- ~ limit, the unrenor-
malized constant u, can be arbitrary. Instead it
is the renormalized coupling constant which has a
fixed value. This possibility was already explained
in a previous paper. '

It will not be proven here that the logarithms
exponentiate. Some nontrivial consistency condi-
tions will be verified, but a full proof would re-
quire modern renormalization-group methods'
which are too complex to describe here. Alterna-
tively one should be able to construct a proof using
the Callan-Symanzik equations'; see Ref. 1.

In the case of the goA' ~(gg)2 theory, go itself
will be small only for d =2. However, another
trick enables one to solve the theory approximate-
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ly for any d. Namely, for large N (e.g. , p repre-
sents a multiplet of N spinor fields ]~,} the bubble

graphs dominate, and are easily summed. This
trick will also be used for u, A'(p')' theory, where

P has Ã components.
The tricks used here to calculate the field theo-

ries (the e expansion and the large-N limit) were
both discovered in classical statistical mechanics.
The simplicity of the large-N limit was discovered
by Stanley. ' (Stanley showed that the partition
function for a spin-spin interaction with N-com-
ponent spins reduces to the soluble "spherical
model" of Berlin and Kac" in the limit N- ~.
See Refs. 9 and 11 for details. ) The e expansion
was discovered by Fisher and the author. " The
mathematical equivalence of partition functions to
the Feynman path integral (see Ref. 7 and refer-
ences cited therein) makes it evident that any
method for analyzing partition functions (especial-
ly near a critical point} will have field-theoretic
applications. However, no background in statisti-
cal mechanics is assumed in this paper. For a re-
view of the e expansion and the renormalization
group applied to statistical mechanics, see Ref. 7.

All of the theories discussed here become trivial
free-field theories in the limit d- 4. The

g,A' '(tt&)* theory, after renormalization, gener-
ates a free scalar field in addition to a free spinor
field in the limit d- 4. The generation of bosons
by a Fermi interaction is mell known, ' see Ref. 13
for a review. The interest in studying these
theories for d& 4 is that they provide a variety of
examples of field theories which scale with anom-
alous dimensions at short distances, and which in-
volve a Gell-Mann-Low eigenvalue condition.
These (as well as the P' theory in 6+ a dimen-
sions') are the first examples of field theories
where the eigenvalue can be calculated explicitly.

The result of most practical interest reported
here is a calculation of the anomalous dimensions
of the tensor operators PV„, ~ ~ V„Q (for even n)
using the e expansion. These tensors correspond
to the tensors in the real world which determine
the behavior of the Callan-Gross and Cornwall-
Norton integrals over deep-inelastic structure
functions. See Ref. 14 or 15 for a review. The
Bjorken scaling theory requires all these tensors
to have canonical dimensions. All the tensors are
found here to have anomalies, except for the
second-rank stress tensor.

Consider the case of a theory with isospin (N=3).
Then there are both isospin-singlet tensors (the
second-rank isosinglet tensor being the stress-
energy tensor) and isospin-two tensors. The iso-
singlet tensors in the real world govern the sum
of proton and neutron deep-inelastic cross sec-
tions; the isospin-two tensors (I = 1 in the real

world) govern the proton-neutron difference in
deep-inelastic scattering. The anomalous dimen-
sions of these tensors have been computed to or-
der e', with the result

d„(n, 1=0) = —— (n even), (1.1)
5 15

121 2 n n+1

5 9
d„(n, 1=2) =

1 1 2
—, (n even), (1.2)121 2 n(n+ 1

where d„(n, f) is the anomalous part of the dimen-
sion of the nth-rank tensor of isospin I. The pre-
cise connection of these dimensions to deep-in-
elastic scattering is in the behavior of sum rules
for large q' (see Refs. 14, 15):

a (~ q2) d~ (g)-~„(,z=o)~2
"uS'

1 (d" ~+8
(1.3)

J ' (~ q') d~~(q') '"'"' "" (1 4)
X Pn

for q'- ~, where &u is the scaling variable 2Mv/q',
u the electron energy loss, q the electron momen-
tum transfer, M the proton mass, and W, (&u, q')
the structure function.

What is remarkable about these results is the
small anomaly in the dimensions. For instance,
d„(2,I =2} is e'/121. If one could ignore higher
orders in &, this anomaly would be very small for
both d =3 (e =1) and d =2 (e =2). One has some
weak information about higher orders (see Sec.
III) which suggests that the results in order e' are
correct within perhaps a factor of 3 for e =1,
which means the exact anomalies are small, at
least for & =1. If such small anomalies are pres-
ent in strong interactions they mould be undetect-
able in present deep-inelastic scattering experi-
ments.

The stress-energy tensor has canonical dimen-
sions, so the Bjorken scaling law still applies to
the Callan-Gross integral (n =2) for the sum of
proton and neutron structure functions [Eq. (1.3)].
Thus experimentally it is important to study the
Cornwall-Norton sum rule with n = 4 to look for a
possible breakdown of scaling, especially at very
high q'.

The N- ~ calculations are interesting apart from
the specific field theories discussed here. Parti-
cles in strong interactions group into multiplets,
such as SU(3) octets or Regge trajectories. Hence
any technique which simplifies the large-N case
could be of great practical value. The methods
used here should be studied further, in S-matrix
theory as well as field theory, for possible prac-
tical applications.

This paper is arranged as follows. The N- ~
calculations for both (P')' and ($p)' theories are
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reported in Sec. II. The calculations involved are
very simple; much of Sec. II consists of conclu-
sions from these calculations. In Sec. III the cal-
culation of anomalous dimensions for small e for
the (t)' theory is reported. In Sec. IV two incom-
plete arguments are given to motivate the assump-
tions used in Sec. III. Corrections to the N- ~
limit are discussed in Sec. V. Conclusions are
reported in Sec. VI.

The Appendix contains a discussion of spaces
with nonintegral dimensions.

II. LARGE N, 2&d&4

I

i

k

k

(b)

i

k i

In this section the large-N approximation will be
calculated for the X,(p')' and G,($p)' theories. The
approximation will be studied for 2( d ( 4. The
existence of a renormalized theory which scales
will be demonstrated. It will be shown that there
is an eigenvalue condition for the dimensionless
bare coupling constant in the Fermi case. It will
be shown that P and $ have canonical dimensions
for N- ~. (There are anomalies in order 1/N;
see Sec. V. ) The renormalized composite fields
p' and $g have anomalous dimensions for N
The anomalous dimension of P' is 2 independent
of d (canonically it should have been d -2); the
anomalous dimension of III' is 1 independent of d.

The analysis will not be thorough. The aim is
to bring out highlights of the theory with brief
arguments. So far as the author knows, a more
careful analysis does not change any of the re-
sults reported here. The original calculation of
Stanley' for large N was a stationary-phase cal-
culation of a partition-function integral. The
graphical argument presented here is much sim-
pler. It is not rigorous.

Consider either a scalar field theory with an
interaction Lagrangian density -X,((I)')' or a spinor
theory with interaction -Go($$) . Let P and P be
multiplets of fields p, and p„with 1 (i ~ N, N
being large. ((f)' means P,P, ', and $(I) means

P,$,g, .) Suppose these theories are solved by
Feynman perturbation theory. It is logical to con-
sider first those graphs with the largest power of
N for a given order in G, or Xo. A power of N is
generated for each closed loop in a graph (because
each loop involves a sum over a field index i }. No
other N dependence occurs. Therefore the most
important graphs are those with the maximum
number of loops for a given order. One maximizes

(c)

FIG. 1. {a) Diagram giving the lowest-order correc-
tion to the propagator. The two lines with internal
index k form a loop; the sum over k gives a factor of
N. {b) Diagram giving the leading correction to the
four-point function {k is summed over). {c)Bubble
graphs for vertex function involving Q or gg. The
wavy line represents tQI)2 or gg; the straight lines refer
to the elementary fields Q, g, or g. The indices k and l
are summed over.

the number of loops by minimizing the number of
lines per loop. The minimum number of lines in
a loop is two. (All graphs with one-line loops are
eliminated by mass renormalization. ) The graphs
containing only two-line loops are the "bubble
graphs" (sometimes called "parquet" graphs),
which are summed easily and often. The advantage
of the large-N case is that it is legitimate to con-
sider only these graphs.

The bubble graphs provide one power of N for
every power of X, or Go. To compensate for this
one considers values of Xo and Go of order 1/N
This makes other graphs besides the bubble graphs
negligible.

If one now looks at vacuum expectation values of
individual p or P fields, all diagrams vanish like
1/N (at least), except for the free-field terms.
For example, the leading corrections to the propa-
gator and four-point functions are the graphs
shown in Figs. 1(a} and 1(b). Each of these graphs
has one loop, giving one power of N, but two cou-
pling constants, giving two inverse powers of N.

One gets nontrivial results by looking at graphs
for the composite operators (f)' and gi. It is most
convenient to study the vertex functions I'(q, q, } in-
volving these operators:

q D( )r(qi)qqq(q ) =qf, "' "'" (() l q( (1(q (q)0'(o) l ())
X

s( )rq, (q,qq)q(q)%"'%, ", "(qq(q(, (*g,(q)((ol((o)ln).
X

(2.1)

(2.2)
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[The operators 4'(0) and $(0)g(0) will be made finite with the help of cutoffs. ] Here D(q) and S(q) are the

propagators for P and g, respectively. The bubble diagrams for I's and 1~ are shown in Fig. 1(c); these
diagrams are all independent of Ã.

Let k = q+ q, . Then the bubble graph sums give

1
1+4& X (k') '

1"«q }=1,2C,N,,(k)

where

(2.3)

(2 4)

1 1 -A
vs k') = i-

~
p'-m'+is (p+k)'-m'+is p'-A' i+a

'

1 -A
vr(k ) =+i Tr

q !!!-m+iep+$ —m+ie p —A +it

(2.5)

(2.6)

f~ means (2v) 'fd'p A.is a cutoff; m is the (renormalized) mass. The function vs(k') is finite without a
cutoff when d & 4, but the cutoff dependence will be needed to compare d & 4 with d =4.

The integral fd'p for nonintegral d is most easily handled by the Schwinger trick which converts the
propagators to Gaussian form. ' For example, one writes

ve(k') =-A' dy, dy, dy, exp(i(p' —m'+is)y, +i[(p+k)'-m'+i ]ay, +i(p'-A'+ie)y, ).
0 0 0 P

(2.7)

The p integration reduces to

exp i(y, +y, +y, ) p+ )ky,

Xi+72+Xs
(2.8)

vr(q') = -C~(e)(-k' —ie)' "'+C,(e)A' '

1 u'A-'
4m' (2.12}

apart from factors independent of p. A translation
(assumed valid for nonintegral d) reduces this to

with Cs(e), C~(e), and C,(e) all positive constants
(ie is the usual infinitesimal; it will be omitted in
future formulas). The constants Cs(e), etc. are

exp[i(y, +y, +y, )p'].~

~

For integral d this integral is

(2v}d
(~v) (yl y1 y3}

(2.9)

(2.10)

C, (~}= „, dgx(1- x)]-"*,2(~/2)!
4 4/2

16(&/2)!(3 &)
[ ( }]g- gg

(4 )"' (2- )

(2.13)

(the explicit factor -i is due to the Lorentz met-
ric). One now assumes that this formula is valid
for noninteger d. The definition of y matrices for
nonintegral d presents no problem here: All one
needs is to calculate Try„y„and TrI. Apart from
a multiplicative constant these are g„„and 1, re-
spectively, and the constant can be absorbed into
a redefinition of Q0. The constant is set equal to
4 here. See the Appendix for more discussion of
spaces with nonintegral dimensions. The rest of
the calculation of ve(k') and vF(k') is straightfor-
ward, apart from a final integration (assuming
A'» k' and m'). The results will be given only for
the case m =0 and k'«A', keeping terms through
order A '. The A ' term is calculated only to or-
der c ' for small &. The results are

8(e/2)!—
(4 )cia(2, )

Note that for e small (d near 4)

1
C,(e) =

Sec '

1
C, (e) = 4,77 E'

C,(e)=
4
1

while for 2 —e small (d near 2)

1
C, (e}=

( ),

(2.14)

(2.15)

(2.16)

v~(k') Cs(e)( =k' —ie)-'"—
Bm'c ' (2.11) Cr(e) = = C,(e) .2 (2.17)



QUANTUM FIELD- THEORY MODELS IN LESS THAN 4. . . 2915

For d =4 exactly one gets Now let 2&d&4 Xp upA', and let A-~ holding

u, fixed. Then one obtains (for m =0)
1

vs(k') = 16, ln, +C, ,167t' -k (2.18)
4N, C, ( )(-k'} '" ' (2.24)

vt, (k ) =
~~ + 8~ k'ln ~ +Csk,-k (2.19)

where C, and C, are constants.
Now consider the scalar vertex function I' s(q, q, ).

First study the case d =4 exactly. Then as A- ~
(holding Xo, q and q, fixed)

4p
(2.20)

i.e. , I"s(q, q,)-0 logarithmically as A-~. This
is a, well-known result; it occurs because Xp is
held fixed (no charge renormalization is per-
formed). One can obtain a nonzero limit for
I' s(q, q, ) if one performs both a charge and a wave-
function renormalization. (The wave-function re-
normalization is a renormalization of the compos-
ite field p'; there is no wave-function renormali-
zation of /f/. } The charge renormalization that is
required can be written

4 2 2 1
NlnA NlnA

(2.21)

This is a well-known formula from renormaliza-
tion group calculations. It is not scale-invariant.
Furthermore, since Xp is negative, one expects
the theory to have no ground state (due to the in-
teraction Hamiltonian having no lower bound}. This
difficulty does not seem to show up, however, when
one sums only bubble graphs. Finally, it has a
ghost pole for large negative k' (spacelike k) if ~R
is positive. In a word, this theory is unacceptable.

Suppose now that 2&d&4 (0& a&2). Let A-~
holding Xp fixed. For m =0 the vertex function is

1
I+4NX C (e)(-k') ' ' (2.23)

For large k' the X, term is negligible and I'~(q, q, )
has its free-field value. This is what one expects,
since Xpp' theory is super-renormalizable for d& 4.

where ).s is to be held fixed as A- ~. [Persons
who pay attention to dimensional analysis will
shudder at this equation. To make it dimensional-
ly correct, substitute ln(A'/qs ) for lnA', where

q~ is an arbitrarily chosen "reference momentum. "
This only changes the definition of Xs.] Wave-
function renormalization consists of dividing I'~
by 1nA'/87/'. For m =0 the renormalized I's is

A.~I' s(q, q, )(renormalized) =
I

(2.22)

This becomes finite after a wave-function renor-
malization [division by A '/(4Nu, ); the finite part
of this constant is chosen by whim]:

( kR)f/2
I' s(q, q, )(renormalized) =

Ca(e&
(2.25)

The renormalized vertex is scale-invariant (for
m =0). The power of k' corresponds to P' having
an anomalous dimension 2 for any &. This is easily
seen: I's would be a constant (as in the free-field
theory) if P2 had its canonical dimension d —2; to
change I'~ to the behavior k' one must increase
the dimension of ft}' by e =4 —d, yielding dimension
2.

If the mass is not neglected the renormalized
vertex function is

1I' s(q, q, )(renormalized) =
v~(k'

(2.26}

The function va is easily seen to be finite for
A-~ and positive for k2&0. Thus I's(q, q~) is a
well-behaved vertex. It has no ghost poles, in
contrast to the case of positive X~ for d =4. One
can choose up positive, thus avoiding the difficult-
ies associated with negative Xp.

The renormalized vertex function is independent
of up, and in fact contains no arbitrary coupling
constants. The only free parameter is the mass
ng. Nevertheless the vertex is not zero and even
has a nontrivial imaginary part. So the theory is
a fieM-theoretic example of a theory that boot-
strappers dream of. There is no eigenvalue con-
dition for up here; in Sec. III an eigenvalue condi-
tion will be obtained, but only for technical rea-
sons.

Now the vertex of the four-fermion theory will
be discussed. Consider first the range 2& d& 4,
A very large (but not ~), m =0, and let Go =goA'
Then one has

I'~(q, q, ) = 1
I +2Ngoc, (e) —2NgoCy(e)A' (-k )

(2.28)

There is no reason to forbid this choice. The

(2.27)

The k' term has been included, although at first
sight it is negligible compared to the other terms.
Now let
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coupling constant of the four-fermion interaction
can be negative with impunity, as far as is known
at present. With this particular choice,

H (' """"= 1+4' A v (h') ')=
p

(2.33)

A' 'C, (e)
(q q~) C ( )( h )

(2.29)

with k =q, +q, . There is an analogous expression
for the four-point function for the Fermi interac-
tion in terms of a function H~(q„q„q„q,):

After a wave-function renormalization,

I'~(q, q, )(renormalized) = (-h~)"' '. (2.30)

2g,A' '
1+2Ng, A' '~ (h'): (2.34)

1 A'' C(e)
2NC, (e) 2N C,'(e)

and holds g~ fixed as A- ~. Then

(2.31)

This is again scale-invariant and corresponds to
the anomalous dimension 1 for the renormalized
operator $g. A more general renormalized form
(still with m =0) results if one chooses

There caa be no wave-function renormalization for
these amplitudes, because only the wave-function
renormalization constants for p and P are involved
and these are 1 to leading order in 1/N.

Now take the limit A- ~ holding up and g, fixed.
The result will be quoted for m =0 and e small.
One obtains for H~

(2.35)

1
I'~(q, q, )(renormalized) =, ,), „,

g +(-k

(2.32)

Now one has an eigenvalue condition for the bare
coupling constant, namely Eq. (2.28) [this is valid
for A- ~ even if Eq. (2.31) is used for finite A],
but an arbitrary renormalized coupling constant
g„. As long as g~ & 0 there are no ghost states in
the vertex function. (This remains true even if
m is not zero. ) The theory is scale-invariant for
(h')' "'»ga. [The constant g„has dimensions
(mass)' ', as is evident from its definition, Eq.
(2.31}.] For e near zero the vertex function looks
much like the propagator of a scalar particle of
mass vg~. This is not surprising; the appearance
of scalar particles (or vector particles when ap-
propriate) in four-fermion theories has been found
previously. "

Further insight is obtained by studying the four-
point functions of the scalar and spinor theories.
These functions are described by the same graphs
as the vertex functions, except for an extra fac-
tor of the bare coupling constant and the addition
of crossed terms. (The four-point function is the
proper four-point function, ' disconnected graphs
and self-energy insertions on external lines are
dropped. )

The four-point function for the scalar theory de-
pends on four momenta q„q„q„q4, and a corre-
sponding set of internal indices i„i„i„i4.It has
the form

The explicit factor e means that if one takes the
limit e - 0 holding N and k' fixed, one gets zero.
So the theory becomes a free-field theory in the
limit d- 4.

The same result is true for the four-fermion
case. Let A- ~, with gp expressed in terms of
ga through Eq. (2.31) and holding g„ fixed. For e
small and m =0 one obtains

-4m'e
HF(ql ''' 4) N[g +( h ) / ]

(2.36)

Once againHF-0 as c-0, holding gR, k', and N
fixed. Thus the theories being discussed here be-
come trivial free-field theories in the limit of four
dimensions.

Consider further the form of HF for ~ small but
finite. Suppose terms of order e' are neglected;
then

47t'c
HF(q1 ' ' ' q4} N(h2 )

(2.37)

Hi(q„. . . , q, )(Yukawa) =
k —Pp +kp Nvp(k )

which is the same as the Born approximation for
the exchange of a scalar boson, with e substituting
for the coupling constant squared. This suggests
that the four-fermion interaction is identical with
a Yukawa interaction hop", , p, p, p, where ho is a
new coupling constant of order c"' and p is a sin-
gle scalar field. This is in fact the case. The
bubble graphs are again the leading graphs for the
Yukawa interaction; keeping only the bubbles gives

H (q& q& q3 q.}~~,&,6;,&, +H (qi q3 q~ q.)6&,&,6« (2.38}

where

+&a(qi~ q~i qs~ q3)6g & 6r
&

where pp is the bare mass of the Yukawa field.
The renormalization procedure is more compli-
cated in this case because a mass renormaliza-
tion is needed. The following procedure gives a
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finite H~ for A-~: Let ho=A"'ko/¹ The constant

ho ls dimensionless; hold it fixed as A —~. Also
let

—ko'C, (e)A '=ps'ko Cj, (e) (2.39)

and hold p.R' fixed. Then in the limit A-~, with
e small and m =0, one has

-4mmc
HF(qlt ' ' ' I q4) N[ 2 + ( k2)1 K/2] (2.40)

This is identical with Eq. (2.36) if one identifies
P.R With gR ~

This is only a very limited demonstration of the
equivalence af @p and ($g)' theories. Neverthe-
less, the author conjectures that the equivalence is
exact and is true for arbitrary N, not just N- ~.
Previous work on the equivalence of electrodynam-
ics and the vector Fermi interaction makes this
conjecture at least plausible. In the renormaliza-
tion-group language of Ref. 7 the two theories
should correspond to the same fixed point for large
N; it is difficult for a single fixed point for large
N to become two separate fixed points for small N.

Consider now the four-fermion interaction for
d =3 (e =1). Renormalized as in Eq. (2.31), the
solution for g positive for H~ is

III. P4 THEORY FOR SMALL e

16''g
Hs(q„. . . , q4) = (-k')"'. (3 2)

In this section the X,p' theory will be studied for
d ~ 4 (d =4 —e with & small) and arbitrary N. The
theory will be renormalized by letting Xo =uoA' and
holding uo fixed. The crucial property of the theory
which makes it soluble is that the coupling strength
of the renormalized theory is of order ~, so cal-
culations can be carried out using only low-order
Feynman graphs. The anomalous dimensions will
be calculated for the fields P, P' and the tensor
fields PV, ~ ~ ~ V p (with even n) E.xcept for p',
these anomalous dimensions become canonical in
the large-N limit, so it is especially interesting
to compute them for small N.

There is one tricky feature of the calculation,
which is best explained by studying further the
approximation of Sec. II for large N. Consider
the four-point function H„(q„.. . , q, ). For small
&, large A, and m = o, and keeping the leading
cutoff-dependent terms, Ha is

16' euoA'
2v'~+Nu A'[( k) " A-']—

(3.1}

For A- ~ with u, fixed this gives a scaling form
for H'~ independent of A:

-1 1
NC, (e) g, -f(k*)"' ' (2.41)

However, if one expands in powers of u, one ob-
tains

This means the imaginary part of the fermion
scattering amplitude is as large as the real part,
despite the fact that the whole amplitude is of
order 1/N. This amplitude is nevertheless consis-
tent with unitarity. The amplitude squared is of
order 1/N', but the sum over intermediate states
includes a sum over particle species which pro-
duces a factor Ã.

Finally, consider the case d-2 (e-2). In this
case

1 2 —EH~(q„. . . , q,)=-—(-,'v) . ..), „, . (2.42)
gR + (-fP

To a first approximation for e near 2, H~ is a
small constant, of order (2 —e)/N. In the limit
& —2, holding N and k' fixed, H~ - 0. Thus the
four-fermion interaction (with our renormaliza-
tion} becomes a trivial free-field theory both in
2 and 4 dimensions. However, near 2 dimensions
the theory still looks like a four-fermion interac-
tion after renormalization (the fermion scattering
amplitude is almost constant), while near 4 di-
mensions the renormalized theory looks like a
Yukawa theory with weak coupling.

4N 2A2&

Hs(q„. . . , q, )=8u,A'- ' [(-k') '"—A ']
'lT 6

2N' 'A"
+ ' [(-k') "'-A-']'-

(3.3)

If one takes the limit A-~ order by order in u„
there is no longer a simple limit. Consider now
the double expansion in u, and e'.

Hs(q„. . . , q, ) =8u, +8eu, lnA

2uo N -k
(3 4)

One now has a jumble of lnA's and ink's, and there
again will benolimit for A- ~ in general. The re-
markable fact is that there is a unique choice for u„
namely u, =2m e/N, for whichthe cutoff dependence
of (3.4) disappears order by order in e, and the
ink terms sum up to the simple power (-k )

'~' of
Eq. (3.2). This can be seen from Eq. (3.1}. Sub-
stituting u, = 2v'e/N in Eq. (3.1) gives Eq. (3.2) for
any value of A and k. The only question left is
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whether one is allowed to expand Eq. (3.1) in

powers of uo and r before making the substitution
for uo. It is not difficult to show that the expan-
sion is legitimate provided c lnA and

~ u, ln(k'/A')
~

are small; these restrictions can be satisfied for
a sufficiently large range of values of c and k' to
justify substituting for uo after expanding in u, and
e. Thus, although Eq. (3.3) contains all powers
of both A' and (-k'}', it reduces to Eq. (3.2),
which has only one power of (-k )' and no A de-
pendence provided one expands in c and then sub-
stitutes uo =2d) e/N. One can of course verify
this directly.

This introduces the essential idea of the e ex-
pansion. For any N, one can solve the interac-
tion uoA'P in a power series in uo and c, since
this is a Feynman-graph calculation. The result,
for any N, is a jumble of logarithms in 0 and A.
There are arguments that, for any N, there is a
unique choice u, =u, (e, N) for u, such that (1) the
logarithms in A disappear (except for a wave-func-
tion renormalization factor; see below); (2) the
logarithms in k exponentiate to a single power of
k' as in Eq. (3.2), rather than many different
powers of k' as in Eq. (3.3) (for m =0 where
m is the renormalized mass); and (3) the resulting
theory is scale-invariant for m =0. The arguments
will be discussed briefly in Sec. IV; a more
thorough discussion is given in Ref. 7.

Once one believes that there is such a function
u, (e, N) there are several procedures for deter-
mining uo(e, N) and then calculating anomalous di-
mensions and other quantities of interest. The
procedure used below is the procedure used ear-
lier in a statistical-mechanical context. The idea
is to make use of the fact that there is a unique
(scale-invariant) power of k when uo =uo(e, N).
This makes no reference to A, so for convenience
we use units with A =1. This choice of units is
natural when one is doing statistical-mechanical
calculations' but is somewhat strange to a field
theorist. The reader may wish to redo the calcu-
lations with arbitrary A. One must then pay at-
tention to wave-function renormalization. In order
c, for finite N, p has an anomalus dimension.
When this happens, amplitudes like H~ will have
an over-all dependent factor which can be removed
by wave-function renormalization. For u, =uo(e, N)
there will be no other cutoff dependence.

The calculation of u, (e, N) and the anomalous di-
mension d& of p will now be described. The quan-
tities u, (e, N) and df &(e, N) will be determined
simultaneously. Two amplitudes will be computed
by Feynman graphs: the propagator D(q') for zero
mass and the four-point function Hz(q„. . . , q, ) for
finite m and q, = ~ ~ ~ = q, = 0 (this is one possible defi-
nition of the renormalized coupling constant). The

where

D(x) =(&
I &(P(x)P(0)) i(I)

and the fact that D(x) scales as

D(x) (x) "'d'-

(3.6)

(3.'I)

when (II) has dimension d@. The propagator will be
studied for A =1 and m =0; the scale-invariant re-
gime is q«A, i.e. , q«1. Hence one expects

D ( 2) (2d y-d) (3.8)

for q«1, when uo =uo(e, N). This formula will be
compared later with an actual calculation of D(q)
by Feynman graphs.

The function H~ will be calculated for m«A,
i.e. , m«1, but not m =0. A prediction of the m
dependence of Hz(0, 0, 0, 0) (to be denoted uR) is
needed. Consider first the propagator D(q) for
m t0. For m«q«A, the propagator still behaves
as in Eq. (3.8). [No wave-function renormaliza-
tion will be performed when calculating either
D(q') or H~. Otherwise, D(q') might have m-de-
pendent factors due to the wave-function renormal-
ization. No wave-function renormalization is re-
quired: Since A =1 is fixed, the propagator is
finite without renormalization. ] For q«m all that
happens is that m replaces q in Eq. (3.8); in partic-
ular

D(0) ~ (2d d-dl (3.9)

It is evident for the free propagator 1/(q' —m')
that q can be replaced by m for q«m, ' it can also
be verified for individual Feynman graphs; a
general argument is given in Ref. 7.

Consider now the function Hz(q„q„q„q, ). The
complete (improper) four-point function is a
Fourier transform with respect to x, y, and z of
(II (T($(x)P(y)p(z)$(0)) ~Q). If the momenta in-
volved (q„q„q„say) are all of the same order
of magnitude then dimensional analysis shows that
this triple Fourier transform scales as (q,)

' d '
in the scaling region. The proper four-point func-
tion H~ is obtained by removing disconnected
graphs (which does not change the scaling analy-
sis) and then dividing by four propagators, one for
each external line. Performing the division, using
Eq. (3.8), one finds that the proper four-point func-
tion He(q„q„q„q, ) scales as (q, )~d ddd) in the scal-

idea is to make full use of the properties these am-
plitudes should have due to scale invariance when

uo =uo(e, N). For example, in a scale-invariant
theory, D(q ) behaves as (q)'dd) d'. This follows
directly (by dimensional analysis) from the defini-
tion of the propagator,

(3.5)
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ing region m«q, «1. Of more interest is uR

=He(0, 0, 0, 0). Again one simply replaces q, by
glvlng

XX
{d-4d g

R (3.10)

D(0) = I/m~' (3.11)

independently of u, or e. It will be convenient to
know how uR scales with mF. Combining Eqs.
(3.9)-(3.11) one obtains

2{4d@-d)/{2d @-d)
R P (3.12)

The idea is now to compare the predicted behavior
of us and D(q'} with explicit graphical calculations.
The result will be formulas for the two exponents
2(4d

&
—d)/(2d @

—d) and 2d+ —d as functions of uo
and e =4 —d. For given e (the independent vari
able) these two equations will determine the two
unknowns d @

and up.
The procedures for calculating graphs for non-

The quantities that will actually be calculated by
graphs are u„and D(0) for small but nonzero m,
and D(q'} for m =0 and small q'. To keep the cal-
culation as simple as possible, only a partial mass
renormalization will be carried out. Instead of
making the customary two subtractions in self-
energy diagrams on the mass shell, only a single
subtraction at q' =0 will be made. This means
that the renormalized mass m is not the mass
parameter in Feynman graphs; the latter will be
denoted m~. The single subtraction at q' =0 means
that

(b)

FIG. 2. (a) Diagrams determining uR to order uo .
(b) Diagrams determining D(q) to order uo .

integer d have been explained in Sec. II and the
Appendix. Apart from the noninteger d the graph
calculations are standard; only the results will be
quoted here. The calculations are identical ex-
cept for notation to those reported previously' (in
a statistical-mechanical context). All graphs were
calculated for spacelike momenta in a Euclidean
metric. The cutoff was introduced by using a cut-
off propagator [q (1+q )'+m'] '

(q =qo'+q be-
cause of the Euclidean metric) for all internal
lines. Changing the form of the cutoff propagator
changes up but not d @.

The diagrams for us and D(q'} were both cal-
culated through order up'. The diagrams calculated
are shown in Fig. 2. The constant and u, terms
are known exactly in ~; the u, ' term was calculated
to order e, and the u, ' term was calculated only
for e =0 (one calculates only terms that will ulti-
mately be of order ~' or less once u, is known as
a function of e). Only logarithmic terms were
needed for the up and up'e terms.

The results are as follows'.

uR=u, +(N+8)(u, /4v'}(21nm~+', ) —( N+ )8( u' o4/v)e[l nm~ (+I +K2') lnm ]

+ (uo'/4v'}[(N+ 8)'(In'm~ +~6 Inm~) —(10N+44) lnm~] . (3.13)

The constant K' will affect u, but not d@ or any other anomalous dimension. Its definition is as follows.
If K(d) is

ff(d) 2-(I-n -d/2[F(ld)] -1

where I is the usual gamma function, then

(3.14)

ding(x)
dx x=4

(3.15)

For D(q') only the logarithmic terms are computed:

q D(q ) =1+(N+2)(uo'/16v ) Inq —(N+2)(uo /16v )e[—', (lnq ) +(2&' —a4) lnq*]

+ (N+ 2)(N+ 8)(u, '/16v')[-', (lnq')' —-', lnq'] . (3.16)
Consider now the requirement (3.12) on u„. This means that the logarithms of m~ must exponentiate.

To order u, ' there is no problem: One can write

u u [R1+P0(N+ 8)( /4wu'o)] exp[(N+ 8)(uo/2v') InmF] . (3.17)
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Hence to order g, one must have

' =(N+8) (3.18)

Similarly, to order u, ' the requirement (3.8) gives

dq ——,'d =-I+(N+2)(u, '/16v'). (3.19)

Through first order in u, the second equation gives
canonical dimensions for p: d&=-', (d —2) +O(u, ').
Substituting this in Eq. (3.18) one gets

4 —d = e = (N + 8)uo/2 ' .
Hence to order e

u, (e, N) =2w'e/(N+8) .

Substituting in Eq. (3.19) gives

N+2
dy p (d 2) +

4(

(3.20)

(3.21)

(3.22)

N+2
dy= a (d 2)+ 4(N~8)a &

N+2 6(3N+14) 1 8

4(N+ 8)' (N+8)' 4
(3.23)

to order e'.
With the information available in Eqs. (3.13}and

(3.16) one can calculate uo to order e~, and d & to
order ~'. There are also consistency conditions
that must be satisfied. For example, the require-
ment that the logarithms exponentiate means the
coefficient of 1n~m~ in Eq. (3.13) for uz must be
(N+8)'(u, '/8v') =v'e'/(N+8) to order e'. This con-
sistency condition is satisfied. For D(q') the con-
sistency condition is that the In'q terms vanish
in order e'. They do.

The result for d to order ~' is

The remarkable feature of this result is how

small the anomalous part of d@ is. The variable
e has a built-in scale: The only sensible values of
~ are 1 and 2. Negative e is not permitted because
it corresponds to a negative value of u„which is
meaningless for a P' theory (see Sec. II). In the
other direction, e =3 corresponds to a space-time
without any space. The maximum for any N of
(N+2)/[4(Ã+8)'] is ~~ (for N=4). The coefficient
of &' is never much larger than ~~. So d&, to order
&', differs from its canonical value by 0.1 at most.
Higher orders could change this result, but there
is independent evidence from statistical mechanics
that the anomalous part of d &

is indeed small:
about 0.03 for ~ =1 and exactly 0.125 for ~ =2, both
for N=1. (The value 0.125 comes from the Yang-
Onsager calculation of the spin-spin correlation
function for the two-dimensional Ising model. )
See Ref. 7 for further discussion and references.

The smallness of the anomaly in d & does not
mean all anomalies are small. For example the
anomaly in the dimension of (t)', for N =~, is
2 —(d —2}=e. For e =2 this anomaly is 2. [Note
that from Eq. (3.23} the anomaly for d& vanishes
in the limit N- ~, as expected from Sec. 11.]

Anomalous dimensions have also been calculated
for the composite operators (t)' and pV, . ~ ~ &
for any even n. See Ref. 7 for details of the calcu-
lation. For N&1 there are two forms of each of
these operators. For example, for ft)' one can
consider eitherP, P,

' or the set of operators p, p,
with i w j. The latter operators form a tensor with
respect to the internal symmetry [O(N)]. In the
case N=3, Q, P,

' has isospin 0, and P, P& (j xi)
has I = 2. For convenience these operators will
continue to be labeled I =o andi=2 for any N. The
anomalous dimensions of these operators, to or-
der &', are as follows:

d„(P', I =0) =d —2+ e+ 3 e (13Ã+44},
N+2 N+2

(3.24)

2

d„(Q, I= 2) =d —2+ —,(N —18N —88}, (3.25)

(dQ QV, I =0) =d-2+n+
2

e' 1 —
} (n even),

N+2, 6
2 N+8 n ~+1 (3.26)

d~(Q VP, I = 2) =d —2+n+ N+2 ~ 2(N+6) 1
2 N+8 N+2 n n+1 (n even), (3.27)

where pV"f3') is the nth-rank tensor operator
QV„~ ~ ~ V g. [Only the traceless tensor part
was considered, and pieces behaving like gradients
such as V(pV'-'p) were removed. The resulting
operator is guaranteed to have a unique dimension.
Without these extractions. the operator could be a

sum of terms with different anomalous dimen-
sions. ] The terms d- 2 for p' and d- 2+n for
QV"fII) are the canonical dimension; the e and e'
terms are the anomalies.

All the anomalies given above are small for any
N except for p' with I =0. The anomalies for the
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IV. EXISTENCE OF THE FUNCTION up (e, N)

The purpose of this section is to make plausible
the basic assumptions of the e expansion, namely
the existence of a scale-invariant P' theory with
small coupling u, and the existence of the function

u, (e, N}. Two incomplete and unrigorous explana-
tions of these assumptions will be offered, the first
using the field equation and the other using the re-
normalization group. For further discussion see
Refs. 1 and V.

Consider the field equation of the p' theory (for
N= 1) in the zero-mass limit,

Vp V" Q = -4Xo P (4.1)

Consider first dimension 4. In the free-field zero-
mass case V„V"p and fII)' have the same dimensions,
and naively one would expect scale invariance to
hold in the presence of interaction. However, the
interaction changes the scaling properties of the
operator P': To order X, the anomalous dimension
of P' is ~(d-2)++v g. The dimension of V„V~p
does not change to order Ao. Hence the dimensions
of both sides of Eq. (4.1) do not match and scaling
is broken. See Refs. 16 and 8.

One can restore the scale invariance by reduc-
ing d. Then, to first order in X„ the condition for
matching anomalous dimensions of V„V~ / and p3
is

—,'(d+2) =-,'(d —2)+ v'x, ,

giving

d =4-~m'x,

or

C =9m Xo.
2 2

(4.2)

(4 2)

(4.4)

So one might expect a scale-invariant solution
with a specific coupling constant g of order e.

In order that tt}' have an anomalous dimension
for d & 4 one must give X, some cutoff dependence,
e.g. , Xo=uoA', as discussed in Sec. II. Otherwise
the field theory is super-renormalizable and P' has
canonical dimensions. The reason for this is sim-
ple. In the free-field theory for d&4, p' has a
smaller dimension than V„V~p. This means that
short-distance matrix elements of p'(x} are much

tensors are especially small, being at most twice
the anomaly for dz (which occurs for n-~}. The
anomaly for pV V6$, I =0, is 0. This is as ex-
pected, for the traceless tensor part of pV~ V~ /
should be the traceless tensor part of the stress-
energy tensor. The stress-energy tensor is re-
quired to have canonical dimensions, from sym-
metry arguments. The significance of these results
was explained in the Introduction.

dx,
(4 6)

For small &„

$(X~) = + cX~ (4.6)

where c is a positive constant. In particular g is
independent of both A and m and depends on k only
through X,. For d =4 —~ with e small the argument
that g is mass- and cutoff-independent hopefully
still applies. However, P cannot be independent of
k, because X, itself has dimensions, the same as

The dimensions of )., are (mass)'; hence 0 9.,
is dimensionless. (In renormalized perturbation
theory dimensions in the sense of dimensional
analysis do not become anomalous; it is only the
space-time dependence of operators which may
show anomalous behavior. '} Hence to preserve
dimensions the renormalization-group equation
should read

d,
' =u'y(a-'~, ).dx,

(4.7)

To a first approximation g(x) should still be cx'
for small x and q.

This result can be illustrated using the explicit
solution of the theory for N- ~. One may define
X, to be the four-point function Hs(q„. . . , q~) for
(q+ q, )' = -)t' (q+q, spacelike). Then

8x0
I+4NX, v, (-u') (4.8)

smaller than short-distance matrix elements of
V„V"p (not summed over y, , otherwise V„V"p is
zero). This means that adding ~,P' to the field
equation has little effect at short distances. If one
instead adds u, A'p' to the field equation then the
interaction is effective to distances of order A ';
in the limit A- ~ the short-distance behavior is
changed by the interaction and p' has the anoma-
lous dimension cited above (to order u, ).

Now the renormalization-group argument will be
presented. It will be illustrated with specific
formulas for N large, but should apply for any N.
Suppose one can set up a renormalization-group
equation for the (t)' theory in 4-& dimensions anal-
ogous to the renormalization-group equation for
electrodynamics in 4 dimensions. " This means
one defines a renormalized coupling constant X,
depending on a reference momentum k. For
k-A, X, is essentially the bare constant Xo; for
k- 0 X„becomes the renormalized coupling con-
stant. The renormalization-group equation is a
differential equation for X,. When m«k«A (m is
the renormalized mass) and d =4, the renormaliza-'
tion-group equation is
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From this one finds

dX~ -32NXO dv~(-k )
dink [1+4NXove(-k )] dink

value g, =g,(e, N). Suppose one solves the approxi-
mate renormalization-group equation with u& =u„
with up small but otherwise arbitrary. The solution
ls

d vs(-k')
dink' (4.9) upk '

A '+2cu (k ' —A ')/e ' (4.18)

For mass zero one obtains

-k '
169 (4.10)

In the limit A-~, holding u, fixed, this gives u,
=u~, so if one does an exact calculation the value
of up is im mate rial. Howeve r, a sum of the pe r-
turbation expansion in u, of u, will contain all the
powers k ', k ", k ", etc. , causing much confu-
sion, unless

for small ~. Hence one may write
2cup6 = 1 (4.19)

=k'g(k 9. )dink' (4.11)

for small e, with

(4.12)

Returning to the general renormalization-group
analysis (arbitrary N), it is convenient to define
a dimensionless coupling constant u„by

(4.13)

The differential equation for u„derived from Eq.
(4.7} is

i.e. , u, =u*. At up=u*, u, is the constant u' also.
So one chooses u, =u* to avoid the appearance of
powers k ', k ", etc. not connected with scale
inv arian ce.

In the actual calculation of Sec. III u, is not
precisely u*. The reason is that g(u~) has a cutoff
dependence when k- A and the true boundary con-
dition is u„-u, for k-~; hence the dependence of
u, for k«A on u, is more complicated than de-
scribed here. However, the function u, (e, N) still
exists. See Ref. V.

dug j, =-2«a+((s, )dink
(4.14) V. CORRECTIONS TO THE LARGE-N APPROXIMATION

For small u, and e this becomes

du~ 2
~

= -g Esp + c(N)Qg ~

dink (4.15)

The equation for u, has a special fixed-point
solution for u„namely

u, =u~ =e/2c(N). (4.16)

For small ~, u is also small, so it is legitimate
to use the approximate equation (4.15) to calculate
u*. In four dimensions, a fixed-point solution de-
fines a scale-invariant theory. This is also true
in 4 —& dimensions, as can be seen from the
N- ~ case. For N-~ we obtained a scale-in-
variant theory by letting Xp =u,A' and then letting
A- ~. In this limit (for small e and m =0)

16p'g

N
(4.17)

which gives u, =u* independent of k. So the sealing
theory corresponds to the fixed-point solution for u, .

Thus the renormalization-group argument pre-
dicts there will be a scale-invariant theory asso-
ciated with a small dimensionless effective cou-
pling constant u, =u*- e.

It remains to discuss the existence of the unique

In Sec. II it was shown that the anomalous di-
mension d z in upA'P' theory is canonical in the
limit N- ~. In this section the term of order 1/N
in d@ will be computed for any dimension d in the
range 2&d&4 (0 &e &7). The purpose of this sec-
tion is to show that d@ is anomalous in order 1/Nl;I

and more generally to show how corrections to the
N- ~ limit are calculated. "

First, one must determine the diagrams which
contribute to the propagator in order 1/N. The
simplest procedure is to define an effective four-
point vertex consisting of the sum of all bubbles
as shown in Fig. 3(a), and then construct diagrams
using the effective vertex in all graphs. Graphs
using effective vertices are not permitted to have
any explicit bubbles. Nor are one-line loops per-
mitted [see Fig. 3(b)], since they are removed by
mass renormalization. (Here, as in Sec. III, the
mass m~ appearing in Feynman graphs is defined
so that D(0}= I/m~'. ) Hence explicit loops must
involve at least three lines. "Loops" in this con-
text means loops involving a sum over an internal
index. It is then easy to see that the only graph
contributing in order 1/N to the propagator is the
graph of Fig. 3(c), which has no loops. Graphs
with three-line loops are of order I/N~ or smaller.
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i k l

(o)

due to rotational symmetry).
Explicit calculation now gives

1
D(q) = —1+@lnq' A

with

e' sin —,
' ev (4 —e)1 (3 —e)

4N —,'ev r(3--,'~)r(3--,'e) '

(5.3)

(5.4)

One can rewrite D(q), to order 1/N, as
'gA 7)

D(q) = (5.5)

which corresponds to an anomalous dimension

dq = —,'(d —2 + q) . (5.6)

FIG. 3. (a) Definition of effective vertex (left-hand
side) as sum of bubbles. The indices k and l are sum-
med over. (b) Example of a one-line loop (k is sum-
med over). (c) Graph determining 1/N correction to
propagator. This graph has no loops.

The graph of Fig. 3(c) will be calculated in the
Eucl. idean metric. The full propagator to order
1/N is found to be

D(q) = —1-—,1 1 Su A'
q' q, 1 + 4uoA'Nve(k )

1 1
(k+ q}'+m' k'+ m'i

(5.1)

(remember that u, is assumed to be of order 1/N).
The subtraction 1/(k'+m ) is the required single
subtraction at q =0. Let m =0 and let q«A. A
straightforward analysis (for 0& e & 2) shows that
the dominant part of the integral is a logarithmic
integration coming from the region q«k«A. Con-
sidering only this range of k, the integral simpli-
fies; one gets

D(q) =—1 —— k'

, NC, (e}

2k q 4(k q)' q'
k' k' k'

To renormalize D(q) it is now necessary to per-
form a wave-function renormalization.

It is easily verified that the large-N behavior of
Eq. (3.23) agrees, to order 1/N and e', with Eqs.
(5.4) and (5.6).

VI. CONCLUSION

The importance of the g expansion and N- ~
limit is that it provides a large class of models
whose true short-distance behavior is both calcula-
ble and nontrivial. Previously this was true only
of the Thirring model. In four-dimensional per-
turbation theory for renormalizable theories like
ft)' theory or quantum electrodynamics one cannot
as yet calculate the true short-distance behavior
because too many graphs are involved.

It is unfortunate that the models introduced here
become trivial in four dimensions. However, it
seems likely that a thorough study of these models
in less than four dimensions will generate new
ideas about the nature of field theory that do not
depend on dimensionality and may apply to four-
dimensional theories as well. It should be instruc-
tive to study the behavior of high-energy scattering,
deep-inelastic scattering, bound states, etc. in
these models.

Note added in proof. Included in the models
treated in this paper are some true field theories
in 2 space and 1 time dimension, namely, the fI)'

and (gg)' theories for large N. The discussion of
theories with noninteger d was emphasized because
it is so instructive. See also recent papers by
Schroer, Mitter, and Brezin, LeGuillou, and

quinn-

austin. "
(5.2)

with the integral restricted to q& k& A. Since the
radial part of f„ involves k' 'dk, one sees that the
q' terms inside the integral indeed involve loga-
rithmic integrations (the term linear in q vanishes
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I(s, q)=s " 'e' " d'Pe ~ (A6)

APPENDIX: SPACE WITH NONINTEGRAL
DIMENSION d

In this Appendix a Euclidean space of nonintegral
dimension d will be discussed. A Lorentz space-
time of dimension d is equivalent to one time di-
mension (as usual) combined with a Euclidean
space of dimension d- 1.

First, integration will be defined for nonintegral
d. '6 Second, y matrices will be discussed for
nonintegral d.' Finally, the space itself will be
considered.

Three simple principles plus a normalization
condition uniquely define the integral f d p for any

d, real or complex. The first principle is linear-
ity:

dsp[af, (p)+bf (p)]=a ~(dspf, (p)

+b Id'pf, (p), (A 1)

where f, and f, are aribtrary functions and a and b

are arbitrary constants. The second principle is
invariance to translations:

The remaining integral is independent of s and q.
One can generate any function of the form

f (p', p q„.. . , p q„) depending on any n vectors q,
besides p by using differentiation and summation
with respect to s and q of the generating function
e ' '+~'. For example: Differentiating m times
with respect to s gives the function (p') e '~ 's';
summing over m, one can produce any function of
p' times e '~ '~'. Replacing q by s q + ~ ~ ~ + s q
where the s, are scalars, and differentiating with
respect to s„.. . , s„allows one to build up poly-
nomials in p q„.. . , p q„. These can then be sum-
med to give arbitrary functions. Convergence
problems are left for the experts to contemplate.
To set the normalization, note that

d &pe-&2 —~ &/2 (A7)

for any integer d; it is natural (but also arbitrary)
to use this normalization for nonintegral d. In all
the applications of this paper, changing this nor-
malization condition can always be compensated
for by a renormalization of the coupling constant,
and does not affect results such as the anomalous
dimensions.

Thus

(A2) I(s, q') =s ' 'e"l~v' '. (A8)

where f is an arbitrary function and q an arbitrary
fixed vector. The third principle is a scaling law:

d pf sp=s dpf py (A3)

I(s, q) = d'P e '"'~' (A4)

where f is again arbitrary, and s is an arbitrary
positive constant. In other words, volumes in mo-
mentum space scale as (momentum)s.

There will be functions fwhich are not integrable
in d dimensions, due to bad behavior as ~p~- ~,
for example. The problem of delineating the class
of functions which are integrable and therefore
actually obey these principles will be left to the
experts in such matters.

To see that the three principles uniquely define
fd P except for a normalization constant, one ex-
amines the integral of a generating function.
Namely, consider the integral

This is an analytic function of d, so one expects
the integrals of all reasonable functions generated
from I to be analytic in d also; expanding in powers
of e =4 —d poses no difficulties.

An arbitrary graph involving only scalar-particle
propagators can be reduced to Gaussian momentum
integrals by Schwinger's trick (see Sec. II). There
remains the problem of spin. This has been dis-
cussed in detail by 't Hooft and Veltman. ' The
problem that arises is that the c tensor &„„„has
no known continuation to nonintegral d, and like-
wise for y, . Continuation is possible if one con-
siders a theory without y, in the interaction (e.g. ,
electrodynamics or a scalar Yukawa interaction),
provided one also discusses only scalar invariant
functions. In this case y matrices occur only in-
side traces, and no y, 's or e tensors arise.

Consider a trace of a product of y matrices not
involving y, . The following rules completely de-
termine any such trace':

(1) The trace of an odd number of y matrixes is
A translation gives

I(s q) Jt d dpe -sss t ssl ss

A scale transformation gives

(A5)

0.
(2) The trace operation is cyclic, e.g. , TrABC

= TrCAB.
(3) The anticommutation rule (y&, y„)= 2g„, holds.
(4) Trl=24i'.
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These rules are satisfied by the irreducible rep-
resentation of the y matrix algebra for even d.
For odd d, rules (1) and (4) are incorrect for the
irreducible representation'. For odd d the trace
of d y matrices gives the q tensor and TrI is 2~ ' '.

The definition (4) of Trf when d is nonintegral is
arbitrary. Different choices of TrI, for given d,
will in general define different theories. The rea-
son for this is that a single trace over an internal
loop can involve two, three, four, or more cou-
pling constants, so one cannot compensate a redef-
inition of the trace by a rescaling of the coupling
constant. However, only a two-line loop occurs
in Sec. II, so the value of TrI is irrelevant in Sec.
II.

This completes the definitions of nonintegral d
needed for the text. Now the basic questions must
be discussed. What is a space of noninteger d?
What is an integral in this space?

First, it will be useful to have fd'p expressed
directly as an integral. First consider an inte-
grand f (P'). One obtains

d "Pf(p')=v 'f'"(0}. (A13)

p —p +' ' '+p +p

Then

(A14)

d'Pf (P', P.q„,P q. )

dp, ".
J

dp.
j

d "P,f(P', Pq„,Pq.),

The cause of the collapse is that as d- -2l, from
above, the integral becomes divergent at p=0 but

Z, -O.
Now consider the more general integrand

f(P', P q„.. . , P q„) O.ne proceeds as follows.
Introduce n coordinates such that the n coordinate
axes span the space generated by q„. . . , q„(even
if n&d; see later for further discussion). Then
separate p into the n components P„.. . , p„parallel
to these axes and p consisting of the remainder
of p. Then p.q„.. . , p q„all depend only on p„.. . ,
p„, while P' is

, ' d "pf(p') =&4,t p' 'f(P'}dP(2w)", "J,
where

2' (4 )"'I'(-'d)

[as in Eq. (3.14)). The proof of this is that

(2v}"K p' 'e '~ dp=v' 's ' ',
dp

(A9)

(Alo)

(A11)

(A15)

where fd4 "p is as defined previously for a func-
tion of P~ only. It is easily verified that this for-
mula agrees with the generating functional.

If Re(d n) &0-it is straightforward to convert
this integral to spherical coordinates. If Re(d-n)
&0 the subtractions in the definition of fd4 "p,
might cause troubles in such a conversion. For
n =1, the integral in polar coordinates is

in agreement with the generating function [see Eq.
(A8}]. For Red &0 the formula (A9) is still basi-
cally correct, except one must introduce subtrac-
tions to make the integral converge. The sub-
tracted formula is

,', l 4'pi(o') z.f p'-' f(o*) f(o) o*=f (o)

p21
f(t)(0) dp

where l is the largest integer smaller than
—,'(-Red}. This formula is well defined provided
Redoo 0, -2, -4, etc. , and provided f(p') is differ-
entiable l+ 1 times at P'= 0. This formula, with
f ( p') = e 'o', still agrees with the generating func-
tional. The case Red = -2l, Imd c 0 is best handled
by a limiting procedure; it is unimportant for ap-
plications in this paper. The case d=0, -2, -4,
etc. is interesting. In this case the integral (A12)
collapses to the form

d'Pf(P', P q) (») '
~ oo pl

=K4, p 'dp
~~ (sin8) d8 f(p~, pq cosg),

~4 P

(A16)

valid for Red &1.
What is a d-dimensional space? A vector p in

this space has an infinite number of components.
Only for integral d can one restrict the number of
components to be d. To see this restriction, let
d be a positive integer; suppose one is given d
linearly independent vectors q, . Now the integral
f d4p is replaced by fdp, . fdp4fd'p, The ex-.
plicit formula for fdoP~ (A13) means that P4 =0,
so p also has four components. This is the way
the number of components of all vectors is re-
stricted to be d, for integer d. This mechanism
obviously fails for nonintegral d.

So what one has is an infinite-dimensional space
with an integral fd'P defined for functions of
scalar products in this space. The integrals imitates
the scaling properties of a d-dimensional space
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because of the requirement (A3). There are no
convergence requirements in the space in the
sense that one never explicitly specifies the com-
plete set of components Q,j of p, and one does not
demand that Q, p,

' converge. One can only sepa-
rate p into a finite set of components py p„
and a perpendicular vector p, .

Note that fd'p is not a positive operation, due
to the subtractions in f d "pi when n)d.

There are other ways in which the space imitates
a d-dimensional space. For example,

,

d "p( p'e '
) = d d'p p 'e ' (A17)

where p, is a component of P.
A more difficult question is whether one can

define field operators Q(x) and g(x) themselves
for noninteger d. I do not know. In statistical
mechanics another question arises: Can one de-
fine crystal lattices in a d-dimensional

spaces'

I do not know, although some lattice sums can be
continued to noninteger d."
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