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Invariant measures of the surface geometry of a charged rotating (Kerr-Newman) black
hole are examined. It is shown that as the rotation rate of the black hole increases, the
equatorial circumference increases while the polar circumference decreases. This is anal-
ogous to effects in material rotating bodies. The number of parameters describing a charged
Kerr black hole drops from three to two on its surface. It is found that a scale parameter 7
and a distortion parameter B describe this geometry very simply. There emerge two classes
of Kerr metrics separated by B=4. For larger 8 the Gaussian curvature becomes negative
on two polar-cap regions and the surface cannot be globally embedded in Euclidean 3-space.

Possible physical effects are briefly discussed.

INTRODUCTION

There is considerable current interest in the
physics of black holes.! Much of the insight gained
has come from a detailed study of the Kerr-New-
man?' 3 family of solutions to Einstein’s gravita-
tional field equation. These metrics represent a
charged rotating black hole.

When a material body rotates, its surface de-
forms; there is the characteristic flattening of the
poles and lengthening of the equatorial circumfer-
ence. This paper shows in what way similar ef-
fects occur in black holes and in which way modi-

fications arise due to the highly curved space-time.

I. THE SURFACE OF A BLACK HOLE

If there is one characteristic feature that defines
a black hole, it is the existence of an event hori-
zon.* That is, there exists a null hypersurface
which is the boundary of the set of points that can
be connected to null infinily by a causal curve.
Without this “one-way membrane” there may
occur a naked singularity with properties quite
different from those of a black hole.!

ki

When one takes a sequence of spacelike slices
through this null hypersurface, one obtains a fam-
ily of 2-geometries which, if closed, represents
the surface of the black hole evolving in time. In
the generic dynamical situation these surfaces will
change their geometry depending on the particular
slicing of the event horizon utilized.

In the special case of stationary one-black-hole
metrics the charged Kerr metrics play an impor-
tant role. The 2-geometry of the surface of such
a black hole is independent of which spacelike slice
of the event horizon one takes. Thus, for this
class of black holes one can speak of the surface
without having to specify the slicing.

Using the coordinate system of Kerr and New-
man3® the charged Kerr metric may be expressed
as

ds?==[1 = (@mr = )5 du? + 2drdii
—2a(2mv — %)= "1sin%0d pdu
—2asin?0drdp + Zd6? (1)
+[(r% +a?)? ~ Aa® 5in%0] Z ' sin?0 d¢p?
Z:=7%+a%cos?9,

A:=72=2mv +a® +€?,
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where the notation : = indicates a definition.

The three parameters (m, a, e) represent, re-
spectively, the total mass, angular momentum
per unit mass, and the charge of the black hole.
There are two symmetries, given by the Killing
vectors:

9 ]
T =5u_ , = 55 . (2)
The surface on which the T Killing vector becomes
null has been called the “stationary limit”%; the
region between that and the event horizon is known
as the “ergosphere”.” The event horizon is a null
hypersurface given by® » =7,, where 7, is a root
of A=0:

v, =m+(m?-a® - e*)V'2, (3)

Those intrinsic surfaces which occur inside 7,
will not be treated in this paper.®

II. KILLING HORIZONS

Carter'® has shown that the one-way membrane
for the charged Kerr metric is a Killing horizon.
This means that the null hypersurface r, is invari-
ant under the 2-dimensional Abelian group of iso-
metries: (7 translations)+(® rotations). Further-
more, the null generators of the hypersurface lie
along trajectories of one Killing vector field of
the group, namely,!

E:=(,2+a>)T+ad. 4)

Moreover, for 0<a?+e?<m? the event horizon
7, is a bifurcate Killing horizon.'? That is to say,
the one-way membrane is composed of two Killing
horizons which intersect in a compact, spacelike,
totally geodesic, 2-surface S of fixed points of &.
To see that this is the case, one shows that £ is a
zero vector in the tangent space at each point of S.
Using a coordinate system which is well defined
on S, such as the one used by Boyer and Lindquist, ®
one writes £ as

£=(m? —a?-e?)/? (v:—u+u§;> . (5)
Here S is defined by u=v=0. Clearly, £(p)=0 for
any p on S.

Since there is now a geometrically selected 2~
surface in 7,, one would like to know how it is re-
lated to any other spacelike 2-surface obtained by
slicing the one-way membrane. The answer is:
All 2-dimensional spacelike slices thvough a 3-
dimensional Killing hovizon are isometric,’

To see this, consider a Killing vector field £
and a null hypersurface N such that £ is a null gen-~
erator on'N. Choose coordinates x!, x2, x3, x%
with £% =05. This restriction is invariant under

the coordinate transformations x%—f4(x!, x2, x %),
where A =1,2,3. By using one of these transforma-
tions, the equation for N may be made x3=0.

Take x!, x2, x* as coordinates on N. Consider-
ing that 8/6x* is null on N and orthogonal to N, the
induced line element on N is given by (¥ds? '
=gy dx dx* (A, u=1,2). Here g,, is independent
of x°% because we are on a hypersurface of constant
%% and independent of x* because 8/6x* is a Killing
vector. Now, a 2-slice is defined by x*=F(x1!, x2).
The line element on any such 2-slice is given by
®)ds?=g, dx*dx" which is manifestly independent
of the choice of F, that is to say: All 2-slices are
isometric.

Therefore, the geometry of the one-way mem-
brane is determined by the Killing vector £ and
the 2-surface S. One obtains a coordinate repre-
sentation of this geometry by using the maximal
analytic extension® which explicitly covers S. In-
troducing an orthonormal dyad, one has

@)ds?=(w,)? + (w,)?, (6)

w, 1 =(r,2+a?cos?6)2dg,

wg: =, 2+a®)(r,2 +a?cos?0) ™ 2sinbd * ¢,

(7
d*¢:=d¢ - wdt,

wi=ar,2+a®)™t.

Henceforth, by a simple coordinate transforma-
tion, the + in d* ¢ will be dropped.

Finally, one recalls that S is a marginally
trapped surface,® i.e., a compact, spacelike, 2-
surface such that the convergence of the ingoing
and outgoing null geodesic normals vanishes. For
S these null normals are parallel to the two re-
peated principal null directions of the Weyl tensor,
which have vanishing expansion, shear, and twist
on S.

III. THE SCALE AND DISTORTION
PARAMETERS

It is convenient, in the investigation of the ge-
ometry intrinsic to the surface of a charged Kerr
black hole, to introduce a pair of new parameters:
the scale parameter 1,

ni=(r2ea), (8)
and the distortion parameter 8,
B:=ar,2+a?) 12, 9)

The 2-metric [Eq. (6)] then takes the following
simple form:

w,: =n(1 - B sin?0)"'2do,

wg:=7n(l -B2sin?6)™2sinbd¢. (10)
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There is a degeneracy in the 3-parameter Kerr-
Newman family on the event horizon, since the 2-
metric there depends on only 2 parameters. That
is, given a set of values for (m, a, ¢) one has a val-
ue for n and 8 from above. However, as a result
of the degeneracy, a set of values for 7 and g de-
termine only ¢ uniquely while an algebraic expres-
sion relates m and e:

a=n8,

=%77(1 - BZ)-UZ(I +ez/n2) . (11)

This can be understood by recalling what happens
in the Reissner-Nordstrom solution (3=0). If 5 is
held fixed then one can add charge to a Schwarz-
schild solution'until m? = e* while maintaining the
Sphevical symmetry of the suvface of the black
hole. Likewise for any allowable g and 1, one has
a certain intrinsic geometry on the surface speci-
fied by the 2-metric in Eq. (10). A whole family of
charged black holes with this identical intvinsic
surface geometry exist and are given by Egs. (11).

Once B and 7 are chosen, there is an upper limit
on e fixed by the requirement that, if an event ho-
rizon is to exist, », must be real:

m?za®+e?. (12)

Accordingly, one finds the range of charge and
total mass energy for the family of black holes as-
sociated with the given B and 7:

0<sesn(l-282)"2,
(=g 2 <sm <n(l-p2)"2,

The black holes which satisfy the equality in Eq.
(12) will be called extreme charged Kerr black
holes. The allowed families of charged Kerr met-
rics are illustrated in Fig. 1. One notices, inci-
dentally, that the maximum value $ can attain re-
quires the charge to be zero;

Bmax =1/V2=0.707. (14)

When this limit is exceeded [Eq. (12)] a naked sin-
gularity occurs.

(13)

IV. SURFACE AREA AND REVERSIBLE
TRANSFORMATIONS

The surface area of a black hole is an invariant
property of some interest.*'* Using Eq. (10) one
calculates

A::fwz/\ wd=4mn?, (15)

where A denotes the wedge product of differential
forms. Notice that although the event horizon oc-
curs at
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r=r,=n(-p*"2, (16)

the area of the 2-surfaces in the horizon depends
only on 7.

Now Hawking’s general theorem® that the total
surface area of black holes can never decrease
may be applied to the case of one charged Kerr
hole. From an investigation of the problem
Christodoulou'* has shown that there are three
contributions to the total mass-energy of a charged
rotating black hole. Two of these can be removed
completely: the energy due to the charge e and
that due to the angular momentum ma. The mass-
energy of the Schwarzschild hole which is left is

defined as the irreducible mass m, . As can be
seen from Eq. (11) this means'*

m;, =%77 s

A=16mm,; 2 (an

Christodoulou’s statement of Hawking’s theorem
as applied to charged Kerr metrics is this: There
is no physical process which can decrease the ir-
reducible mass of a black hole. Those processes
in which m; (or n), and hence the surface area A,
remain unchanged are termed reversible trans-
formations.

Going back to Fig. 1 one understands the signifi-

L1
=
N
N =
N g%
.70NQ Qg g //V’
6 /\)5 q .

Ny -
4 g e
B-u\zt / \/{4 e 1_'1

FIG. 1. This graph represents all those charged Kerr
black holes which can be obtained from each other by
a reversible transformation., Since this requires that
n be fixed, we have a 2-surface in (m,a,e) space. The
points in the boundary of this 2-surface defined by =0
represent the Reissner-Nordstrom metrics; the points
defined by e = 0 represent uncharged Kerr metrics; the
back boundary consists of points which represent ex-
treme charged Kerr metrics. The charged black holes
which lie along a line of constant 8 have identical in-
trinsic geometry on their horizons.
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cance of the 2-surface in (m, a, ¢) space created by
holding 7 fixed. All the black holes represented by
points on this surface can be obtained from one
another by reversible transformations.!® Those
black holes with common 3 but varying » and e
have the same intrinsic geometry on their horizons
as determined by Eq. (11). What will be considered
in the following sections are ways of measuring
what this geometry is.

V. CIRCUMFERENCES

To obtain a gross measure of the surface defor-
mation one may compare the equatorial circum-
ference c, and the polar circumference ¢,, these
being defined as the proper length of the curves

=37 and ¢ =0, respectively. Calculation yields

ce:=fw3=21m(1—,82)'”2, (18)

Cpt =fw2=4nE(B); (19)

the last being a complete elliptical integral of the
second kind. These circumferences are invariant
since the curves are geodesics of the 2-metric.

In Fig. 2 there is a graph of ¢, and ¢, versus § in
a reversible transformation. One notices that as
angular momentum is added (8 increases) the equa-
torial circumference increases and the polar cir-
cumference decreases. Another measure of this

A 2 3 .4 .5
—B—

FIG. 2. The proper equatorial circumference c, (0
= 1 7) and the proper polar circumference ¢y (¢ =0) of
a charged Kerr black hole are plotted here versus 8
in a reversible transformation. One sees the bulging
of the equator and flattening of the poles caused by the
rotation. Recall that the maximum value 8 may obtain
is determined by the value of e. The dots on the curves
represent the extreme Kerr hole when e = /V2 (8= 3).

departure from spherical symmetry is plotted in
Fig. 3, namely,

6=(c,=c,)/c,. (20)

These are some of the effects one would expect
from the analogy with rotating material bodies.

The result for the equatorial circumference [Eq.
(18)] recalls the identical result in Minkowski
space when one is in a rotating reference system.®
This suggests that one consider the distortion pa-
rameter 8 as being the product of the angular ve-
locity of the black hole with its “effective” radius.
In fact, using the definition of angular velocity of
the surface of a black hole as proposed by
Christodoulou* and Bardeen!” [w in Eq. (7)] one
finds:

B=wn. (21)

Defining the tangential velocity of the surface of
a rotating black hole is a more delicate matter
since there are no timelike world lines in the ho-
rizon for observers to travel on. Christodoulou!*
has proposed that the equatorial surface velocity
of a black hole be taken as

vi=Vg,w=p(1-p82)"12, (22)

The definition has the attractive feature that as the
extreme Kerr hole is approached (3—1/V2) the
velocity tends to the velocity of light (v—1). From
this viewpoint one can better understand why the
surface disappears altogether for 3> .-

By now, one can see that although the horizon
occurs at » =7, =constant, the surface is not metri-
cally a 2-sphere. To gain more insight into the
true intrinsic nature of the surface one must look
locally.

'5 T T T 1 T T
*.4 B y
8
st ]
. Ce=%
21 3= Ce . J
JF .
(o] 1 I 1 1 L
(o] . .2 .3 4 .5 .6 .7
—B—~

FIG. 3. Here is plotted another measure of the surface
distortion on a black hole caused by rotation. The value
of 6= (c, —c,)/c, specifies how “oblate” the surface is
becoming. The surface is not globally embeddible in
Euclidean 3-space if 8> 1.
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VI. GAUSSIAN CURVATURE

One would like an isometrically invariant local
measure of the intrinsic deviation of the horizon
from sphericity. Gauss’s theorvema egregium'® pro-
vides such a measure — the Gaussian curvature K.
This quantity measures the geometry intrinsic to
the horizon itself and is independent of the em-
bedding space. One recalls that a sphere of sur-
face area 4772 has K =1/r2, which is constant and
positive. A plane has K=0, while a pseudosphere
has K=-1/72,

In the Appendix the Gaussian curvature is calcu-
lated for the 2-surface of a charged Kerr black
hole. One finds that

K(m,a, e, 0)=(r.2+a%)(r,% - 3a® cos?0)
x (r,2+a%cos?6)73, (23)

K(n,8, 6)=172[1-B2(1+3 cos?6)](1 - B2sin26)"3.

In particular, for the spherically symmetric
Schwarzschild (3=e=0) and for the Reissner-
Nordstrdm (3=0) black holes one has, as expected
for a sphere,

K=1/m*=1/r2. (24)

However, K is a function of polar angle 6 if the
black hole is rotating (3+0). When 8=3 (a=my),
the Gaussian curvature becomes zero at the poles
(6=0). This occurs in the uncharged case when
a=v3m/2.'® For $<p<1/V2, there are two
“polar caps” of negative Gaussian curvature on the
surface.

Thus, there are two geometrically distinct class-
es of charged Kerr black holes depending on wheth-
er Bs3. The first class consists of black holes
whose surfaces are like oblately deformed spheres
which we are familiar with in Euclidean 3-space.
They have everywhere positive Gaussian curvature.
The second class is unlike any surface one can en-
vision in our familiar 3-space. This is because
there are regions of negative Gaussian curvature
both oz and around the axis of symmetry. The sur-
face most resembles a hybrid sphere and pseudo-
sphere.

The second class is nonempty only if the charge
is small enough to allow 8>3, i.e., only if e<n/V2
[Eq. (13)]. However, since Wald?® has argued that
e =0 for black holes formed from collapse and
Bardeen?! has suggested that a = for black holes
at the center of galaxies, the second class is like-
ly to be of the most astrophysical interest.

One can use the general formula for the Gaussian
curvature [Eq. (23)] to check the topology of the
surface. If one integrates K(6) and applies the
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Gauss-Bonnet theorem? one finds (see Appendix)
fK(n, B, O)w? A wi=47=2my, (25)

where y is the Euler characteristic of the surface.
This tells us that the horizons are fopologically 2~
spheres.

VII. EMBEDDING

To visualize the intrinsic geometry of a black
hole (as opposed to its appearance in space?®), one
may attempt to embed the surface isometrically?*
in our familiar Euclidean 3-space E3. First, it is:
convenient to rewrite the metric by introducing a
new coordinate u and a metric function f(u) defined
by

u:=cosf,

ds?=m?[f "Mu)du? +f (n)d¢?], (A1)

Flu):=1-pd)[1-82(1-p2)], (A2)
. _af

f "

From the Appendix, the isometric embedding map
from (u, ¢)—~ (%, v, 2) is given by

x=F(p)cosp, y=F(u)sing, z=G(u), (A8)

F(u)=nf?, G(u)=nfdu[f“(l—%f’z)]"z.
(A11)

The condition for global embedding in E3 is that
the radicand in the integral for G be nonnegative
definite. Since f is always nonnegative this im-
plies

[f']=2. (26)

But, |f’|=2 at the poles u =x1, Therefore, the
above condition for embedding is equivalent to

(f'y =f"@1)<o. (27

Using Eq. (A3), this means the Gaussian curvature
K must be positive at the poles. Thus, the surface
of a charged Kerr black hole cannot be globally em -
bedded in E® if B> 3.

By allowing z to become imaginary when |f’[>2,
part of the surface (the polar caps) become em-
bedded in a pseudo-Euclidean (PE?) space with
metric ds? =dx?+dy? — dz? and part of the surface
(centered on the equator) remains embedded in E3,
where the metric is ds?=dx? +dy?+ dz?.

To obtain embedding diagrams one has to inte-
grate numerically for G. The result is summa-
rized in Fig. 4. The three black holes all are re-
lated by a reversible transformation. The sphere
is a Schwarzschild hole (3=0). As g is increased
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B-1

FIG. 4. By applying a series of reversible trans-
formations, one obtains a sequence of embedding dia-
grams for the surface of the black hole. The sphere
represents a Schwarzschild hole (3=0). As B8 is in~
creased, the embedded surface becomes more oblate.
When = %, the curvature at the poles becomes flat
(K = 0). Beyond this, a global embedding in Euclidean
3-space is impossible. The polar caps are embedded in
a pseudo-Euclidean 3-space (dotted lines). If the hole is
uncharged, the extreme Kerr black hole occurs for

B=1/NZ.

it distorts as expected for a rotating object until
B=%. Thereafter, part of the surface must be em-
bedded in a pseudoeuclidean space (dotted line) and
part in Euclidean space (undotted line). If the
black hole is uncharged, the last surface repre-
sents an extreme black hole with 8=1/V2.

One must remember that these embedding dia-
grams distort the “shape” of the black hole, i.e.,
the extrinsic curvature, while preserving the in-
trinsic geometry. Because the extrinsic curvature
depends on the embedding space, a detailed anal-
ysis has been carried out only for the intrinsic
geometry. An analysis of the former problem is
now underway.

CONCLUSION

It is found that a set of new parameters, the
scale parameter n and the distortion parameter g,
enable one to see very clearly the effects of rota-
tion on black holes. One striking feature which
emerges is that Kerr metrics break into two class-
es separated by 8=3. An open question is whether
this geometric division has physical consequences.
Does instability develop or could this be a bifurca-
tion point for the Kerr solution25?

A clearer understanding of the surface geometry
of the charged Kerr family of black holes will shed
light on other problems in the physics of black
holes. For instance, Bekenstein has introduced
the concept of the surface tension of a black hole.?®
The models for black-hole vibration frequencies
developed so far have assumed a spherical surface.

How will the deviation from sphericity found here
effect these results? Also, a better understanding
of the intrinsic and extrinsic geometry of black-
hole surfaces will lead to keener insight into the
problem of finding an internal solution.

Finally, one will wish to study how many of the
properties of the Kerr horizon carry over to non-
stationary solutions. Is the analogy of a black-
hole surface with a physical membrane a stable
one? And if so, can one use the invariant quanti-
ties associated with such a surface to gain insight
into astrophysical processes?
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APPENDIX

The calculation of the Gaussian curvature and
the embedding formulas are given here. The met-
ric is written in a standard form by the change of
coordinates p =cos6:

ds?=n?[f “Hw)du?+ f(n)de?], (A1)
Flp):i=(1-p?)[1=-p2(1-p?)]™. (A2)

The Gaussian curvature for a metric of the above
form is given by?’

K(w)=-3f"(u)n2. (A3)
The derivatives of f(u) are

Fr(p)==2u[l -B2(1 - u?)]2,
(A4)

Fr(w)==2[1-8%(L+3u3)][1 - B3(1 - p?)]™°.
Transforming back to the § coordinate yields
K(n, B, 0)=1"2[1 = B%(1 +3 cos?6)][1 -B2 sin?6]™3.
(A5)

To check the topology of the surface one can
apply the Gauss-Bonnet theorem which states??
that

wazA wd=27my, (A6)
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where y is the Euler characteristic of the surface.
For the event horizon

fK(u)wz/\w3=—é foﬂf_llf”(u)dw\w

=r[f'(-1) - f'(1)]=4r. (A7)

This yields x =2; therefore the black-hole surface
is topologically a 2-sphere. Hawking®* has obtained
a similar result in a more abstract setting.

The procedure for embedding an arbitrary sur-
face of revolution in Euclidean 3-space (E?3) is
standard.?® One sets up a map from (u, ¢)—~ (x, y, 2)
by the formulas

x=F(p)cosp, y=F(u)sing, z=G(u) (A8)
and equates the resulting 2-metric,

ds®=dx®+dy* +dz®=(F'2+G'?)du? +F%d¢?, (A9)

to the 2-metric which is to be embedded [Egs. (A1)
and (A2)],

Fr+G2=mf", F=nf. (A10)

Solving for F and G one obtains

F=nfi, G=n [dulf(t-4sm]e.  (AL1)

*The main results of this paper were reported by the
author at the GR6 Conference in Copenhagen, Denmark,
1971.
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