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A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is
a metric theory; it is Lagrangian-based; and it possesses a preferred frame with conformally flat space
slices. With an appropriate choice of certain adjustable functions and parameters and of the
cosmological model, this theory possesses precisely the same post-Newtonian limit as general relativity.

I. INTRODUCTION

Since 1970, the gravitation research group at
Caltech has been analyzing the experimental foun-
dations of relativistic theories of gravity. Our re-
sults to date are summarized in Will." Those re-
sults had led us to hope that current experiments
were good enough to rule out all theories except
(i) general relativity and (ii) theories which re-
duce to general relativity when their adjustable
parameters are appropriately adjusted (e.g., the
Brans-Dicke-Jordan theory which reduces to gen-
eral relativity as w—~=). We also had come to
hope that general relativity could be distinguished
from all other viable metric theories by the form
of its post-Newtonian limit (PPN parameter values
B=y=1, y=0,=a3={ ={,=E3={,=0).

The purpose of this paper is to explode our
hopes. More particularly, this paper will formu-
late a new theory of gravity which (for certain val-
ues of its adjustable parameters) has precisely
the same post-Newtonian limit as general relativ-
ity, but can never reduce to general relativity in
the full, nonlinear case.

To distinguish experimentally between this new
theory and general relativity, one will have to use
non-post-Newtonian experiments. These could in-
clude: (i) gravitational-wave experiments, (ii)
cosmological observations, and (iii) (in the distant
future) post-post-Newtonian experiments. The
present paper will not discuss such possibilities.
Rather, it will merely present the new theory
(Sec. 1) and compute its post-Newtonian limit
(Appendix).

II. PRESENTATION OF THE THEORY

We present the new theory using the notation and
format of the author’s recent compendium of grav-
itation theories.? (In particular, note that we set
c=G=1.)

a. Gravitational fields present. A flat back-
ground metric 7=7;;dx' ®dx’, scalar fields ¢
and /, a one-form field y =¢,dx’, and the physi-
cal metric g =g;,dx*® dx’.
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b. Avbitvary parameters and functions. Three
arbitrary functions f,(¢), f,(¢), fs3(¢), and one
arbitrary parameter e; in the post-Newtonian
limit, with appropriate choice of the cosmologi-
cal model, there are four arbitrary parameters
a, b, d, and e (see below).

¢. Prior geometry. The following constraints
are imposed, a priori, on the geometrical rela-
tionships between the gravitational fields:

(i) flatness of the metric 7

(Riemann tensor constructed from n)=0; (1a)
(ii) meshing constraints on ¢, 7, and ¥

t‘ ij = 0 )

titnti=1

(1b)
(1c)

(here and below a vertical bar denotes a covariant
derivative with respect to n, and n* is the in-
verse of 7,,),

t,x‘wjn“=0; (1d)

(iii) algebraic equation for the physical metric
in terms of the auxiliary gravitational fields

ﬂ’ ¢’ t, i
& =f(o)n+[£1(9) - fo(d)]dt® at

+Sp_®z1t+gt8£ . (1e)

d. Preferved coordinate system. The prior-
geometric constraints (1) guarantee the existence
of a preferred coordinate system in which (i) the
time coordinate is equal to the scalar field #; (ii)
the components of 7 are Minkowskiian

n;;=diagonal (1, -1, -1,-1); (2a)
(iii) ¢ is purely spatial
$,=0; (2b)
(iv) the physical line element g;,;dx"dx’ is
ds®=£,($)dt” - f,(¢)(dx® +dy’ + dz®)
+ 2y dxdt + 2y,dydt + 2y,dzdt . (2¢)

e. Lagrangian. The field equations are deter-
mined by an action principle
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=3

5[ £dx=0, (3a)

where the Lagrangian density £ is
£=L,V=g +2{(1/e);, ¥, 0" = ¢ ;& ;0"
+[fal@)+11(o it jnH PR =n .
(3b)

Here L, is the standard interaction Lagrangian
obtained by taking the standard Lagrangian for
matter and nongravitational fields in flat space-
time, and replacing the Minkowskii metric by g
(equivalence principle). The quantities g and 7
are the determinants of || g;;| and || n,,||. In the
action principle (3a), one is to vary the standard
matter and nongravitational fields that appear in
L,, and the gravitational fields ¢ and y, while
maintaining the prior-geometric constraints (1).
In the preferred coordinate system (2), the La-
grangian density reduces to

£=LI‘/—_g‘ +(2/e)(wa,8d)¢x'ﬂ - lpa,t wa_g)
+2¢ o9 o+2f3(D)0 ¢, (4)

(summation on repeated Greek indices).

f. Field equations. The nongravitational field
equations derived from this action principle take
on their standard general relativistic form (equiv-
alance principle and comma-goes-to-semicolon
rule). The gravitational field equations derived
from the action principle are

lPiu“ :2"9(‘/%/‘/3)Tkl(agu/ad’j)(n”‘t\,'t]j) ’

01, = @)+ 1oy, i, ooy e D)
= -2n(V=g /N=1)T" (5g,,/2¢) .

In the preferred coordinate system, these equa-
tions reduce to

wﬂ,aa—wﬂ,tt=4"e'_g TOB ’

(5b)
¢,c(o(+f3(¢)¢_tt-%f3/(¢)¢,t (b,t

-2m/=g T (8g,;,/8¢)=0 .

Here the stress-energy tensor is the same as ap-
pears in the field equations of general relativity:

(8)
TH = gik git T,; .

g. Post-Newtonian limit. Expand the arbitrary
functions £,(¢), f,(¢), and f,(¢) in powers of ¢. In
order that the metric will become flat in the ab-
sence of gravity (¢ =y=0), require £,(0)=£,(0)=1.
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In order that the theory will reduce to Newton’s
theory in the weak-field slow-motion limit, re-
quire f,(¢)=1-2¢+---. Define a, b,d to be the
coefficients of the first unconstrained terms (post-
Newtonian terms) in the expansions

A@)=1-20+206 -+, (7a)
() =1+2ap+-"" )
f3(¢)=d+"' . (7¢)

Impose the cosmological boundary conditions
¥=¢=0 far from the solar system
(or whatever other system
is being analyzed). (7d)

[Note: The values of ¢ and ¢ in interstellar space
must actually be determined by the cosmological
model. This paper makes no attempt at construct-
ing cosmological models. However, it seems that,
in order to exhibit large-scale homogeneity and
isotropy as viewed from Earth, the cosmological
model will have to set y ~0 and ¢ ~ ¢(¢) in the
neighborhood of the solar system. By a redefini-
tion of ¢ and renormalization of constants, one
can then set ¢ ~0 far from the solar system in

the present epoch.] Then the post-Newtonian limit
of the theory reduces to the Nordtvedt-Will® PPN
formalism with PPN parameter values

y=a, B=b,
a,==2e-4a-4, o,=—-d-1, (8)
a3=§1=§2=§3:§4=0 .

(The proof is given in the Appendix.)

h. Comparison with experiment. By comparing
the PPN parameter values [Eq. (8)] with the list
of experimental limits on PPN parameters as giv-
en by Ni,* one learns that this theory agvees with
all experiments to date if

0.96< a<1.12 (time-delay experiments) ,

0.84<b5<1.34 (perihelion-shift plus time-de-
lay experiments), (9)

-1.03<d< -0.97 (Earth-tide measurements) ,

-2.2<e+2a<-1,8 (Earth-rotation-rate exper-
iments) .

i. Comparison with general velativity. Notice
that if

a=b=1, d=-1, e=-4, (10)

then this theory has precisely the same post-New-
tonian limit as general relativity. Thus, no post-
Newtonian experiment can hope to make a clean
distinction between this theory and general rela-
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tivity.

j. Comparison with other Lagrangian-based the-
ovies. Will® and Ni® have shown that all Lagran-
gian-based metric theories whose post-Newtonian
limits can be put into PPN form must satisfy the
PPN parameter constraints

a3=§1=gz=g3=§4=0- (11)

Notice that the theory presented here has arbitrary
values for all the remaining, unconstrained param-
eters. Thus, this theory possesses a most general
post-Newtonian limit permitted for Lagrangian-
based metric theories.! This means that no post-
Newtonian experiment can hope to make a clean
distinction between this theory and any other
Lagrangian-based metric theory which has PPN
form post-Newtonian limit.

k. Special cases. When the arbitrary functions
f(9), f:(¢), and f,(¢) are suitably specialized,
one obtains the following theories: Papapetrou
II [see Sec. II.D.vi of Ref. 2], and Ni’s Lagran-
gian-based, stratified theory [see Sec. III.D.vii of
Ref. 2].

l. Conservation laws and gravitational vadiation.
Global conservational laws and gravitational radi-
ation for this theory will be discussed in a future
paper.

III. CONCLUDING REMARKS

This theory requires considerable further study.
Crucial items in testing it will be (i) its success
or failure to produce cosmological models that
agree with the large-scale features of our uni-
verse, and (ii) the properties (polarization, inten-
sity, and propagation speed) of its gravitational
waves,
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APPENDIX: COMPUTATION OF THE POST-
NEWTONIAN LIMIT

To obtain the post-Newtonian limit of our theory,
we proceed as follows. For convenience, we shall
work in the preferred coordinate system, and we
shall set ¢ -0 and -0 as the field point | x| goes
to infinity [see remarks following Eq. (7d)]. Let

¢=0¢,+d,+0(6),
¢s=¢az+o(5) ’

where ¢, =0(2), ¢,=0(4), and ¢4, =0(3). [Here
O(n) means of order c~" in a post-Newtonian ex-
pansion.] Correct to post-Newtonian order, the

(A1)

=3

field equations (5b) are

%0, _ oy _on
—d—G -V, =V,

=4mp[1+(3a-1)U]
X[1+(2-2b)U+v2(1+a)+3ap/p+11],

A2
V2, =4mepvy . (a2)
The O(2) part of the field equations is
Vz(pl = _41rp ’ (As)
i.e.,
6,.=U, (A4)

where U is the Newtonian potential. The O(3) part
is

Ve =4mepv, , (A5)

i.e.,
_ _ p(X', )X, t)AX’

zpsz—-eVﬁ-—ef -3 (A6)
The O(4) part is

V2¢,=-dU ,, - 4mp[(3a+1-2b)U

+(1+an?+3ap/p+11].
(AT)

Let x be the solution of

Vi ==-2U, (A8)
ie.,

x=_fp|§_§'| ax’. (A9)

We can transform Eq. (A7) to

V¢, = z.dx ;) =—41p[(3a+1-2b)U
+(L+a)y?+3ap/p+11].

(A10)
Therefore
‘t‘z:%dx,n'*'ZQ ’ (A11)
where
V2® = -4mp[311 +3(3a+1-2b)U
+5(1+a)U+3ap/p] . (A12)

Combining Egs. (A1), (A4), and (A11), we find

¢=U+2d+35dx ,,+0(6). (A13)
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According to Egs. (2c), (A6), and (A13), the phys-

ical metric is
8oo=1-2U+2bU% -4 —dy ,,+0(6),
&oa=—€Va, (A14)
gap=—0qp(1+2al) .

By using the gauge transformation

x°T=x°—ldX ,
B (A15)

we can transform the metric into the form

a=1=2U+2bU%-48 +0(6) ,

g3o=(3d=e)Vq=3dW,+0(5), (A16)
ghs=-(1+2a0),
where
- X, a(X)(xg = x4)(x = x1) .
Wa(x,t)=f LU |:.{(_B§,|38)( - ")dx’.
(A17)

By comparing this with the PPN metric as given
by Will and Nordtvedt,® we obtain the PPN param-
eter values listed in Eq. (8).
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