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A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is

a metric theory; it is Lagrangian-based; and it possesses a preferred frame with conformally flat space
slices. With an appropriate choice of certain adjustable functions and parameters and of the
cosmological model, this theory possesses precisely the same post-Newtonian limit as general relativity.

I' INTRODUCTION

Since 2970, the gravitation research group at
Caltech has been analyzing the experimental foun-
dations of relativistic theories of gravity. Qur re-
sults to date are summarized in Will. ' Those re-
sults had led us to hope that current experiments
were good enough to rule out all theories except
(i) general relativity and (ii} theories which re-
duce to general relativity when their adjustable
parameters are appropria, tely adjusted (e.g. , the
Brans-Dicke-Jordan theory which reduces to gen-
eral relativity as &v-~). We also had come to
hope that general relativity could be distinguished
from all other viable metric theories by the form
of its post-Newtonian limit (PPN parameter values
P =r=l, a, =at, =o, =k, =k, =l, =f, =0).

The purpose of this paper is to explode our
hopes. More particularly, this paper will formu-
late a new theory of gravity which (for certain val-
ues of its adjustable parameters) has precisely
the same post-Newtonian limit as general relativ-
ity, but can never reduce to general relativity in
the full, nonlinear case.

To distinguish experimentally between this new
theory and general relativity, one will have to use
non-post-Newtonian experiments. These could in-
clude: (i) gravitational-wave experiments, (ii)
cosmological observations, and (iii} (in the distant
future) post-post-Newtonian experiments. The
present paper will not discuss such possibilities.
Rather, it will merely present the new theory
(Sec. II) and compute its post-Newtonian limit
(Appendix).

II. PRESENTATION OF THE THEORY

We present the new theory using the notation and
format of the author's recent compendium of grav-
itation theories. ' (In particular, note that we set
c=6 =1.)

a. Gravitational fields Present. A flat back-
ground metric g =g;& dx'(sdx', scalar fields Q
and l, a one-form field iIt=it),. dx', and the physi-
cal metric g =g, ,dx'S dx'.

b. Arbitrary Parameters and functions Thre. e
arbitrary functions f, (P), f, (Q), f~(P), and one
arbitrary parameter e; in the post-Newtonian
limit, with appropriate choice of the cosmologi-
cal model, there are four arbitrary parameters
a, b, d, and e (see below).

c. Prior geometry. The following constraints
are imposed, a Priori, on the geometrical rela-
tionships between the gravitational fields:

(i) flatness of the metric q

(Riemann tensor constructed from rl) =0; (1a)

(ii) meshing constraints on t, q, and f

t . t . g"=1
(lb)

(1c)

t iI) g"=0 . (ld)

(iii) algebraic equation for the physical metric
in terms of the auxiliary gravitational fields

g -f,(@)rl+ [f,(y) f,(y)]dt's dt-
+P dt+dtS g . (1e)

d. Preferred coordinate system. The prior-
geometric constraints (1) guarantee the existence
of a preferred coordinate system in which (i) the
time coordinate is equal to the scalar field t; (ii)
the components of g are Minkowskiian

q, , =diagonal (1, -1, -1, -1);
(iii) g is purely spatial

$0 =0;
(iv) the physical line element g, , dx'dx~ is

ds =f, (Q)dt fm(g)(dx +dy -+dz )

+ 2g, dxdt+ 2$2dydh+ 2g,dzdh .

(2a)

(2b)

(2c)

e. Lagrangian. The field equations are deter-
mined by an action principle

(here and below a vertical bar denotes a covariant
derivative with respect to g, and g" is the in-
verse of rl, ,),
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gd x=0,

where the Lagrangian density 2 is

&=11~-g +2((I/e)0;)~4~~(n" n" —0&, ; 0

+(f.(q)+I](0,;i,,n" }'j~-n .
(3b}

Here L, is the standard interaction Lagrangian
obtained by taking the standard Lagrangian for
matter and nongravitational fields in flat space-
time, and replacing the Minkowskii metric by g
(equivalence principle). The quantities g and p
are the determinants of (( g, , ([ and

~( q, ,((. In the
action principle (3a}, one is to vary the standard
matter and nongravitational fields that appear in
L„and the gravitational fields Q and g, while
maintaining the prior-geometric constraints (1).
In the preferred coordinate system (2), the La-
grangian density reduces to

& = I,&-g + (2/e)(4. s4. s
—
, 4. , ,, 4., ,)

+20, 0, ~+2'(4)A, g 0, g

(summation on repeated Greek indices).
f. Field equations. The nongravitational field

equations derived from this action principle take
on their standard general relativistic form (equiv-
alanc e principle and comma- goes-to- semicolon
rule). The gravitational field equations derived
from the action principle are

(& g/& n-)T" (-~g /64, )(n;, —i~; i~,)
' —(f3(4)+ I]4 'f~'i~, +2f, '(4)(k~, t~')'

=-2w(v'-g/v'-q )T"(sg, ,/sy) .

In the preferred coordinate system, these equa-
tions reduce to

8, ~s ~~=4mev'-g T
(5b)

—2vv'-g T"(sg, /sg) =0 .

Here the stress-energy tensor is the same as ap-
pears in the field equations of general relativity:

f, (y) =1-2y+2hy'+ ~ ~ ~,

f2(p) = 1+2ap+

f,(P) =d+ ~ ~

Impose the cosmological boundary conditions

g= /=0 far from the solar system

(or whatever other system

is being analyzed).

(7a)

(7b)

(7c)

(7d)

[Note: The values of g and Q in interstellar space
must actually be determined by the cosmological
model. This paper makes no attempt at construct-
ing cosmological models. However, it seems that,
in order to exhibit large-scale homogeneity and
isotropy as viewed from Earth, the cosmological
model will have to set /=0 and Q = Q(t) in the
neighborhood of the solar system. By a redefini-
tion of Q and renormalization of constants, one
can then set Q =0 far from the solar system in
the present epoch. ] Then the post-Newtonian limit
of the theory reduces to the Nordtvedt-Will' PPN
formalism with PPN parameter values

y=a, P=b,

n, =-2e —4a —4,
3=&i=&2=&3=&4=o .

(8)

(The proof is given in the Appendix. )
h. Comparison ski th experiment. By comparing

the PPN parameter values [Eq. (8)] with the list
of experimental limits on PPN parameters as giv-
en by Ni, ' one learns that this theory agrees saith

all experiments to date if

0.96& a& 1.12 (time-delay experiments),

0.84 & b & 1.34 (perihelion-shift plus time-de-
lay experiments), (9)

-1.03 & d & -0.97 (Earth-tide measurements),

-2.2& e+2a& -1.8 (Earth-rotation-rate exper-
iments) .

In order that the theory will reduce to Newton's

theory in the weak-field slow-motion limit, re-
quire f, (P) =1 —2P+ . Define a, b, d to be the
coefficients of the first unconstrained terms (post-
Newtonian terms) in the expansions

a(v'-g LI)
8w g-g ~g'~

(6)
i. Comparison zoith general relativity. Notice

that if

T kl —giIt gj 1 TtJ a=b =1, d =-1, e =-4, (10}

g. Post-Newtonian limit. Expand the arbitrary
functions f,(Q}, f,(p), and f,(p) in powers of p. In
order that the metric will become flat in the ab-
sence of gravity (Q = y=0), require f, (0) =f2(0) =1.

then this theory has precisely the same post-New-
tonian limit as general relativity. Thus, no post-
Newtonian experiment can hope to make a clean
distinction between this theory and general rela-
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tivity.
j. ComParison with other Lagrangian-based the-

ories. Vill' and Ni' have shown that all Lagran-
gian-based metric theories whose post-Newtonian
limits can be put into PPN form must satisfy the
PPN parameter constraints

&3= &i =&2=&3=&4=0 .
Notice that the theory presented here has arbitrary
values for all the remaining, unconstrained param-
eters. Thus, this theory possesses a most general
post-Newtonian limit permitted for Lagrangian-
based metric theories. ' This means that no post-
Newtonian experiment can hope to make a clean
distinction between this theory and any other
Lagrangian-based metric theory which has PPN
form post-Newtonian limit.

k. Special cases. When the arbitrary functions

f, (P), f,(Q), and f,(Q) are suitably specialized,
one obtains the following theories: Papapetrou
II [see Sec. III.D.vi of Ref. 2], and ¹'sLagran-
gian-based, stratified theory [see Sec. III.D.vii of
Ref. 2].

l. Conservation laws and gravitational radiation.
Global conservational laws and gravitational radi-
ation for this theory will be discussed in a future
paper.

field equations (5b) are

The O(2) part of the field equations is

V (Il}, =-4', (A3)

l.e.,

where U is the Newtonian potential. The O(3) part
is

V P» =4nepv&, (A5)

x.e.,

p(x', t)v 8(x', t)d x'
(A6)

The O(4) part is

V Q2 = -dU « —4vp[(3 a+ 1 —2b) U

= 4vp[1+ (3a —1}U]

&&[1+(2—2b)U+v (1+a)+3aP/p+ll],
(A2)

V $» =47Tepv 8 .

III. CONCLUDING REMARKS

This theory requires considerable further study.
Crucial items in testing it will be (i) its success
or failure to produce cosmological models that
agree with the large-scale features of our uni-
verse, and (ii) the properties (polarization, inten-
sity, and propagation speed) of its gravitational
waves.
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+(1+a)v'+3aP/p+11] .

Let y be the solution of

V'2y =-2U,

p x-x dx

We can transform Eq. (A7) to

(A7)

(A8)

(A9)
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tance with the presentation.

APPENDIX: COMPUTATION OF THE POST-
NEWTONIAN LIMIT

V (Q2 ——,', dy «) =-4wp[(3a+1 —2b)U

+ (1+a}v2+ 3aP/p+Il] .
(A10)

Therefore

Q = p, + $2 + O(6),

gg ——$8, + O(5),
(Al)

To obtain the post-Newtonian limit of our theory,
we proceed as follows. For convenience, we shall
work in the preferred coordinate system, and we
shall set P-0 and g-0 as the field point

~
x~ goes

to infinity [see remarks following Eq. (Vd)]. Let

g~+ 24

where

V 4 = -4vp[ —'ll + —'(3a+ 1 —2b) U

+ —,'(1+ a) U+ —,
'
aP/p] .

(All)

(A12)

where P, = O(2), @,= O(4), and P8, = O(3). [Here
O(n) means of order c " in a post-Newtonian ex-
pansion. ] Correct to post-Newtonian order, the Q = U+ 24+ 2 Q «+ O(6} . (A13)

Combining Eqs. (Al), (A4}, and (All}, we find
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g,o
= 1 —2 U+ 2 b U —44 —Q „+O(6},

go =-eV

g 8
= -6 8(1+2aU) .

By using the gauge transformation

(A14)

According to Eqs. (2c), (A6), and (A13), the phys-
ical metric is

g„=1 —2 U+ 2b U' —44 + O(6},

g „=(—,d —e) V ——,
' d W + O(5),

gt e = -(1+2 aU),

where

(A16)

p(x', t)U8(x'}(x8 —xs)(x —x'„)
W (xt)= '

i
i,

dx'.
X —X

x =x -p+
x '=x

we can transform the metric into the form

(A15)
(A1V}

By comparing this with the PPN metric as given
by Will and Nordtvedt, ' we obtain the PPN param-
eter values listed in Eq. (8).
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