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Using the approach of Israel, Wilson, and Perjes we give the explicit form of the metric
corresponding to two identical Kerr-Newman sources in equilibrium under their mutual electromagnetic
and gravitational forces, with their spins oppositely oriented along a given axis. Symmetries, the
complete analytic extension, the limit of infinite separation of the sources, and the two types of solution
with vanishing separation are discussed.

A class of static solutions of the Einstein-Max-
well equations corresponding to an equilibrium
distribution of charged sources was found in 1947
by Majumdar' and Papapetrou. ' These solutions
have recently been generalized to the stationary
case (sources with spin) by Israel and Wilson' and
Perjes' (IWP). The first-order set of partial dif-
ferential equations characterizing the IWP solu-
tions must be solved to obtain the metric explicit-
ly.

One member of the class of IWP solutions is the
Kerr-Newman solution with charge equal to mass
(in units with G = c = I) as has been proved in that
case by direct integration of the IWP differential
equations. '4 It is of interest to find the solution
for several Kerr-Newman sources. The result
would provide a new explicit exact solution of the
Einstein-Maxwell equations. It could, for example,
serve as the basis for an analysis of solutions
with slightly different parameters by means of
perturbation or related techniques.

The problem of forces and torques between

spinning objects has been extensively treated. "'
All these analyses, however, are based on the
assumption that one of the bodies is a test particle
whose own effect can be neglected. 'The solution
we present in this paper allows for this interac-
tion in the realistic case of a two-body problem,
and provides a standard against which results ob-
tained for test particles may be judged. It is inter-
esting that the solution here presented demon-
strates the balance (correct to all multipole orders)
of the forces between two spinning sources.

In the present paper, we give the explicit station-
ary metric corresponding to two identical Kerr-
Newman sources in equilibrium under their mu-
tual gravitational and electromagnetic forces,
with their spins oppositely oriented along a given
axis. We confirm that the result obtained has the
expected properties. To our knowledge, this is
the first explicit nonstatic two-body solution of the
Einstein-Maxwell equation. It is of interest in con-
nection with certain aspects of coalescence, such
as changes in singularity structure and possible
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horizon formation, and the uniqueness of the
final configuration, as well as in analyzing the
force balance and the electromagnetic field, which
can only be given explicitly in this highly relativis-
tic regime now that the analytic expression for
the metric is known.

The IWP class of metrics is written in the stan-
dard form

ds'=-f 'y dx dx" +f(cu dx +dt)',

that co„and cue vanish, since the addition of a
scalar function of g to t changes &, by a gradient.
Then Eq. (3) reduces to

m m=-Im 2mr2sing 1+—+-
Bg R)* R2~

1 1 1 1
x 1' 3 + 3 —1cosg

1 2 R, R2

where f, u, and y are independent of t. The
line element y „dg"dx" corresponds to a Euclidean
3-space (in arbitrary coordinates). Any function
U of the spatial coordinates which satisfies La-
place's equation in the flat 3-space generates an
IWP metric by means of the equations

and

&co& . , m m 1 1=Im 2mh sin'g 1+—+-
R,* R,* R,' R,'

(12)

and

enDcg + ill/Rf —lynms ln(U/fig)

(2)

(3)

where Im denotes the imaginary part. One can
check directly that (11) and (12) satisfy the inte-
grability condition

where U* is the complex conjugate of U. The elec-
tromagnetic field follows from y „, U, and &~ by
means of the expression given in Refs. 3 and 4.

The solution corresponding to two identical Kerr-
Newman sources, with charge equal to mass, ly-
ing in equilibrium on the z axis at +b, each with
angular momentum per unit mass a pointing to-
ward the origin, is generated by"

After a very lengthy calculation, one obtains the
integral of (11) in the form

2m im'(r' —P) R'~@=-lm —[l -rcos8]+
R 2a(r' —

~
l ~') R,

m' (r'-t') R+'
2b (++ I

t P) R.
pn m

0 =1+—+—,
R, R,

(4) +(all previous terms with a- -a,
b —-b, where f = b + ia) . (13)

with

R,'=x'+y'+(z —b-ia)'

and

=x +y +(z+b +ia)

(5)

(6)

R,' = r'+21~ cos g+ E',

where

(9)

l=b+ia. (10)

In order to obtain the explicit form of the metric,
one must solve Eq (3) for &.u, We use spherical
coordinates

x+sy = r sin g e'~,

z =r cosg,

in terms of which

R,' = r' —2l r cosg+ l'
and

x +iy = [(r, —m)'+a']' ' sin8, e'~,

z = b + (r, -m)cos 8, ,

x+iy=[(r, —m)~+a ]' 'sin8, e'

z =-b+(r, —m) cos8, .

Now R, and R, assume the simple forms

Ry = J'y m —ia cos gy

(14)

No additive function of r appears, for reasons dis-
cussed further on. Note that the branches of the
square-root functions R, and R, can be chosen in-
dependently. Equations (1), (2), (4), and (13) give
the explicit expression for the two-body metric
in this case.

For the following discussion, it is convenient to
introduce two redundant sets of oblate spheroidal
coordinates, (r„8„$,) and (r„8„$,), centered
at z =+b and z= -b, respectively. Each point
(x, y, z) is related to the new coordinates as fol-
lows:

The axial symmetry implies that the right-hand
side of Eq. (3) vanishes when the index n =P.
Therefore, the coordinate t can be chosen such

and

R, = p2 —m+sacosg, .
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Replacing (r,. —m, 8,.) by (m —r, , w —8,.} leaves

(x, y, z) unchanged, but does change the sign of

H, (j=1 or 2), thus changing the branch of the
square-root function.

In the new coordinates, (13) becomes

(m' —2mr, )a sin'8, (m' —2my, )a sin'8,
(r, —m) +a cos'8, (r, —m)'+a'cos 8,

+m'aF[(2b) '(r'+
I
I I')H -(G+bH)],

(17)

small b, one finds from Eq. (14) that

r, =r, +O(b),

cos8, = cos8, +O(b),

F = O(b),

and

H =O(b),

whence

(u ~
= O(b) .

where

F = ([(r, —m)'+a' cos'8, ]
'

—[(r, -m)'+a2cos 8,] ')(y'+ Il I') ', (18a)

As a final check on the metric, fix (»„8„$,)
and let b become large, effectively carrying the
second source off to infinity. One finds from Eq.
(14) that in the above limit

and

G= (r, —m)(r, —m) +a' cos 8, cos 8, ,

H =(r, -m) cos8, —(r, -m) cos8, ,

r'+
I
II' = (y, -m)'+a (1+sin'8, )

(18b)

(18c)
and

I(», -m)
I =O(b),

8, = O(b),

++
I I I'= 2b'+o(b),

+2b'+2b(r, —m) cos8,
= (y, —m)'+a'(1+ sin'8, )

+2b' —2b(r, -m)cos8, . (18d)

Each of the first two terms in (17) is the &u& of a
single Kerr-Newman source with q =m. '4

Equation (12) requires that on the symmetry
axis, where sing vanishes, w@ is a constant, which
must be set equal to zero so as to ensure an as-
ymptotically Minkowskian metric. The right-hand
side of Eq. (17) vanishes on the symmetry axis,
so that it is correct as it stands, without an added
function of y. To obtain that result, one notes
that the first two terms of Eq. (17) clearly vanish
on the symmetry axis. Moreover, if one solves
for r, in terms of r, by means of Eq. (14}, and
notes that cos'8, = 1 on the symmetry axis, then
one finds that the factor in square brackets in Eq.
(17) vanishes. Furthermore, one confirms by in-
spection that (17) vanishes as expected when a = 0.

There are four regions: I, in which (r, —m)
and (r, -m) (equal, in coordinate-free form, to
ReR, and ReH„respectively) are positive; II,
and II„ in which they have opposite signs; and
III, in which they are both negative. One would
expect by symmetry (since the spins are opposite-
ly directed) that, in regions I and III, ~& would
vanish in the equatorial plane (z=0), as well as
when the two particles "coalesce" (b =0). In the
former case, Eq. (14) implies that r, = r, and
cos Qy cos Q2 from which it follows that
vanishes. In the latter case, it is necessary to
consider the limit as b approaches zero, since
b ' appears in the third term of Eq. (17). For

eU aU*
(20)

diverges. ' Apart from exceptional cases such as
b = 0 (see below) or a =0, which is treated by
Hartle and Hawking, the real and imaginary parts
of U =0 will give two independent equations for
the two unknowns, e.g. , J] 6)] thus determining
a set of rings. We shall also see in the following
that T«may sometimes diverge at a ring of in-
finite redshift, where U = ~.

The circle zy I91 t constant is a closed timelike
line if

-&ee=f '&we f(~~)'-
&0 (21)

This inequality is indeed usually satisfied near a

so that all terms but the first in Eq. (17) vanish
as b ', leaving

(m' —2my, )a sin'8,
(y, -m)'+a' cos'8, '

which is the u@ for a single Kerr-Newman source
with q =m, and angular momentum per unit mass
g in the -z direction. We now turn to a discussion
of further properties of our metric.

Rings of infinite redshift occur where g« = 0, or
U= ~. At the first ring y, -m =0 and 6y z1T,

while at the second ring y, —m =0 and 8, =-,'n. In
order to get, say, from region I to III one must
change the sign of y, —m, which entails passing
through the interior of the first ring.

Naked-ring singularities occur at U=O, where
one component of the stress-energy tensor,
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ring singularity where f=
~ U~

' approaches +~,
+& does not vanish, and

y~~= [(r, —m)'+a'] sin'6,

—m =r —mj. 2

cos 8~ = cos 6}2,

U = 1+m[(ft, ) '+(g+)-'].
(23)

is finite. In this paper we investigate the so-
called electrovac solutions, in which source-free
electromagnetic fields provide the stress-energy.
It is customarily assumed that if corresponding
exterior solutions were found in nature, closed
timelike lines and singularities not surrounded by
event horizons would not occur, thanks to an in-
terior solution; that is to say, the electrovac con-
dition would not hold everywhere.

The problem of dynamical coalescence is a very
difficult one, which may be conveniently split into
two parts, namely (a) change in singularity struc-
ture and horizon formation, and (b} emission of
gravitational radiation. Consideration of the quasi-
stationary approach of our two sources through a
sequence of equilibrium configurations, corre-
sponding to successively smaller values of b, may
throw light on part (a) of the more general problem
of dynamical coalescence. The condition that the
charge equal the mass is necessary to allow part
(a) to be focused upon by use of the electromag-
netic field to produce equilibrium.

The Majumdar-Papapetrou geometry correspond-
ing to many Reissner-Nordstrom black holes, each
with charge equal to mass, has the metric"'

where

2dt2 U2y (22)

U = I ++ (m, /r, ) .

If the masses are equal for a system of N such
black holes, the area S of a spherical surface en-
closing them satisfies S~ 4w(Nm)'. The equal
sign is only possible in the limit that the horizons
(r, =0) touch one another. If coalescence were to
occur, the horizon of the resulting black hole
would have area 4v(Nm)' Example. s given by
Brill and Lindquist" in the analysis of time-sym-
metric solutions of the Einstein-Maxwell equations
suggest that the formation of a horizon may nor-
mally have to be accompanied by radiation of en-
ergy with consequent binding of the set of black
holes. It is interesting that quasistatic coales-
cence of our two sources does not yield a Reissner-
Nordstrom black hole. Rather, one obtains the
following results.

When b =0, the two rings of infinite redshift
coincide. It is then impossible to change the signs
of r, -m and r, —m independently. There are two
types of solutions, according to whether the in-
terior of the redshift ring connects regions I and
III or II, and II, . In the former case,

Since U is real-valued, (d& vanishes. The solution
is static. Expansion of the axially symmetric U

in powers of the spherical radius defined by Eq.
(7) shows that it differs from the Reissner-Nord-
strom form U = 1+2m/r (for mass =+charge = 2m)
by higher multipoles which depend on even integral
powers of g.

In this static solution, solving V=0 for the ra-
dius of the singularity yields in general two roots:

~

~

-(m —a cos 6 }' ' and
rl

+(m' —a' cos'6, )'t', if a cos6, w0.
(24)

r -m =m -r21 2 &

cos 01 = -cos82,

U=1+2iam cos6, [(r, —m)'+a' cos'6, ] '. (25)

Expanding U in powers of r, and comparing with
that for a single Kerr-Newman particle allows
the mass and angular momentum to be read off
directly. ' The coefficient of (r, )

' is the mass
and the imaginary part of the coefficient of -cos6y
(r, )

' is the angular momentum (taken positive
along the +z direction). In this case, the mass
vanishes and the angular momentum is -2am.

U does not vanish anywhere. But Eq. (20) en-
ables one to show that the redshift ring is a singu-
larity: T«diverges as one approaches this ring
in the equatorial plane from outside (6, =-,'w,
r, m40). In Eq. (1-7), the "interaction" term
vanishes, leaving

4m(m r, )a sin'6, -
(r, —m)'+a'cos'6, ' (26)

The values of the electric and magnetic field at
a point in space-time become well-defined only
when a local observer is specified. It is natural
to choose an observer with velocity u' = dh" /'ds
along the symmetry directions 9/sp, 6/st of the
field such that go& vanishes with respect to his
local comoving frame. " This choice is clearly
suitable for any axially symmetric stationary

When a cos6), =0, the second root is spurious.
Assuming a+0, a gap in the singularity's "surface"
thus occurs at r, -m = 0, 6},= —,'w —the location of
the ring of infinite redshift. Although the singu-
larity has vanishing surface area according to
Eqs. (1}and (2), its structure is much more com-
plicated than that of the point singularity in the
Reissner -Nordstrom solution.

For the other type of solution with b =0,
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geometry; in the ergosphere of a Kerr-Newman
black hole it yields, as desired, a timelike world
line. The nonzero components of u" are

dt
u

ds

(gag gt4 ~gad)
(27)

u~=
ds

(@a~-gee)(@~ Ae ~gee)

It follows that all components of u„vanish except
for u, . The electric and magnetic fields defined,
respectively, by the Lorentz force on a unit elec-
tric and magnetic monopole moving with velocity
u' are given by

E"=F"'u 8"= '*F"'u
t t

where

(28)

F"'= 2(-g) ~'[u ~pa]F, .
Here the completely antisymmetric symbol [pea]
satisfies [0123]=+1, it being understood that t cor-
responds to 0.

Those components of F& „not given in the follow-
ing' can be readily derived from these:

straightforward to prove that

E" = E" cosa+B" sinn,

B"=B"cosa -E" sina. (32)

A, = (2a'm'cos'8, )y, '+O(y, '),
4 = (amcos 8,)y, '+ O(y, ') .

To show this, start by using oblate spheroidal
coordinates (t, y„8„$)for which ~ =5@&uz, and

y is diagonal. Then, from Egs. (28) and (29),
E~=B~=Z'=B'=0. Relations of the form (32) can
be derived for the ry 81 components. The same
linear relation holds trivially for the vanishing

p and t components, and being tensorial, (32)
must then be true in arbitrary coordinates.

The static b =0 solution goes asymptotically to
the Reissner-Nordstrom solution for large radii.
It has no magnetic field unless a duality transfor-
mation is performed, in which case it will acquire
a magnetic monopole moment.

The stationary b =0 solution is more unusual. Al-
though the mass and charge vanish, the solution
possesses angular momentum and, for a=0, a
magnetic dipole moment. Expanding in powers of
y„one obtains through Eqs. (25) and (30) with n
=0

F,„=B„A

F~ f~
—I/2 emnP8

D t

Ftt f ~ Ftt& +F hattÃttl ttn

(29a)

(29b)

(29c)

The two potentials A, and 4 are determined by

A, +iC =e' (1 —U '), (30)

The resulting electromagnetic fields are

E"= -4 m'a'(1 + cos' 8,)y, '+ O(y, ~),

E & =(4m'a'sin8, cos8, )y, '+O(y, '),
B"&=(2amcos8, )y, '+O(y, '),
B & =(amsin8, )y, '+O(y, ').

(34)

4 =4 cosa+A, sinn. (31)

For the two-source solution described here, it is

where the real parameter a effects a duality trans-
formation.

Let a caret over a quantity denote the value when
o. =0. From Eq. (30),

A] =A ] COSa -Ct Sina t

To compare these with the results of classical
electromagnetism, one must project at each point
onto an orthonormal pair of vectors transported
with the preferred observer and directed along the

(91 coordinate axes. At large radii, this effec-
tively multiplies the 9, components by ry To low-
est order, the magnetic field is a dipole field with
moment gm directed along the +z direction. If,
however, the fields are expressed in terms of

TABLE I. Two types of solutions with b =0. Upper sign in table refers to r&, 0& coordinates, lower to r2, 02, and z
denotes unit vector in +z direction.

Type
Coordinate

relations Mass
Angular

momentum
Charge
(~ =0)

Magnetic
dipole moment

(0. =0)

1. Static rf m r2

8) =82

2m

2. Stationary +2Q mz +amz
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y„8, coordinates, a must be changed to -a, and

the dipole moment changes sign. The electric
field does not have the requisite angular depen-
dence to be an octopole field, which may be de-
rived by taking the gradient of U-(5cos'8
-3 cosa)r '. Mathematically, this arises both
because A, is not octopolar" and because, thanks
to &v@&0, F~ contributes to 5"' in Eq. (29c).

Table I summarizes the two types of solutions
with 5 =0.
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