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The one-loop contributions to fermion and pseudo-Goldstone masses are calculated for the general

class of renormalizable guage theories. It is shown explicitly that when the masses are subject to any

type of zeroth-order symmetry relation for all values of the parameters in the Lagrangian, the
divergences in the one-loop corrections to these symmetry relations cancel. The finite parts of these

corrections are evaluated and discussed. Other topics considered include the connection of this work

with that of Coleman and E. %'einberg, the constraints obeyed by scalar coupling constants, and the

path-integral derivation of the Feynman rules for general renormalizable gauge theories.

I. INTRODUCTION AND SUMMARY

The development of unified renormalizable gauge
theories of the weak and electromagnetic interac-
tions ' has yielded, as an unexpected by-product,
a new view of the origins of approximate sym-
metry. ' ' Gauge theories are so constrained by
the requirement of renormalizability that the
physical parameters of the theory, calculated in
zeroth-order perturbation theory after spontane-
ous symmetry breaking, will often be subject to
certain symmetry relations for all values of the
parameters in the Lagrangian. (Here and below,
"all values" means "all values in at least a finite
range. ") Those symmetry relations that merely
reflect some unbroken subgroup of the underlying
gauge group remain valid to all orders, and do
not concern us here. However, there are other
kinds of zeroth-order symmetry relations which
do receive corrections from higher-order effects,
and which can therefore account for observed ap-
proxirnate symmetries. For instance there are
three separate types of fermion mass relations
which may arise in zeroth order for all values of
the parameters in the theory and yet may not re-
main exact in higher orders:

(1) Symmetry relations which arise because not
all of the scalar-field types which could enter in
the Yukawa interactions actually appear in the. the-
ory

(2) Symmetry relations which arise because the
scalar-field vacuum expectation values are in-
variant under some group of symmetries which,
although not symmetries of the whole Lagrangian,
are symmetries of any quartic gauge-invariant
polynomial in the scalar field. '

(3) Symmetry relations which arise because the
scalar-field vacuum expectation values are subject
to constraints other than those of type 2.'

Renormalizability assures us that when a zeroth-
order symmetry relation arises for all values of

the parameters in the Lagrangian, the higher-
order corrections are finite and calculable. ' It is
this feature, of course, which makes this new ap-
proach so attractive. ' The specific mechanisms
by which divergences cancel in these calculations
have been previously outlined' in general terms
only for fermion mass relations of type 1; detailed
calculations of the proton-neutron mass differ-
ence '" and the electron-muon mass ratio' have
been carried out in various illustrative models of
this type.

The purpose of this paper is to describe in de-
tail how to carry out one-loop calculations of
symmetry-breaking effects in general renormal-
izable gauge theories. The emphasis throughout
will be. on generality, because we do not wish to
lose sight of the universal features of these cal-
culations in a hotchpotch of specific models.

Section II sets the stage. Using a previously de-
veloped formalism, "we write down a general re-
normalizable Lagrangian, invariant under an ar-
bitrary gauge group G. The Lagrangian is con-
structed from general multiplets of spin-0 and
spin--,' fields and a set of spin-1 gauge fields.
The symmetry is broken in zeroth order by allow-
ing the scalar fields P,. to develop nonvanishing
vacuum expectation values A, , determined by the
condition that the scalar-field polynomial P(P)
appearing in the Lagrangian be stationary at

The Feynman rules for the theory with
spontaneous symmetry breaking are then given in
a general "(gauge. "" These rules are manifestly
renormalizable for $ x0 and reduce for $-0 to
the rules derived by canonical quantization" in
the "unitarity" gauge. All physical quantities are
calculated in a general ( gauge, and are explicitly
shown to be $ -independent. (The calculations
could in fact be carried through perfectly well in
the unitarity gauge, as shown previously' for fer-
mion mass relations of type 1.)

Section III deals with the tadpoles: graphs with
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a single external scalar line. These are of no di-
rect physical significance, but they describe the
shift in the vacuum expectation value of the scalar
fields due to higher-order effects, and therefore
play a fundamental role in calculations of physical
effects.

Section IV treats the corrections to fermion
mass relations of all types, 1, 2, and 3. The cor-
rections to these mass relations are explicitly
found to be finite, and are given by Eqs. (4.25}-
(4.30). In theories in which all gauge meson
masses except the photon's are roughly equal and

much greater than all fermion masses, the cor-
rections to fermion mass relations of type 1 turn
out to be roughly the same as would be produced
by electromagnetism alone, but with the ultra-
violet cutoff replaced by a typical vector-boson
mass. For this reason, it seems unlikely that
the neutron-proton mass difference can be natu-
rally made to come out with the observed sign if
isospin is an approximate symmetry of type 1, a
difficulty that is in fact encountered in detailed
calculations ' using a specific model. However,
in corrections to mass relations of types 2 or 3
there are additional tadpole contributions, which

can be larger than the usual electromagnetic
term if the scalar-boson masses are smaller
than the vector-boson masses, and which can
have any sign.

Sections V and VI deal with theories in which

the polynomial P (p) is forced by gauge inva, riance
and renormalizability to be invariant under some
group G larger than the symmetry group G of the
Lagrangian. ' (This includes all theories with fer-
mion mass relations of type 2.} The feature
which makes these theories so interesting is that
in addition to the Goldstone bosons corresponding
to broken-symmetry generators of G which are
eliminated by the Higgs mechanism, "there are
also "pseudo-Goldstone bosons" 4 corresponding
to those broken symmetry generators of G which
are not in the algebra of G. These pseudo-Gold-
stone bosons are not eliminated by the Higgs
mechanism, and although their mass vanishes in
zeroth order it receives finite contributions from
higher-order effects. The hope is that the pion
and its relatives may eventually be identified as
pseudo-Goldstone bosons in a suitable theory of
the strong, weak, and electromagnetic interac-
tions. Another special feature of these theories
is that there is a continuous infinity of physically
inequivalent values of the "vector" X, at which the
polynomial P(Q) is stationary. " In Sec. V it is
shown that this ambiguity is to be removed by the
condition that the tadpole graphs must vanish if the
single external scalar line corresponds to a
pseudo-Goldstone boson. Using the tadpole results

calculated in Sec. III, this condition may also be
expressed as the requirement that at the physical
value of X, the "one-loop potential" V, (P) is G—
invariant, where

V, (A) =, Tr{M4lnM') —1,Tr(m Inm')

+, Tr ( p' in g'),

with M, m, and p, the zeroth-order mass matrices
of the spin-0, -&, and -1 fields, respectively.
In Sec. VI the masses of the pseudo-Goldstone
bosons are calculated; the mass matrix is found
to be

II ~a = —(i' & )~a

where p. and II are matrices defined by

(1.2)

~a~ ~q

8 a

with 8„the A.th generator of the group G of sym-
metries of the polynomial P(P) . It follows that if
all components of A, are of the same order of
magnitude A, , and if all gauge coupling constants
are of the same order of magnitude e, then all
pseudo-Goldstone boson masses are of order

3g - e'A. -ejL(, , (1.3)

where p, is a typical intermediate-vector-boson
mass. This estimate applies in the case of an
"unlocking" symmetry4 G even when one of the
unlocked scalar multiplets has a much smaller
vacuum expectation value than the other.

Section VII describes the connection between
the present work and an interesting recent paper
by Coleman and E. Weinberg. " These authors
employ a functional formalism, in which the sum
of all connected proper Feynman diagrams with n
external scalar lines is given by the nth derivative
with respect to A. of a potential V(A. ), which in the
one-loop approximation is just the quantity

(1.4)

with V, (X) the same as the function (1.1). In this
formalism the true vacuum expectation value of

P, is located at any point where V(P) is stationary.
Their results turn out to be in agreement with the
values of tadpole graphs and pseudo-Goldstone
boson masses derived here, except that for all
gauges other than Landau gauge the tadpole graphs
calculated in Sec. V contain an extra term, which
is not the derivative of any potential. This extra
term is due to the presence of A, -dependent gauge-
determining and scalar-ghost terms in the effec-
tive interaction Hamiltonian. However, since the
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present results agree with those of Ref. 15 in the
Landau gauge, which was the gauge used there,
and since all physical quantities such as masses
are gauge-independent, there is no real discrep-
ancy between our results and those of Ref. 15.

It should also be noted that Coleman and Wein-
berg were chiefly concerned with the implications
of a proposed mass-renormalization condition,
that the second derivatives of V(A. ) with respect to
A. should vanish at A, =0. This condition allows a
solution in which the zeroth-order vacuum ex-
pectation value of Q, vanishes, and yet the sym-
metries are spontaneously broken by higher-order
effects which shift the minimum of V(Q) away
from Q =0. This circumstance leads to resem-
blances between their work and that presented
here in Secs. V and VI, in that the qualitative
character of the symmetry breaking can only be
learned after carrying through a one-loop calcula-
tion. However, in our case (and also in one
section of Ref. 15}this is due to an invariance
group G of the polynomial P(P} which is forced on
us by G invariance and renormalizability, rather
than to a more-or-less arbitrary mass renormal-
ization condition.

There are five appendixes, some of which pre-
sent material that may be independently useful.
In particular, Appendix A outlines the derivation
of the general $-gauge Feynman rules" in the
path-integral formalism, "and Appendix B derives
constraints on the trilinear and quadrilinear sca-
lar-meson coupling constants. These constraints
are responsible for the fortunate circumstance
that the formulas for the fermion and pseudo-
Goldstone boson masses derived here can be used
without knowing all the details of the Lagrangian.

So far, no one model has emerged which ac-
counts for the observed weak and electromagnetic
interactions of leptons and hadrons with sufficient
elegance to win our allegiance. It is hoped that
this paper, by serving as a general primer for
perturbative calculations of symmetry breaking,
will aid in the search for such a model. Of caurse,
we will not be able to rely on "one-loop" calcula-
tions in any realistic treatment of the approximate
symmetries of hadrons. However, it turns out
that the perturbative calculations presented here
stand in a very close correspondence with cur-
rent-algebra calculations valid to all orders in
the strong interactions. The current-algebra
treatment of approximate symmetries will be de-
scribed in a forthcoming paper.

II. REVIEW OF THE GENERAL THEORY

with respect to some compact semisimple Lie
group G. Such a Lagrangian is formed from a set
of Hermitian gauge fields A„„,a multiplet (per-
haps reducible) of spin--,' fields g„(x), and a mul-
tiplet (also perhaps reducible, and hence without
loss of generality real) of spin-0 fields P, (x).
Following Ref. 11, the form of the Lagrangian is

z =-4 &~„„&g"-2(Dye);(D"4')l 4~-"Dye

-ym, q -P(y) —qr;qy;,
where

(a,) The gauge-covariant curl is

~ „„=a„A„-e„A„„-C,,A,„A,„,
(2.1)

(2.2)

where C 8 are a set of real totally antisymmetric
structure constants, proportional to one or more
gauge coupling constants.

(b) The gauge-covariant derivative of the
scalar field P&(x) is

(D„Q),. -=s Q,. +i(BJ, P, A.„„., (2.3)

[e„,e,j =ic., e„. (2.5)

(c) The gauge-covariant derivative of the spin-
—,
' field g„(x)is

(D„y)„=s„q„+i(t„)„gA „, (2.6)

where (tg„is the matrix representing the eth
generator of G on the spin=,' multiplet. The ma-
trix t is proportional to the gauge coupling con-
stants, and satisfies the Hermiticity and com-
mutation relations

(2.7)

(2.8)

We are using a metric g„„withnonzero elements
+1, +1, +1, -1, for p, =v =1, 2, 3, 0, and Dirac ma-
trices with

(2.9)

The matrix t may include terms proportional to
y, as well as 1.

(d) The bare-mass matrix m, is Hermitian and
G-invariant in the sense that

where (8„),, is the matrix representing the nth
generator of G on the scalar-field multiplet. The
matrix 8 is proportional to the gauge coupling
constants, and satisfies the antisymmetry, Her-
miticity, and commutation relations

(2.4)

We shall work with a completely general renor-
malizable Lagrangian possessing gauge invariance mp Pq mpPg y (2.10)
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[t., y, m.] =0. (2.11)

(e) The function P((t() is a real 4th-order poly-
nomial in Q, and is G-invariant in the sense that

g, and adding certain terms which describe the
interaction of a complex spinless fermion "ghost"
field ~:

sP($)
(8~, P =0. (2.12)

(f) The Yukawa coupling matrices 1', contain
any Yukawa coupling constants, and may contain
terms proportional to y, . They are Hermitian
and G -covariant, in the sense that

(2.13)

(2.14)

The G invariance of the Lagrangian is broken by
allowing the scalar fields Q; spontaneously to de-
velop a nonvanishing vacuum expectation value.
In zeroth order, this vacuum expectation value is
a quantity X, , defined as some solution of the
symmetry-breaking condition

with

-4C~S C~~AS A A~~A

i-s„t('(((8~} ((t(((A "—(888~ A.),. t(((A „('As„
'(-8-88 )(((t('((t((A „"A((„i(}(-y(' t (1(A

e f(—(( &((t'((t((, 2. f—(((,((t((({(((t((,(t((

-(tr,.(}4(', —s, ~*c,„&u,A (

-( '&u(~(d8 (8&8~X),.(t(',. ,

8 p((t()
ap ep sp ep

(2.21)

(2.22)

(2.23)

(2.15)

The field (t(( may conveniently be replaced in (2.1)
with a shifted field Q,.', with

Q,. =Q]+A.] . (2.16)

= ((.( (8~8((A.);, (2.1V)

while the formal zeroth-order mass matrices M
and m of the spin-0 and --,' fields become

As a result of the symmetry breaking, the spin-I
particles pick up a zeroth-order mass matrix�'
p. , with

(t(') 8
= -(8P);(8((~);

(Although the coupling constants f,»and f,». , are
not known, they are shown in Appendix B to be
subject to important constraints, which in fact
will turn out to provide sufficient information
about the f's for our calculations to go through ).
The propagators of the A ~, Q', , g „,and ~
fields are given by

a"„8„(k)=(}„„(k'+p. ') '
((

+(1 —$)k k [(k'+ p, ') '($k'+ t(') ']

(2.24)

n, P (k) = (k* ~ M2)-&,

+ (8 X}((88K}({k')'($k'+ t(') ' 8, (2.25}

8'P(0)
kJ By

(2.18)
n. ~ (k) = (iy('k„+m) '„„,
b, „s(k) = $ ($k' + p') '

8 .
(2.26)

(2 2"t)

m = mo+r)A. ] . (2.19)

y4m y4 m m

By differentiating (2.12) with respect to (t(, , set-
ting (t( = A, and using (2.15), we see that M' has
eigenvectors 8 A with eigenvalue zero:

M 0~A, =O. (2.20)

The corresponding fields (8 A.)((t(( describe the
Goldstone bosons of this theory.

The derivation of the Feynman rules in a con-
venient "$ gauge"" is sketched in Appendix A."
The effective interaction Lagrangian Z' is obtained
by replacing Q( in Eq. (2.1) with A(+(t('(, setting
aside all terms quadratic in the fields P', A, and

We can and will define the fermion fields so that
m contains no terms proportional to y„and there-
fore

The propagators of field derivatives such as ~„A
„—S„A„or~„Q,are simply given by the corre-

sponding derivatives of these propagators, and
there are no propagators here which mix the
fieMs of particles of different spin. In addition
to the internal line propagators (2.24)-(2.27) and
the vertex factors dictated by the interaction
(2.21), we must as usual insert extra factors:
i (2(()' for each vertex, i(2(() ' for ea-ch internal
line, and -1 for each spin-& or ghost loop, as
well as momentum-space wave functions for each
externalA, Q, or g line.

The above Feynrnan rules reduce in the limit
$ -0 to the Feynman rules derived" by canonical
quantization in the "unitarity" gauge. This is a
gauge in which all Goldstone-boson fieMs are ab-
sent, so that

(8„A.)((t; =0.
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The propagator of the Q fields in this gauge may
be taken as

'»',. (k) =[(k'+ M') 'll].

where II is the projection matrix' on the subspace
perpendicular to all 8 A. :

of A., with derivatives

~M gg = f»;a
k

(3.2)

(33)

n', =5„+(e.'),.(~-')., (e, '), .

Recalling that M 8 A. vanishes, we see that this
propagator is the same as (2.25) in the limit $-0.
Also, Eqs. (2.21) and (2.27) show that for $-0,
the whole effect of the ghost fields is to generate
an effective interaction Lagrangian

',""'= ((e., e,).), , (3 4)

while inspection of the interaction (2.21) shows
that the one-loop tadpole contributions to the
scalar, spinor, and vector-meson mass matrices
are

5M'»»= f»»q5r A. ~

where

=-i5'(0) Tr ln(1+p '4'),
BM ],

T k&
k

~ =I'k~r~k

(3.5)

@'tn =';(eye&')» .
We recognize this as the extra term generated by
"summing the springs" in the unitarity gauge. "

In what follows, we are going to show explicitly
that the sum of one-loop diagrams is $-indepen-
dent, and the results obtained could just as well
be derived in the unitarity gauge. However, the
calculations below will be worked out in the gen-
eral $ gauge, because the explicit verification
of $ indeyendence provides a useful check of our
calculations, and because the milder degree of
divergence encountered for $ w0 helps to calm our
fears regarding manipulation of divergent inte-
grals.

III. TADPOLES

Sn

5p2-8 = ((e-, e8) A. )~5r A.~

~~ a8 ~r~k .
k

(3.6)

(3.7)

The same conclusion can be reached on more gen-
eral grounds. Recall that the shifted field Q',. is
defined by Eqs. (2.15) and (2.16) in such a way
that its zeroth-order vacuum expectation value
vanishes, so there are no zeroth-order tadpole
graphs. However, this definition of Q'; does not
forbid higher-order tadpole graphs, which in the
one-loop approximation generate a vacuum expec-
tation value, which is just given by the quantity
(3.1):

&K)0=5r'». (3.8)
The first diagrams to be calculated here will be

those with a single external Q',. line and no other
external lines. These "tadpole" diagrams play an
important role in corrections to various mass
relations, and as we shall see in Sec. V, they are
of fundamental importance in removing the am-
biguities in ~ which arise when P(P) is invariant
under a group G of symmetries larger than the
gauge group G ~

Before beginning our calculation of the tadpole
diagrams, it is useful to consider their physical
effects. Generally, the effect of the one-loop tad-
poles is just the same as that of shifting the
zeroth-order va"uum expectation value A., by an
amount

5rx, =- i(2n) 'n f~(0)T-, (3.1)

where T~ is the sum of all proper one-loop tadpole
diagrams. For instance, Eqs. (2.17)-(2.19) show
that M, I, and p, may be regarded as functions

If we had defined the shifted field as Q, -A, , -6~8,
its vacuum expectation value would vanish in the
one-loop approximation, so to this order there
would be no tadpoles. The whole effect of the tad-
poles is therefore just the same as a shift in A,
by the amount (3.1). A more detailed argument
along these lines is given in Appendix C.

Equation (3.1) makes no sense unless n'(k)T is
finite in the limit k-0, which requires that T
have no components along directions u for which
M u vanishes:

u, T, =0 if M'„.u~=0. (3.9)
The same result is derived in Appendix C from
the requirement that one-loop corrections should
not produce a singular change in the vacuum ex-
pectation values of the P, . This condition will be
discussed in detail at the end of this section and in
Sec. V. For the present, we merely note that
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(3.9) [with (2.20) and (2.25)] allows the effective
change in A., given by (3.1) to be written

T =T ~'+T',.~ +T '+T

5r))., = i(2-zz) zM (JTz, (3.10)
d4k, . '+ M'

with an obvious interpretation of M '.
Now, to the calculation. In the one-loop approxi-

mation, there are four tadpole diagrams, shown
in Fig. 1. The scalar, spinor, vector, and ghost
loops yield the respective contributions

+ d4k Tr I'&iyI'k„+m

-3(888 I(.),Jt d. k4(k +zIzz) '

T,' '==~ d k 5~~6, ~~ k,

T',.~'=+ d'k Tr I,~~ k

T( ' = —(e~(i,x) i)"'] d'km,"„~„(k),

T( & =+t.-z(8,8 z), Jtd'kn. ,(k),

(3.11)

(3.12)

(3.13)

(3.14)

~-'(M*i)g x) fd k(k'') '((),"~ u, *) ' (3.l6)

It proves very convenient to use Eqs. (3.2)-(3.4)
to express the first three terms in (3.16) as de-
rivatives with respect to X,. :

d4k f (k'+ M. ')-' = d'k Tr ln(k'+ M'),

(3.IV)

where b, ~, L~, a", and a are the propagators
given by Eqs. (2.24)-(2.27). The (-dependent part
of (3.11) can be calculated using the constraint
derived in Appendjx B:

i d'k Tr [I',. (i y)'k~+ m) ')

B
dzk Tr ln (i y k)'+ m)

BA., j

f;;~ (8~ I()q (8(zk)q
——-(Mz8 J8)).); .

[See Eq. (B8).] We find

(3.15) d4k[Tr ln(iy k" + m)
]. B

2 BA.,

+ Tr In(-iy„k('+ m)]

B
=2 d4k Tr In(kz+ m')

BA, .
5

+-', (M'e, e~z),.J d itlk ) ((k ~ p'') '', ~'.'

Also, (2.24) gives

3 1
k2+ p2 gk2+ p2

&k& = +
~8

the second term of which cancels the ghost-loop
term (3.14). Putting this together, we have for
the total tadpole

)(' 'il

I
i I

/

I

I

I

(3.18)

(8+8&)z d k(kz+Izz) ' z=- d kTrln(k'+izz).
5

(3.19)

[Note that Tr ln(iy„k"+ m) is understood to include
a sum over Dirac indices as well as particle
types, while Trln(k'+ m') is understood to include
only a sum over particle types. This difference
accounts for an extra factor of 4 in (3.18).] Equa-
tion (3.16) may thus be written

T( ——-z (2)z),BV,
BA,]

~ (M (iA&);I&')(&*) '((k* g*) '

(3.20)
where V, is the one-loop "potential"

Vz =—,d'k Tr ln(k'+ M')

FIG. 1. Feynman diagrams for the tadpole T. (Here
dashed lines refer to scalar fields, solid lines refer to
spinor fields, wavy lines refer to gauge fields, and
looped lines refer to ghost fields. )

d4k Tr ln (kz + Iz') . (3.21)

The second term in Eq. (3.20) is both $-depen-
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dent and divergent, but it has an M' factor which

will cancel the M ' factor in Eq. (3.10), so that
the g dependence and divergence of this term can
be canceled by the $ dependence and divergences
in nontadpole diagrams. As we shall see in Secs.
IV and VI, this is just what happens. Qn the
other hand, the sV, /&X term in (3.20) does not
have an M' factor to cancel the M ' factor in
(3.10), so we cannot expect nontadpole graphs,
which do not have M factors, to be of any help
in dealing with this term. Fortunately, (3.21)
shows that V, is $-independent, so gauge invari-
ance is no problem here. However, (3.21) also
shows that V, is quartically divergent, so we
face a problem in eliminating the infinities in the
potential.

The clue to this problem is provided by the ob-
servation that if we added to P(P) a small correc-
tion polynomial a P(Q), then A. would be shifted by
an amount b, ~ given by the condition

be produced by appropriate changes in the con-
stants appearing in the polynomial P(P). This im-
plies that such terms can be absorbed into a re-
normalization of the constants in P(Q), a point we
will not pursue here. More importantly for our
present purposes, this means that if the G invari-
ance and quartic character of the polynomial P(p)
imposes constraints on A, , that do not depend on
the values of the constants appearing in P(P), and
if these constraints lead to zeroth-order relations
among masses or other physical parameters, then
such zeroth order-relations will be unaffected by
any terms in V(P) which are G inva-riant and of
not more than 4th order in ~.

Now we can calculate V, using the formula

(3.23)

where q (x) is a quadratic polynomial in x with
divergent coefficients:

+ g i+ n 0 + g g 3 .24

or, using (2.18), It follows that

(3.22) V, (A.)=, Tr(M'lnM') —,Tr(m'lnm')

As we have seen, the physical effect of the tadpole
contribution produced by any polynomial term
h. V(X) in the potential V, (X) is the same as would
be produced by shifting A. , an amount AA, , given
by (3.10) and (3.20) as

+ 4, Tr(p, 'in'')+ V,„(&),

where

V,„{X)=
( ), [--,' Trq(M')

+2 Trq (m') ——,
' Trq (p')].

{3.25)

(3.26)

and, according to (3.22), this shift in A, could be
produced by adding to P(p) a correction polynomi-
al tl, V(X). [As an alternative way of reaching the
same conclusions, we may note that if we added a
correction polynomial nV(A) to P(p), but continued
to quantize using the old shifted field P, —X, , then
AV would produce a new tadpole contribution,
given by the part of nV(X+ p') linear in Q':

BAV(A, + P')

which is just the tadpole contribution associated
with hV(A. ).] However, P(P) is any G-invariant
quartic polynomial in Q, so any polynomial terms
in V, (X), which are G-invariant and not greater
than 4th order in A., produce tadpole contributions
to physical quantities which are the same as would

However, M', m', and p.' are quadratic polynomi-
als in X, so V, „

is a quartic polynomial in X.
Further, V, „

is a G-invariant function of ~ in the
sense that

BV,
„'" (8„),~ A~ =0,
i

because TrM', TrM', Trm', Trm4, Trp, ', and
Try, ' are all G-invariant functions of A. . [See Ap-
pendix D.] The above argument then shows that
the term V,„(A.) in (3.25) cannot produce correc-
tions to any constraints in physical parameters
which may arise in zeroth order, as long as these
constraints are independent of the parameters
appearing in the polynomial P(P). Hence, for the
purpose of calculating corrections to such con-
straints, we can drop the term V, „

in the potential
(3.25), and write the "effective one-loop potential"
as



2894 STEVEN WEIN BERG

V, ,«(X}=,Tr(M'lnM')1

,Tr(m'lnm'}+, Tr(p~lni(, ') .
(3.27)

Note that a change of mass units used to calculate
the logarithms would produce correction terms
in V, eff proportional to TrM', Trm, or Tr(U. ',
but such terms are again G-invariant quartic
polynomials in ~, and hence cannot produce cor-
rections to the zeroth-order constraints which
concern us here.

The gradient of this potential may be evaluated
using Eqs. (3.2}-(3.4):

2 f~~;[2M 2 in M'+ M'],~
7T

2 (r,)„[8m'lnm + 2m']„

+,((6, 88)X),[2p' ln p'+ p'] 8 .

(3.28)
The nonlogarithm terms here may be written as
derivatives with respect to A. , of a linear combina-
tion of the quantities TrM4, Trm4, and Try, 4, all
of which are G-invariant and quartic in A,; hence,
by the same reasoning that allowed us to drop the
term V,„,we may simplify (3.28) to read

~ f)~; (M2 lnM2), ~
BV, (().) 1

eff

, (1,.)„(m'lnm)„
1

(3.32)

This just means that V, (A.) must be G-invariant.
However, Eq. (3.21) and the theorem proved in
Appendix D show immediately that V, (X) is G-in-
variant, so that (3.32) is satisfied for all X, and
tells us nothing new. Condition (3.9) or (3.31) is
of physical interest only when there are vectors
u, other than the vectors 8 ~, for which M'u van-
ishes. This possibility is explored in Sec. V.

IV. FERMION MASS CORRECTIONS

Let us now apply this formalism to calculate the
one-loop corrections to zeroth-order fermion
mass relations. There are six one-loop diagrams
shown in Fig. 2. The vector-boson exchange con-
tributes to the self-energy insertion Z (p) an
amount

V'*'(p)= ), f d ky t,A'( p k)y"t Z, (k),

the scalar-boson-exchange contribution is

(4.1)

and the total tadpole contribution is

(4.2)

Qne set of eigenvectors of M' with eigenvalue zero
is provided by the "Goldstone" vectors 8 A. . [See
Eq. (2.20).] Thus, (3.31}always requires at least
that

(3.29)

For the same reason, it makes no difference what
mass units we use to calculate the logarithms in
(3.29).

The total effective tadpole is now just given by
using (3.29) as the first term in Eq. (3.20):

, BV, (X))
BA.,

(4.3)

The fermion masses are at the poles of the cor-
rected propagator

n, ~ (p) =[iy„p)'+m —z(p)] '

where m is the zeroth-order mass matrix (2.19).
In calculating the masses, it is useful to keep

,' (M'8/ k).f d'k(k') '((k' ~ IP)

(3.30)
/

1

We return now to the condition (3.9) which was
encountered in the course of discussing the physi-
cal effect of tadpoles. The second term in our
formula (3.20) for T; obviously satisfies this con-
dition, so (3.9) may be written

/
t
\ I

I

I

BV, (A.) u, =0 if M'u =0.
S

(3.31) FIG. 2. Feynman diagrams for the fermion self-
energy. (Conventions same as in Fig. 1.)
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in mind that a term in Z (p) with a factor
(iy„p"+ m) on the extreme right or left can affect
the residues of these poles, but not their positions.
That is, if Z(p) has the form

Z (p) = (i y„p"+ m)F (p) +G (p) (iy„p]'+m) + Zeff (p )e

with E, G, and Z,ff matrix functions of p, then to
first order in F, G, and Zeff the corrected propa-
gator may be written

by Z,ff, not E or G. Thus we may freely replace
any factor y„p"with i m whenever it appears on the
extreme left or right in any term in Z (p).

We begin by decomposing (4.1)-(4.3) further into
various separate contributions to Z (p). The vec-
tor-boson-exchange term Z'"'(p) contains a term
arising from the g&, part of b A,

Z[~)(p) = d'ky]'t n'(p k)y—t
(2v)4 a p 8

a~ (p) =[1—F(p)] '[iy p" +m —Zeff(p)] ' x(k +t], ) ~8, (4.4)

so that the positions of the poles are determined

and a term arising from the k„k„partof 6A. This
latter term may in turn be decomposed into sever-
al terms by making the substitution

k„y['tst).~ (p —k)k„y"t~ —i[i (p„-k„)y"+ m]t8D "'(p —k)k„y"t~
=iye [i (p„k„)ye-y['+

yern)t[)i]e

~ (p —k)k„y"t~
=iyet8yek„y"t +iy [yerne, tz]n. (p -k)k„y"t
-iy, tsy, k„y"t~—ye[yern) t8]n~(p —k)yet„ye[i(p„k„)y]'+—m]

=iyet&yek„y"t —ye[yern, t8]D&(p —k)y '[t, y m] —y [y m, t ]t

(An arrow indicates the replacement of p„y with im on the left or right. Note that t may contain terms
proportional to y„soit does not necessarily commute with y„,but t„does commute with y,y„.The
liberal use of y4 matrices here saves us from having to decompose t explicitly into right- and left-hanc
parts. } The first term here vanishes upon symmetric integration. The second and third terms yield con-
tributions to Z'"'(p):

'(e) = —
e ). [) —[)Je'e([e*+e*) '[ee* ~ e') '), w, [y, , t, ]o'(p -eh;[tw, ], ,

[e)=—
[e, () —[)Jd'e[le' ~ e') 'l[k* ~ e*) '). &'. h.

(4 5)

(4.6)

Similarly, the Q exchange term can be broken into
two parts, arising from the first and second terms
in (2.25):

Z'"'(P) =- ', d'k r,. n&(P k)r,

z[™(p) =
2 ( ), r; (e eaA},

de p2 -I (y2+ ~2 -2 (4.10)

x (k'+ M')-'

z[~"(p) =—,(e ][.), (8 A. ),

(4.7}
At this point, we can begin to take note of the

interesting cancellations among the various terms,
and put the result in a $-independent form. Note
first that

X d4kF,.~& p -k

x r (k2) t(tk2+ Q2) (4.8)
y, z,[t, y, r,]-.
y, [t., y,m]-

Finally, the tadpole term may be broken into two
parts, arising from the first and second terms of
Eq. (3.20):

and

Z["]( )=r M-'. ay
P 2 tjgg (4.9)
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[See Eq. (2.14).] Also, the matrix in (4.6) may be
written

y4[y4m, t()]t~+y4[y4m, t Jt()
=y [t8,[t, y m]]+y [y m, t8t ]

y, [t, ,[t., y, m]]+y, [ ty4y„p2, t, t

=y, [t,[t, y, m]].

These relations allow us to combine denominators
using the identity

1 (I-$) 1 1
k2(k2+ (IS)

In this way, we find that the A2 and ft)2 terms and
the AS and T2 terms combine to give the g-inde-
pendent contributions

Z(Ag& (p) Z(A2) (p) + Z(4I2) (p)

d4k y4[y4m, t&]ts2 (p -k)

xy4[y4m, t ](k') '(k'+t(2) I„(),
(4.11)

Z(AT) (p) Z(A2) + Z(T2)

-2(2„)4y. [ ()~[ ~)[y4 ]]]

the zeroth-order fermion mass matrix as a gen-
eral, possibly nondiagonal, matrix, but to diag-
onalize the vector-meson mass matrix p, writing"

p asCgN pN CaNy
2 = 2 (4.14)

with the eigenvectors C„forming a complete
orthonormal set

Q C a» C 8» = 5~»
N

CaNCa

We also diagonalize the scalar-meson mass ma-
trix,

M )~u~K=MK u;K, (4.15)

with the eigenvectors uK also forming a complete
orthonormal set

Z (E M (J&
K

KutL ~KL '

The matrix generators associated with the vector
mesons of definite mass are

(4.16)

while the Yukawa coupling matrices associated
with scalar mesons of definite mass are

(4.1 I)

X d'k(k') '(k'+ t(2) ' (4.12) Inspection of Eqs. (EI)-(E4) shows that the diver-
gent parts of Z(p) are of the form

Thus Z (p) may be written as the sum of terms

Z (p) Z(AI & (p) + Z(41) (p)

+ Z(A4) (p) + Z(AT) + Z(TI ) (4.13)

every one of which is explicitly $-independent.
As promised, the $ dependence in the tadpole can-
cels against the t' dependence in nontadpole graphs.

Although )-independent, Z (p) is still divergent.
The divergence in the potential V, term has al-
ready been discussed in Sec. III, where it was
shown that ()VI /t)X( may be replaced with the fi-
nite quantity (3.28). This leaves us with a linear
divergence in the A1 and Ql terms and a logarith-
mic divergence in the AT term. Rather than iso-
late these divergent terms to check explicitly that
they do not affect zeroth-order fermion mass
relations, as already done in Ref. 2, we will pro-
ceed directly with our calculation using a cutoff
A to evaluate divergent integrals; we will then
check that the physically relevant parts of Z(p)
are cutoff-independent for A -~.

The details of the calculation of the A1, $1, A(A),
and AT terms are presented in Appendix E. It
turns out to be extremely convenient here to leave

Z„=Q (amt„t„+by,t„y4mt„+cy4t„t»y4m)
N

+ Q (dm y41'»y4 I'» +e I'» m I'»), (4.18)

where a through e are divergent constants. Spe-
cifically, we have

In A'
32r' ' C=— 216m2 ' 32m'

ln A' lnA'
16&2

(but our discussion will not depend on these par-
ticular values). Because a, b, and c are N in-
dependent and d and e are K-independent, we can
rewrite this as

Z„=am tata+by4tay4mt „

+ ey4t t y4m + dm y4I. , y41, +el, m 7, .
(4.19)

Using Eq. (2.19) to express m in terms of the ma-
trices m, and I, , we see that the change -Z„in
the fermion mass matrix produced by Z„is pre-
cisely the same as would be produced by adding a
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correction to the original Lagrangian

zS = -yzI', yQ,. -yam, y,

with

QI',. = -aI'&t t —by4t y4F,-t

(4.20)

[t„,y EI';] =-(8 );~ y+I'~,

[t, y,tm, ]=0,

(4.23)

(4.24)
I

—cy t t y I', —dI', y, I'&y41"z -elzr, r', ,

(4.21)

4m =-am t t -by t y4m t

—cy4t t y4mp —dmpy4I', y4I &-el &mpI'f

(4.22)

However, by using (2.14}, (2.11), and (2.8), and
recalling the antisymmetry of the structure con-
stants and 8 matrices, we can easily check that
Zr, and amp have the same G-transformation
properties as l; and m„i.e.,

so that hS is G-invariant. Also, AS is Lorentz-
invariant because the y, factors in (4.21) just have
the effect of changing the sign of all y, terms in
t and I'; . Finally, AS is obviously renormaliza-
ble. But our original Lagrangian S was supposed
to be the most general possible G-invariant Lo-
rentz-invariant renormalizable Lagrangian that
could be constructed from Q, , g, and A „,so
adding b, Z to S just amounts to a change in the
parameters in S. This allows us to absorb the
infinite self-mass correction -Z„into a renor-
malization of the parameters in the Lagrangian.
Of greater immediate interest, we can now con-
clude that if the zeroth-order mass matrix m is
subject to constraints which do not depend on the
parameters in the Lagrangian, then such con-
straints will be unaffected by the divergent term
Z„,so that this term may be dropped. " The
same reasoning allows us also to drop any other
terms in Z (p) which are of the form (4.18). With
this understanding, the individual terms in Z(p)
are now

(4.25)2
m'X'—

&',t' =
2 Q I dx[-2mtN(1 -x}+4y4t «y4mj ln t&~2+

16m 4 N 4 g 1 + N y

(~~) 1 1 m2X2 m 2X2
dx((l -x)m[y4m, t„]y,+y~[y4m, t„]mj ln —ln g„2+ y [y m, t„],16m

(„~) 1Tl»"=3, ~ ».[tx [4».mjl»»',
N

I
Z,'&~&" = —

~ Q dx[-(1 —x)my41'zy4+ I'rm] ln [m'x~+ M '(1 —x)]l'»,16m2 ~

and using (3.29} in (4.9),

(4.26)

(4.2'I)

(4.28)

I.".«" =32„,I'&M '«& f», (M'InM')» —16Tr(m'Inmi'&)+6+ (8„'&&}&t&„'Int&'
N

(4.29)

(Here m is still a matrix which in general does
not commute with t„.) It should be noted that the
corrections to zeroth-order fermion mass rela-
tions produced by each term here are separately
independent of how we choose our mass units in
evaluating logarithms; this has already been
shown for (4.29} in Sec. III, while for (4.25)-(4.28)
the change in Z produced by replacing m', M',
and p in logarithms with A, m', A.M, and A. p,' is
of the form (4.18), and hence cannot affect zeroth-
order mass relations.

The self-energy insertions are now all p-inde-
pendent. They therefore yield a correction to the
fermion mass matrix, given simply by

g&&4& y&&r& g&4&& I;&r&& (4 30)eff eff eff eff eff

g&~A&& g&f4& g&41& (4.31)
If the zeroth-order mass relation arises because

It is useful to look at how these results simplify
when we compute corrections to various specific
kinds of zeroth-order mass relation

TyPe 1. Mass relations of type 1 arise solely
because of the representation content of the scalar
fields which enter in the Yukawa coupling, ' rather
than from constraints on A, We note that both
the AT and T1 terms are linear combinations of
the Yukawa coupling matrices I', . [For (4.28}
this is obvious. For (4.2V}, use (2.14) twice. ]
Thus the AT and Tl terms cannot enter in correc-
tions to zeroth-order mass relations of type 1,
and the corrections are given by
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the part of A. contributed by the scalar fieMs with
Yukawa couplings is invariant under a subgroup
S of G, then only the gauge couplings break S, and
the $1 term may be dropped

Type 2. Mass relations of type 2 arise' because
G invariance and renorrnalizability forces both
the Yukawa interaction and the polynomial P(P)
to be invariant under some group G larger than G,
while the solution X, of Eq. (2.15) happens to be
invariant under some subgroup S of G, so that m

is also invariant under S. In this case it is only
the gauge couplings that break S, so (4.29} sim-
plifies to

Z'Q'=, r,M-'„g(e„9),q„'Inp„', (4.32)
16m N

and the Pi term may be dropped. However, the
AT and Tl terms as well as the Ai and AP terms
may contribute to the corrections to the S invari-

ance of m.
Type 3. Mass relations of type 3 arise' be-

cause the solution X, of Eq. (2.15}is subject to
some constraints for all values of the parameters
in P(Q), other than constraints corresponding to
the invariance of A., under some subgroup of a
group of symmetries of P (Q). In this case, all
terms in Eqs. (4.25)-(4.29) are potentially capa-
ble of contributing to the higher-order corrections
to the zeroth-order mass relation.

It is also useful to see how the contributions to
5m simplify in the likely (though by no means cer-
tain') event that all vector particles except the
photon are much heavier than all fermions. In
this case, the nl' term in the logarithm in (4.25)
can be dropped in all terms except the photon
term N =y. Setting I; equal to the fermion charge
e, we then have

m 2x2
Z',~«' =

~ dx g [-2m t„'(I— )x+ 4y t4„y m4t„jItn~L2+e' (ml +)xl neff 16+2 N 4 N 4 N N 1-x

The x integral is now very simple, and we find

(W) 3
Z',« '=, Q (-mt„'+4y,t„y,mt„}lnp„'+,e'm (=,'+Inm') . (4.33)

(I)m ~ g(AI )
eff

3e2 p 2
—'+ln

I

(4.34)

This is just the old Weisskopf result" but with

With the same approximation of large p,„'for
N ey, we see that the AP term (4.26) and the
Tr(m' Inml'~) term in (4.29) are both negligible.
Also, the ratio of the Yukawa to the gauge cou-
plings is of the same order as the ratio of the fer-
mion to the vector masses, so the QI term is also
negligible. The AT term and the other Tl terms
do contribute to this order, but these terms do
not receive any contributions from the photon.

As an example, suppose for a moment that all
vector bosons except the photon are degenerate,
with common mass p, . As already remarked, we
can evaluate the logarithms using any mass units
we like, so let us choose to measure all masses
in units of p. The Ing„' terms in (4.33), (4.27),
and (4.29) can then be dropped. For zeroth-order
mass relations of types 1 and 2, the M' lnM'
term in (4.29) may also be dropped, so for
m «g', we have

the ultraviolet cutoff replaced with a finite quan-
tity, the vector-boson mass p.

Although (4.34) applies only for the case of de-
generate massive vector bosons, it should provide
a pretty fair approximation to the corrections to
type 1 mass relations, even when the massive
vector-boson masses are somewhat different.
This is why calculations ' of the neutron-proton
mass difference, in theories in which isospin is
a type 1 approximate symmetry, persistently
give the same wrong sign as in the Weisskopf for-
mula. However, for mass relations of type 2 and
3, there is a possibility that the tadpole terms
can be much larger than the Al terms. That is,
if the massive vector bosons are not strictly de-
generate, and if one or more of the Higgs bosons
(not the Goldstone or pseudo-Goldstone bosons)
are much lighter than all the massive vector bo-
sons, then the largest correction to the zeroth-
order mass relations comes from the vector-
boson tadpole term in (4.29), and so

5m = —15, I",.M, ~Q (tt„'X))y„'Inp„'.(.4.35)
3

This can have any sign suggesting that perhaps
isospin may be an approximate symmetry of type
2 or 3 rather than type 1.
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V. PSEUDOSYMMETRY BREAKING

In this section and the next, we will consider the
possibility that the G invariance and quartic char-
acter of the polynomial P(Q) require it to be in-
variant under some group G larger than G. As
already remarked, those "pseudosymmetries"
which are in G but not G, and which are not broken
in zeroth order, generate approximate symme-
tries of "type 2" which are broken by higher-
order effects. Our concern here is more with the
pseudosymmetries which are already broken in
zeroth order.

The existence of such pseudosymmetries ren-
ders the symmetry-breaking condition (2.15) for
A., somewhat ambiguous. '4 Given any solution ~,
we can find other solutions D(g)A., where D(g) is
the matrix corresponding to any arbitrary element
g of G. If g is a member of the true symmetry
group G, then X and D (g)h. are physically equiv-
alent solutions, and this ambiguity is harmless.
However, if g is in G but not in G, then it is only
a symmetry of the polynomial P(Q) but not of the
whole Lagrangian, so X and D (g)X are physically
inequivalent, and we need extra conditions to de-
termine which is the physically relevant solution
of A. .

Of course, even without pseudosymmetries, it
is common to find a discrete set of possible solu-
tions X of Eq. (2.15), each corresponding to a dif-
ferent physical theory. The new element intro-
duced by the pseudosymmetries is that we can
have a continuous set of physically inequivalent
solutions D (g)A of Eq. (2.15). To be more spe-
cific, if 0„is any generator of the connected part
of G, then the G invariance of the polynomial
P(P) requires that, for all P,

(e„y),=o, (5.1)

sv, (~)
u, =0 if I', , u& =0, (5 2)

which was derived in Sec. III from the require-
ment that scalar particles with vanishing zeroth-
order mass should not have tadpoles. (This con-

so the solutions to Eq. (2.15}, which requires
8P/8$, to vanish at P =A, , have N degrees of free-
dom, where N is the number of independent vec-
tors of the form e„h,. However, since A. and
A. +ieg X are physically equivalent solutions of
(2.15), the physically relevant ambiguity is only
N-N dimensional, where N is the number of inde-
pendent vectors of form 9 A. . We needN-N extra
conditions on X to remove the ambiguity.

These conditions are supplied by the require-
ment (3.31):

dition is also derived in Appendix C, from the re-
quirement that (P', ), have a well-behaved pertur-
bative expansion. ) Each nonzero vector 8„A,de-
fines an eigenvector of M' with eigenvalue zero,

M 8~3.

[see Eq. (85}], so (5.2) requires that

(5.3)

(5.5)

or, using (3.4),

0 = (8„A.);({8,8 }A.},(p' Ing') (5.6)

This condition plays an important role in calcula-
tions of the masses of the "pseudo-Goldstone"
bosons carried out in Sec. VI. It also has an in-
teresting var iational interpretation. Consider the
"orbit" in the representation space of the scalar
fields, formed by solutions of Eq. (2.15) of the
form

X = D (g)XO, (5.7)

where A, is any particular solution of (2.15), and
g sweeps over the group G of symmetries of P(P)

The potential V, (X) is invariant with respect to G,
not G, so this condition is automatically satisfied
only for the generators 8~ of G, not for the other
generators of G. Thus the number of independent
constraints here equals the number N of indepen-
dent vectors e„Xminus the number N of indepen-
dent vectors 8+, which is just what we need.

In using (5.3), we may obviously discard any
terms in V, (A. ) which are invariant for all A. under
the symmetry generated by 8„.In particular,
since the polynomial P (p) is supposed to be in-
variant under the group G for all values of the pa-
rameters in P(Q), all quartic G-invariant poly-
nomials in A. are invariant under G, so we may
drop the infinite part (3.26) of V, (A. ), which was
shown to be G-invariant and quartic in Sec. III.
Also, since Tr(M' lnM') is invariant under any of
the symmetries of the polynomial P(Q) (see Ap-
pendix D) we can drop this term in (3.25}, so that
(5.3) becomes simply

a
0=(8„X}, [3Tr(p4lnp') —4Tr(m~lnm')].

(5.4)

Finally, in the most interesting cases, the sym-
metries of the polynomial P(P) are also symme-
tries of the Yukawa term, so that Tr(m~lnm') is
invariant under all these symmetries [see Appen-
dix D again] and hence may be dropped from (5.4),
leaving as our condition on A. just
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Any infinitesimal change in g produces in A, a
change of form

5A. = te~g~A. ,

with e„aset of arbitrary infinitesimal param-
eters. Hence Eq. (5.3) just tells us that the true
physical A. is that particular solution of (2.15)

which minimizes V, (A.) on the orbit (5.7) (or at
least extremizes it.) Since G is a compact group
and V, is a continuous function of X, it must in-
deed have such a minimum on the orbit (5.7);
hence, given any particular solution A., of Eq.
(2.15), we can be sure that there is another solu-
tion A on the same orbit which also satisfies (5.3).

VI. PSEUDO-GOLDSTONE BOSON MASSES

There is an eigenvector 8„A.of the scalar mass matrix M' with eigenvalue zero for each broken sym-
metry of the polynomial P(p). Those eigenvectors associated with generators g„oftrue symmetries de-
fine the true Goldstone bosons, "which are eliminated by the Higgs mechanism. " However, if the poly-
nomial P((f1) is also invariant under pseudosymmetries which are not symmetries of the whole Lagrangian,
then the corresponding vectors 8„Xdefine scalar fields with vanishing zeroth-order mass, which are not
killed by the Higgs mechanism, but which pick up a finite mass from higher-order corrections. We shall
now calculate the mass matrix of these "pseudo-Goldstone" bosons in the one-loop approximation.

There are eleven diagrams here, shown in Fig. 3. The contributions of these diagrams at zero-boson
four-momentum are as follows:

(6.1)

rrs,ss's(o)=-, ', d„,d„,f d'kks(k)ks(k), (6.2)

II(~~")(0)=
( ), (gJ2, (gs), ~

'td'kk"k"n. „"„()(k)n~~,(k), (6.3)

II',~&
& ' (0) = d k Tr {I',a 2 (k)I'& rk 2 (k)), (6.4)

rrs, ;m(O) = „',.(e„e,.),. (e,e..),.fd kk:„(k)k;,(k),

o)s'(o) = ), (ekeJ,.sJ d'ok",„,„(k)y,"",

rr'„'(o)=.. .d„„f d'k k,', (k)

(6.5)

(6.6)

(6.7)

z
II',q'(0) =

)
f,q M,T, , (6.8)

with T, the total tadpole given by Eq. (3.16). After a lengthy calculation, using the constraints on f,» and
f,», derived in Appendix 3, we find that

;,()=-k(k, ). ((., s) );((„,) ) J ' (k* ~ O') '.„(k'~ O') 'ss

ddk (k2) 1(@2+I12) 1 [ M2g (k2 d M2}-1g M2+ M2g (k2 ~ M2}-IM2g + g M2(k2+ Iif2)-1g M2]

~
)

fd'kT {I',(Sy ks+m) 'r's(ry k m) ')

, (M'e 9 S), (Sr'esses)sf d'k(k') 'irk' ~ ll') ',s(rk' ~ ll') '„,
Si 4 2 2-12(2)es'eg)sdk(k+o)s+k(k)dkfdktkM)
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f M ' f d k(k +M') ' + f,j M ', d4kTr(F, (iy~k~+m) '}4 i fjk k1 1'2 (2v) je4 (2)i )4 i je) ki

(6.9)

() =- (', (ek)((e., e}k),(ek), ((e„,e}k) Jd'k(k*+e')-'. , (k'+e)-'„AB 2(2s 4 A i

~, (e k), ((e, e,}e k) Jd'ki' ~ e') ',e2(2v)4 A i 8 e (k B

~ ((e„e}k),l(e, ee}k),J d'k (k' ll') '
4(2V)4 A e B i (ke 8

, f,„M'„(.(e„ee}k),f d'k(k' ~ e') '
2 (2V)4 ijk e)i (ke (} i

d nd t r should we expect it to be, for we are not on the mass shell for gen-
for which =0eral i and '. In order to speciahze (6.9) to Ihe Goldstone and pseudo-Goldstone directions, for which q =

is on the zeroth-order mass shell, we must contract with (8AX), (8B}}.)j. Again, the constraints proved in
t 'd, d e f nd a great many cancellations. Specifically, the third and fifth

terms drop out immediately, while the second, seventh, and eighth terms cancel. The remaining terms
yield

+ (8 g) (8 A) d4k TrfF, (iyiki+m) 'Fj(iy)k~+m) ')
(2&)4 A i B j

', ((e„,e }k)f d'k re(r ( e|k' ~ )-'},
2(2}i)' (6.10)

where

(6.11)II~ =- (8'), (8BX)jiI,j (0) .
This is now $-independent, as expected. However,
we still must worry about the presence of ultra-
violet divergences.

It proves extremely convenient at this point to
use Eqs. (3.18) and (3.19) to rewrite (6.10) in the
economical form

i~ABCiC ~ (6.16)

and, as shown in Sec. V, L~V, vanishes for the
physical value of A.. [See Eq. (5.3).] Hence (6.15)
could just as well be written

I

Also, we should note here that the order of Lie
derivatives acting on V, does not matter, because

8[L„,L,,] =[8„8„]„}}.
„„

5

11 = --.'(L„,L,)V,

where L„is the Lie derivative

8L„=(8A}(.);

(6.12)

(6.13)
AA

and U is a function of A. given by

U =—,d'k Tr In(p, '+k')
2 2v '

+ d4k Tr jn(m'+k~) .
2i
v)4 (6.14)

(6.15)

We note that U is the same as the "potential" V,
defined by Eq. (3.21), except that the scalar-
meson term in V, does not appear in U. In fact,
such a term could not contribute in (6.12) anyway,
because Trln(k'+MB) is necessarily invariant
under the whole group G which leaves the poly-
nomial P(qj) invariant (see Appendix D) and there-
fore I.„Uvanishes for all A. and A. For this rea-
son, (6.12) could just as well be written

11 = —,'{L„,L,)IV, .

/
I

I
I I

/

/

/

I
I

FIG. 3. Feynman diagrams for the scalar self-energy.
(Conventions same as in Fig. 1.)
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II~ —-LAL~Vj

—-L~LAVj. ~ (6.17)

We can now pause to verify Goldstone's theo-
rem" in the one-loop approximation. If either 8„
or 8~ is one of the generators 8 of true symme-
tries of the whole Lagrangian, then (6.17) shows
that II~ vanishes, because L V, vanishes for all

(See Appendix D.) It is only when both e„and
es are symmetries of the polynomial P(p) but not
of the whole Lagrangian that II» can be nonzero.

The disposition of the infinities is now perfectly
straightforward. It has already been shown in
Sec. III that the infinite part of V, is a quartic G-
invariant polynomial in A, . However, the pseudo-
symmetries are supposed to arise for any quartic
G-invariant polynomial, so the infinite part of V,
must be invariant under the transformation gen-
erated by 8„and 8~, and so cannot contribute in
(6.17). Thus the potential V, in (6.17) can be re-
placed with the finite effective potential (3.27).

As already mentioned, the scalar-meson term
in V, does not contribute to 11~ bee.use it is in-
variant under all the symmetries of the polynomi-
al P(P). In the most interesting cases, the Yu-
kawa interaction is invariant under all pseudo-
symmetries, so the spinor term in V, is also in-
variant under all the symmetries of the polynomial
P(P), and does contribute in (6.17). We have then,
simply,

and lisA is the quantity defined by Eq. (6.11).
That is, the pseudo-Goldstone boson masses
(squared) are the eigenvalues of the Hermitian
matrix

~ As [u ~u ]As' (6.23)

Rather than continue this discussion in general
terms, let us now turn to one particularly prom-
ising kind of pseudosymmetry, that which arises
from the unlocking' of different scalar-field mul-
tiplets. Suppose that the scalar-field multiplet P
can be decomposed into two multiplets, g and g,
and that the most general quartic G-invariant
polynomial in P is invariant under separate G-
transformations on y or q. The generators 8„of
the symmetries of the polynomial P(P) may then
be labeled 8 „and8n„, with 8 „acting only on
the X multiplet and 8 „acting only on the g mul-
tiplet. The generators of the true symmetries of
the whole L~~rangian are then just

8=8„+8„.
Similarly, the vector-bo@on mass matrix may be
expressed as

(u')«= (u„')«+(u„')8.,
where p„'and p,„'are the matrices defined by
(6.22):

(ux )8 =u Bx. x

II~ =—,LALs Tr(u'lnu') . (6.18)
= - (eB„A.), (e„„x),,

To calculate the pseudo-Goldstone boson mass-
es, we recall that the mass eigenvalues are de-
fined by the poles of the corrected propagator

(k) =[k'+ M' —lI (k')] '

so for each mass value SK, there is a vector u
with

[~'I+M' -ll (-K')],,u, =0. (6.19)

BA A BA A
2 2 (6.21)

where p, is an extension of the previously defined
vector-boson mass matrix

For the pseudo-Goldstone bosons, u is close to
an eigenvector CA8AX of M' with eigenvalue zero,

u =CA8AA. ~Su,

and the mass % is close to zero. To first order
in%', ll, and 6u, Eq. (6.19) then gives

-3g'c„e„~+M'eu -11(0)c„e„~= O. (6.20)

Taking the scalar product of this equation with
8~X eliminates the unknown 6u term, and gives

(uq )«= ups, uq

=-(e,„z),. (e,z), .

Also, the mixed components of (6.22) vanish:
2 = 2"sx. a=i"8n. x =0-

Finally, the self-energy matrix II» vanishes
when 8„or8~ is one of the true symmetry genera-
tors 8, so that

IIB. --
8

=-
8 =+ e =-&8 ~

The eigenvalue equations (6.21) then become

SR p„
3R P~ v =wv —7t'u

y

where u and v are the y and g parts of the eigen-
vector

un—:Cnx ' Vn =—Cn

The solution of this eigenvalue problem may be
written

u =-PX Kq V=+]Ltq Ky

u sA (es~)&(eA~) (6.22) and the eigenvalue condition on SK2 now reads



PERTURBA TIVE CALCULATIONS OF SYMMETRY BREAKING 2903

3K'w =w(g„'+g„')~.
Although still very general, these results allow

us to answer an interesting physical question. In
general, (6.21) leads us to expect pseudo-Gold-
stone boson masses to be of order

3g -e A. -e p y

where e, X, and p are typical values of 8, ~;,
"nd p.~. However, suppose that the vacuum ex-
pectation values of the g fields are much larger
than those of the X fields. ' What is then the order
of magnitude of the pseudo-Goldstone boson
masses? Since p„'»g„',we can write (6.17) as

3

broken symmetry in Landau gauge. Their result
for this potential, keeping only graphs with not
more than one loop, is just

V(4 ) =I'(y)+ V, (4), (7 1)

with V, given by Eq. (3.21). They then calculate
the vacuum expectation value of |15 from the condi-
tion that V(Q) be stationary:

', (4) =0 (7.2)

(7.3)(Q, ), =A.;+5k, ,

the terms of the first order in 6A; and V, give

In zeroth order, this gives (Q,), equal to the vector
A, defined by Eq. (2.15). Setting

, LS„L „Tr/p„'(Inp,„2--,) p,„'j. +M' 5X =0.if f
i Q=X

('l.4)

The term --,' may be dropped, because Tr(p„'p, '}
is a quartic G-invariant polynomial in A., and
hence, by virtue of the assumed unlocking, must
be invariant under 8 „and8

„

transformations as
well as 8 transformations. (By the same reason-
ing, the mass units used to calculate the loga-
rithm do not matter. ) A simple calculation then
gives

i(2 w)-M, ~5k,. +T; =0. (7.5)

Equations (V.4) and (7.5) are the same if the one-
loop tadpole is given by

This result may be compared with the result for
5A. derived here in the broken-symmetry formal-
ism. According to Eq. (C4), we have

T, =-i (2w )'. (7.6)

where W is the matrix

(%$8„—= -iC'~~„.
We see that m is of order e'p, „'p,„',where e is a
typical gauge coupling constant. The matrix
w (y» '+ p„')is then of order e'g„', so the pseudo-
Goldstone boson masses are of order e p,„,and
hence of order e p,, where p. is a typical vector-
boson mass. This result is mildly discouraging
if we think that p, is of order 50 GeV and want to
consider the pion to be a pseudo-Goldstone boson.
However, in this case the "one-loop" approxima-
tion is quite inappropriate, because the Yukawa
couplings are not of order e but rather of order 1.

VII. COMPARISON WITH THE VARIATIONAL APPROACH

The results obtained in the foregoing sections
have a variational interpretation which is interest-
ing both for its own sake and as a point of contact
with the work of Coleman and Weinberg. "

Coleman and Weinberg define a "potential" by
summing up all connected single-particle irreduci-
ble graphs having any number of external zero-
momentum boson lines, each associated with a c-
number factor fII);, using for this purpose the
original "stage one'* Yang-Mills theory with un-

However, Eq. (3.20) shows that (7.6) is not true
for general $, but only in Landau gauge, where

oo

In a sense it should not be surprising that (7.4)
and (7.5) are inconsistent for gauges other than
Landau gauge, because Coleman and Weinberg"
used Landau gauge to calculate V(Q). However,
we can easily see that for general $, the tadpole
given by Eq. (3.20) is not the derivative of any po-
tential, because

This failure of the functional approach can be
traced back to Eq. (A8)." The La.grangian con-
tains X;, not only in the boson field Q, = Q', + A, ,
but also in the gauge-determining term,

2$[swA~&=+i $ '(8~X),p, ]',
and in the scalar-ghost interaction,

-$ '&u*&ue(8s8 X),

(7.V)

(7 8)

Hence in general, differentiation with respect to
A, ; is not the same as adding an extra zero-mo-
mentum P', line. It is only in Landau gauge, where
(-~, that (7.7) and (V.8) become X-independent,
so that the functional formalism can be used with-
out modification.
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Coleman and Weinberg" also calculate the sca-
lar-boson self-energy from the second derivatives
of the potential at its minimum:

a'V((t))M2 ) -Ii(~(0)
f $= X+6~

Expanding to first order in V, and 6A, , this gives

a~, (4)Ii,q(0) —— —f, )~ah~ .
'V ~ Y'g

(

I ff [q] =I[q) ——,
' f(((x)f (x)d'x i—ln DetM,

where f (x) is an arbitrary function of q~(x} and
its derivatives, which determines our choice of
gauge, and M is a "matrix" defined by the gauge
transformation property of f„:Under an infinites-
imal gauge transformation 1+ie T, f'under-
goes the change

Restricting our attention to the Goldstone and
pseudo-Goldstone directions this yields the for-
mula

f.(*) f . .f ( ) 9. (A2)

II =(e„z),(8 x) 11, (0)

(e„x-},(e,z), ,„'„+(M'e„e,x},5~, .
j

[See Eq. (88).] But Eq. (7.4}allows us to rewrite
this in the form

a'V, (A.) aV, (A, )II~ = —(8„X),(eel), ' (e„esz)q

=- (8,~), ,
'

(e„~),,„' v, (~),

in agreement with Eq. (6.17). We see that where
the functional approach works, in Landau gauge,
the pseudo-GoMstone boson mass matrix is in-
deed given by the curvature of the potential V(A. )
near its minimum, as expected.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE LAGRANGIAN'

According to Faddeev and Popov, "whenever the
action functional I[a] of a set of fields q~(x) is in-
variant under some group of local transformations,
it may be replaced with an effective action

M~, 8„~8y d'xd4y. A3

The propagators of the fields q~(x) and (()„(x)are
simply the reciprocals of the "matrices" appear-
ing in the terms of I,ff quadratic in q or ~, while
the interaction vertices are determined in the
usual way by the nonquadratic terms in I,ff .

In our case, the action I is given by the integral
of the Lagrangian (2.1):

(fA, (, ( j = J d'x)l. (A4)

When we replace P, (x) in 2 with A. , + P',. (x), we
find a quadratic term which mixes the scalar and
gauge fields:

-i(e„x),a„p',A )' .
In order eventually to cancel this term, we choose
the gauge-determining function f as"

f~=v$ [a„A~)'+i) '(8„A),(t)',], (A5)

with ( a free gauge-determining parameter. Un-
der an infinitesimal gauge transformation
1+i' T, the fields A ~ and Q' undergo the
changes

54('=i&a(en)&phd,

and therefore

By introducing a set of complex spinless fermion
"ghost" fields ~ (x), the effective action may also
be written

(. fq, )=(Iq)-l) f,(x)fJx)s'x

(A6}

af.=&g[ C.,„a„(4„~~,) O2~. g '(8-„~),(e,-y),-e, ] .
This may be put in the form (A2}, with

M, 8, =&)[-C ()„A„(x)a&6(x-y) —6 &CI'5 (x-y)+$ '(8&8„3}&g&(x)6(x -y)].
Using (A5) and (A6) in (A3} shows that the effective action may be expressed in terms of an effective La-
grangian
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Ieff = d X cCeff (a7)

with

t„cc= =' E „„F""-c (DP)c(D "Q)c —gy"Dqf —fm g -P(Q) —$I'cg&jhc ——')[8„A&+c$ '(8 X)chic]

—(S„cd*)G8 &uSA ~ —s„cd*Bc'cd —$ '~c'&u&(8S8 A)chic .

(A. factor W( has been absorbed into the normalization of the ghost fields. )
We may immediately read off from (A8) the part of the effective»c rangian quadratic in the fields P',

p, ~, and A. As promised, the mixed terms drop out, and we find

g'c"„' ==,'(8„A „-8„A„„}(sc'A„'-8"Ac') ,'(-8„-$',}(8~.$', )--',. ic' cA „As" gy-c'e„g

8}

-pm/ ——,'M'chic'pq-r'$(&qA ~)(8,A ")+2 (8 &)c(8 &))p'cpj —s„cd~ccs&ccpcc-8. 'ic'~8(ulcc(u8,

or, discarding various gradient terms,

c can[5,.~~' M'cc-+ $ '(8 X)c(8 A)q]Pq /[ye'8-„+ m]&+cd*[5 80 —( 'g 8](ua,

[5 85~~' —(1 —t')5 p„e&—p,
' 85"„]Gq~q„(x,y) =-5 (x-y)c}„~5„y,

[5,,o' M'„-+( '(8.~-), (8.~),]G,', ( xy) = 5'(x -y)5 c,-,

[y~s„+m]„GCc(x,y) =5'(x -y}5„,,
[5 Sp' —] 'ic' 8]G8„(x,y) =-5'(x-y)5„ (A

with the usual causal boundary conditions. %e write the various G's in terms of momentum-space prop-
agators s:

(A10)

(A11)

(A12)

13)

G(*,y)-=(c ) 'f&%t (&)e"'.

Equations (2.24)-(2.27) then follow directly from (A10)-(413), except that to solve (A11) we must make
use of (2.17) and (2.20) as well.

The effective interaction here is just the part of Z,cc not quadratic in P', A, g, or u&:

where M', m, and p,
' are the matrices defined by Eq. (2.17)-(2.19). The propagators of theA, p', cd, and

~ fields are thus defined by the differential equations

I quad
cC ff —jeff g ff

This immediately yields Eq. (2.21).
(A14)

APPENDIX B: CONSTRAINTS
ON SCALAR INTERACTIONS

The interactions (2.21) involve unknown scalar-
field coupling constants f,~, and f&,.~, . Very for-
tunately, it turns out that the only ones of these
coupling constants that we actually need to know
for most purposes are those determined by cer-
tain constraints, which arise from the invariance
properties of the polynomial P(Q).

The constraints we need may be derived by a
method originally developed by Glashow and my-
self" while preparing a paper on SU(3) x SU (3)-
symmetry breaking. Let 8„denote the imaginary
antisymmetric matrix representing any of the gen-
erators of the group of symmetries of the poly-
nomial P(P). This group always contains the

0 8P(4&)
(8 ~)A (a1}

Differentiating successively with respect to P~,
Q~, and @, gives

8'P (0)»(4 )0 = (8„$),+ (8„)cc,
f

8'P(y) 8 P(y)
8sy (8A&}c +

Sy sy (8&)cc

8'P(0)
8+

Sy sy ( A}cj i

(a2)

(a3)

gauge group G, so that 8„may be one of the 8
matrices, but in some cases' P(P} is invariant
under a group G larger than G, and the set of 8„
may include matrices linearly independent of the
8 . The invariance of P(P) requires that
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8'p(0)
8 ~)

s'p(«t«)
(8 )

e@ sy sy ey (A «84 sy 8@ A«»

e'p(4 ) 8, e'p(4 )

Setting «t» =X in (B2) gives

M28~A. = 0,

(B4)

(B5)

M~u =0,

then, multiplying (C4) by u, , we must have

u$T$ =0.

[In particular, we must have

( 8„A)»T»=0,

(C5)

(Cs)

tadpole T,: If M' has an eigenvector u with eigen-
value zero,

of which (2.20} is a special case. Setting «t» =A. in

(B3) and (B4) gives our desired constraints:

0 = f«»a(ez~}» +[M' e~l«a (B6)

o=f»«a«(8~~)»+f'«a(ez) «»+f »«(4}»a+f«a«(ea)'»

(av)

From (B5)-(BV) we may derive further useful
relations. Multiplying (B6) by (eel. ), [where ee is
any other matrix generating a symmetry of P(»t«)]
and using (B5), we find

f;«(8„A.), (8 A. ) =-(M 8„8A. }« . (B6)

Also, multiplying (BV) by (eel. )& and using (B6), we
find

f„„(e„~),(e,~), = [e„,[e„M']]„-f,„,(8„8,~),

(as)

APPENDIX C

We have based our quantization procedure in the
text on a shifted field p',. defined as ft), —A, , where
X, is the zeroth-order vacuum expectation value
of Q, given as an extremum of the polynomial
P(»t«). If instead we defined a shifted field

& =&» -(& )o (Cl)

with («t»»), the true vacuum expectation value of «t»»,

then all tadpole graphs would have to cancel, and
therefore

where 8„is the generator of any symmetry of the
polynomial. ] As long as (C6) is satisfied, (C4}
may be solved to give

5»«» = i(2«») -'(M ')»»T», (CV)

with an appropriate interpretation of M '. But
(C6) allows us to replace M ' with the propagator
a~, so

5X, = i(2w-) 't«fq(0)T« . (cs)

Thus the effect of one-loop corrections to the vacu-
um expectation value of Q, is precisely the same
as the effect of the tadpole graphs encountered
when we use a shifted field P', =- Q, -A, , as in the
text.

APPENDIX D

For the sake of completeness, and as an exer-
cise in the use of the formal apparatus developed
here, in this appendix we will prove the following
rather obvious theorem:

Let E(z) be any function of a single variable z,
analytic in some region of the z plane. Let F(M'),
F(m), or F(t»') be the matrix obtained by substitut-
ingM', m, or p' for z in the power series expan-
sion of F(z). Then this matrix has a G-invariant
trace, in the sense that

(8 A.)«TrE=0.a

.
(2 )4 P(0) T 0 (C2)

Using Eqs. (3.2), (3.3), and (3.4) gives immedi-
ately

where T, is the sum of tadpole graphs with one or
more loops, calculated using the shifted field
(CI) to define our quantization procedure

In the one-loop approximation, (Q,), will be
close to an extremum A» of P (»t»),

TrF(M') =f«„F'(M')„.,
8

TrF(m) =-,'(I', ) „E'(m)

(Dl }

-i(2««)'M', ,5X, +T, =0. (C4}

Now, (C4) puts an immediate constraint on the

(Q;)o
= X; + 5»«.;, (C3)

and T, will be small, given to an adequate approxi-
mation by the tadpole T, calculated in Sec. III. In
this approximation (C2) becomes simply

TrE(t«') = (je&„8««jk)»E'(t«')8&, , (D3)

a prime denoting differentiation with respect to
the argument. [The factor —,

' appears in (D2} be-
cause the trace on the left involves a sum over
particle labels only, while the trace on the right
includes a sum over Dirac indices as well. ] Mul-
tiplying (Dl) by (8~X)» and using Eq. (B6) gives
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(8 X), TrE(M') = Tr([8, M']F'(M')}
i

= Tr(8 [M', F'(M')]}

(D4)

]].](8+ 88]].};=tC~ 6p2qs+iC„86]t „6+]]](8„888~X)],
and therefore

X, (8. (8„,8,}Z),. =ic „,p'„+tC„„tt'„,.
Using (D7) in (D6) gives then

Multiplying (D2) by (8~k), and using (2.14), (2.11),
and (2.19) gives

(8„][.), TrF(m) = —, Tr(y4[t „,y41', ]],] F'(m)}'az,
= —,

' Tr(y, [t~, y,m]F'(m)}

(8 ]]), TrE(tt') = Tr{[&,tt'] E'(t't)}

=»Ã. [tt', F'(tt')]}

6)

=~ Tr{[t~,m] E' (m)}

=-,' Tr(t„[m,F'(m)]}
=0 (D5}

Finally, multiplying (D3) by (8 ]].), gives

(8.&), »»F(t ')=({8„,8]]}&);(8 ][)&F'(t ')&,
t

= -(8~(8„,88}X)(F' (tt )8„.
(D6)

But using (2.5) and (2.17), we have

where K is the matrix

(9~)[] =-iC~B„.
Thus E(M'), E(m}, and F(tt') have G-invariant
traces, as was to be proved.

Precisely the same method can be used to show
that TrE(M') is invariant under any group of
transformations which leave the polynomial P (Q)
invariant, and that TrE(m) is invariant under any
group of transformations which leave the Yukawa
term y, i', A. , invariant. However, TrF(t[') is in
general not expected to be invariant under any
group of transformations larger than the funda-
mental gauge group G.

APPENDIX E: CALCULATION OF THE FERMION SELF-ENERGY

This appendix will describe in detail how the various terms in Z(p) are calculated. For this purpose, it
is very convenient to diagonalize the p,

' matrix, "with

2 2
DtaCSN =

I N CaN y

Q C~zCBar =5~8)

and write

—C

Let us now consider the individual terms in Z(p).
A1. The Al term is given by Eq. (4.4} as

=i (p -k)~+ m

Even though m is a matrix and pN is a number, we can combine denominators here in the usual way, and
write

0 1)"""())= 2, ZJ d*f d'& 9 [ 4(P)-&)' ~-][,(& )m)*+P**()-*)~ **~ ~,'[)-*)] *~-~) .
0

We are only interested here in the one-loop correction to the fermion mass matrix, and to this order p'
in the denominator may be replaced with -m . Shifting the variable of integration k -k + px and picking
up a surface term (which in the end will prove irrelevant} gives

Z' '(P ) =
( )4 Q ~v y" t gyqp y))t

N
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The term proportional to y~k~ drops out upon symmetric integration, while the term proportional to y~ p
and m may be rewritten, using

r"&Ny& P "y„=y4 &Ny4y" y&P "y„
= -2y4tNy4y~P

yxP N

-2$mfN

y" t p[ m y[t
= y t„yy"m y)t

= 4y4 tNy4m,

and therefore
I

pt '(p)= Z =', tx'mt„t„+ d* J d k[-2 t„(1—*)~ dy t y ][k'+m'x'+X 'l( x)] 't„-
(2v 4 & Pd P[

Cutting off the k integral at A and discarding terms of order 1/A', we find

m' j. A2
Z' '(p}=- 4 g -~ mt„t„+ dx[-2mt„(1-x)+4y~t„ydm] 1n», , , t»

(2v)4
(E1)

A(t). The A(])) term is given by Eq. (4.11) as

Z("~)(p) = 4+ d4k y~[y~m, tN] [-iy~ (p -k)~+ m]
(2v '

x [(p -k)2+ m2] 'y~[ydmp t~](k2) '(k2+(u„2) '.
Combining denominators, this may be written

kt"tt(p)= dy dxZJd ky [y, t ][-'y (p-k) ]
(2w )'

x[(k -px)2+ p'x(1 -x)+ m'x+ 1],„'(1-y)] 'yd[ydmt t„].
Replacing p in the denominator with -m, shifting k-k+ px, and performing a convergent symmetric in-
tegration gives

~2 p x
Z("~)(p) =- 4 dy dxp ddk y~[y~m, t„][-i yap~(1-x)+ m][m2x'+ t],„'(1-y)]'y~[y4mp t„].

(2v '.,
To eliminate the y~p~ term, we note that

y4[ydm, t]ply) p = mt„yap —y4tpdy4m yap

=~yyP y4~Ny4-yyP I'N~

-im'y4tNy4-i mtNm

=i m [ydmt t~]y4 .

Interchanging the order of integration and evaluating the y integral, we have then

7r2Z(+~)(p)= —
d g 2 dx(m[ydm, t„)yd(1-x)+y~[ydm, t~]m)(2x)'

x(1n(m'x') —1n[m'x'+ tpn'(1 —x}]jyd[y4m, t„].
AT. The AT term is given by Eq. (4.12) as

&'**'=k
k .Z y, [t,[t ym[]f d'k(k*) „',,lk* ~ x ') '.

(E2)

Cutting off the integral at A and discarding terms of order A ', we easily find
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$1. To calculate the p1 term it is convenient to introduce a complete orthonormal set of eigenvectors
Q ~, With

M2u —M 2uZ,

Ef L& EL &

Q ux, uxs =Sr'
E

l ~ -= u~)l ] .
Equation (4.7) then gives

-iy (p-k ~+m]—

Combining denominators in the usual way, we have

1
& [~"(p) = — 4 dx d~kl'

triyal(p-—k)~+ m)[(k -px)'+ p'x(1 —x) + m'x+ Mr'(I -x)] 21'x.

Again w'e replace p' in the denominator with -m' and shift the variable of integration, and find

1z" '[p)=- ', I,!*r,y, pxr, d*jd'pr, [y, [p'()-x)-p') ][p' *x* I,'()-x)]-'r,[.(2s)4 (d x x. x

The term proportional to y~k" drops out upon symmetric integration, while the other terms may be re-
written, making the substitution

~XP ~4 S4 4 @~4

and therefore

1
y'm'(p)= — I ' 'i y )' y I' + dxJ d p[ —[) -*)my)' y, )' ][0'+m'x' I '() —x)] 'I'„

(2v '

Cutting off the k integral at A and discarding terms of order I/A', we find

r2 1 2

(2s)4 d 4 E 4 X
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