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Gravitational waves in a hot collisionless gas do not propagate on null geodesics. Using the methods
of plasma kinetic theory, we derive dispersion relations from a self-consistent, first-order perturbation
expansion of Einstein’s, Boltzmann's, and the geodesic “force” equations. The wave’s interaction with
the higher shear moments of the ensemble introduces new length scales into the dispersion relations,
which can affect the familiar modes and allow new ones. For an isotropic photon gas, the strongest
mode has the dispersion relation w’~c’k>—1447wG P/5¢c’, where P is the gas pressure. Because the
length scale ¢?/(G P)"? is very large (10°° cm for the 3°K cosmic radiation), this retarded wave is
practically indistinguishable from the vacuum solution. We also find some weak, novel effects, like
collisionless amplification and evanescent wave modes, which are very sensitive to the particles’

momentum distribution.

I. INTRODUCTION

There are no truly free-space gravitational
waves. The universe is full of things such as the
cosmic 3 °K photons, so wavelike solutions of
Einstein’s equations in the absence of sources may
be a good approximation, but they may also miss
interesting real-world modes. Such enriched be-
havior is well known for electromagnetic waves in
ionized plasmas. We will apply the methods of
plasma kinetic theory to solve for gravitational
wave modes in a collisionless gas.

Although only a linearized perturbation calcula-
tion, this explicitly self-consistent source or field
approach is rare in general relativity, where the
complexity of the equations tempts one to simply
specify either the source or field and then solve
for the other. For instance, Zipoy,® Sachs and
Wolfe,? and Dautcourt® have each estimated the
scattering of photons by specified metric fluctua-
tions. Esposito* has examined dissipation in vis-
cous fluids driven by gravitational waves. Issac-
son® has used self -consistent fields to look at the
scattering of gravitational waves in a vacuum, with
the nonlinear part of the field as an effective
source. Weber® has made a genuinely self-consis-
tent calculation for the absorption of gravitational
waves inside elastic solids, concluding that planets
have very small cross sections, as has Dyson.”

The covariant treatment of particle ensembles
in curved space is well reviewed by Stewart,® who
is concerned with collisional transfer processes.
Collision-dominated fluids, however, do not inter-
act well with the shear in gravitational waves.
Finally, McCone® has investigated self-consistent,
longitudinal gravitational fields associated with
condensations in a collisionless gas, using a ki-
netic-theory approach to follow the field-particle
interactions. He recovered a generalized Jeans’s

7

instability.

This paper derives the dispersion relations for
short, weak, traceless, transverse, plane grav-
itational waves which are self-consistent with
ensembles of collisionless particles following
geodesics.

II. GRAVITATIONAL KINETIC THEORY

The basic method of kinetic theory is to use the
Liouville or Boltzmann equation to follow the wave-
induced perturbations in the source distribution,
and then substitute these back into the field or
source equations, making everything self-consis-
tent to, say, first order. Following Weber’s ge-
ometrized (G=1=c) notation,!? the linearized
form of Einstein’s field or source equations is
the classic wave equation

Ohypy = - 1677,y (h), (1.1)

where the stresses are the second moments of the
perturbed particle distribution function f(#), de-
fined by

= [ff smprp LLL (1.2)

consistent with the weak, transverse, traceless,
waves h,,, traveling in the x! direction (m and n
=2 or 3) on a locally Minkowski metric:

&uv=0uyy +hp,, with |h,,|<<1. (1.3)
The gas is represented by a single-particle
distribution function &, evolving along a world
tube of phase-space geodesics according to the

collisionless Boltzmann equation
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where f(k)c h is the perturbed part of a homoge-
neous, static background ensemble F. The mass-
shell constraint (m?=p®p,) allows us to choose the
spacelike velocities (#’) as independent variables.
In the absence of other forces, the acceleration of
a particle in this flat space is the geodesic “force”

u*= - uPu' Tg, (h). (1.5)

The Boltzmann and geodesic equations (1.4) and
(1.5) can be solved for the Fourier transform of
the perturbed 4-momentum distribution

p°p® oF

£ (lw, ) = Zeb= 225 Gl (htw, D (1.6)

where the Gog, #0 only for Gopmp = ~Gman = ~Gma
(@=0or 1, as in k%= w and k'=k), and are defined
by

Gamn == 2ka Bmn (w, k) - (1.7)

The Fourier transform of the perturbed stresses
in Eq. (1.2) is then found from Egs. (1.6) and (1.7),
and substituted into the linearized Einstein equa-
tions (1.1) to give the self-consistent wave equa-
tion

(«P-k?)h,,
- G ¥ Lo
= - 167k fj Dmbn Dy (aps T 2%k, op?
d ld 2d 8
X_P_piz_P, (1.8)

If we call the integrals over the background dis-
tribution J,,,,s (F; w, k), Eq. (1.8) can be rear-
ranged to display the dielectriclike tensor re-
sponse of particle-inhabited space to a gravita-
tional wave:

[(wz —kz) 6mr 6ns + 1677Jmnrs ] L EDmnra B

=0. (1.9)

The zeros of the determinant D(F; w, k) are poles
in the (w, k) plane, so they are conventionally
regarded as the normal modes of the medium’s
response to the wave. Equation (1.8) displays the
important characteristics of this wave-particle

coupling: (i) It is to the higher shear moments of
the ensemble, so that cold gases cannot interact;
(ii) it depends on gradients in the distribution of
momentum, so that the sign of the coupling can be
influenced by streams; (iii) part of the coupling is
independent of the wave’s phase velocity, so that
it “stirs” the whole ensemble; and (iv) part of the
coupling is by resonance between wave-phase ve-
locity and parallel-particle velocity:

PP By =0 (v - w/R). (1.10)
The inability of any particle to resonate with phase
velocities faster than light introduces a branch
point at w/k=+1 in D. We will find that the branch
cuts must be carefully considered in order to esti-
mate the strength of the zeros of D correctly in
relativistic kinetic theory.

III. THE ISOTROPIC CASE

The dielectric equation (1.9) indicates that even
a homogeneous particle ensemble can entangle
orthogonal linearly polarized waves by momentum
anisotropies. In fact, the simplest distribution to
consider is isotropic photons, since all normally
independent components decouple and momenta are
scaled by the energy p°. Then, the zeros of the
dispersion function are solutions of

0=D ;e
_ P o 1-42\2 ]
=(w?-k?) [11»311530[1 <u_w/k> du

+73 1447P, (2.1)

where P is the geometric (G =1=c¢) radiation pres-
sure in units of inverse length or inverse time,
u=p'/p° is the pitch angle to the wave normal,

and C is a u-space contour best chosen to enclose
the resonance pole at w/k above the real u axis
between the branch points at *1. For this choice,
the integral is

é]l:(;lz_wu})zdu: §+4 (%—1) [2 +ln<$::)]

(2.2)

where Hc(w/k) analytically continues the resonance
pole, being equal to unity between w/k=%1 for
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Im(w/k) =0, and zero otherwise. This gives Disx:
vertical branch cuts in the w/k plane, shown in
Fig. 1.

There are two kinds of wave modes associated
with zeros of Eq. (2.1). First, there are the near-
vacuum dispersion relations, coming when the
real and imaginary parts of the pitch-angle inte-
gral are small:

(W/R)vae ~ % (1-127P /5k2) + A 1 97* (24P / k%),
(2.3)

These gravitational wave modes are slightly slower
than light and are very slightly damped, depending
on the ratio of wavelength to pressure scale. The
physical damping mechanism is something like
collisionless Landau damping of electrostatic
waves in an ionized plasma —the wave resonates
with more particles of low projected momentum,
transferring energy to them.

The second kind of dispersion relation occurs
when the resonant pole in the pitch-angle integral
of Eq. (2.2) is large:

(W/k)es ~ i (24T2 P/ R2)"1/3
>7 . (2.4)

This is a nonpropagating, rapidly evanescent mode,
novel to hot particle universes. The noncausal
damping rate of this transient suggests that the
physical mechanism is some thing like phase
mixing — some of a wave’s initial coherence is lost
because the thermal motions of particles all along
the wave train are a source of noise. Indeed, the
amplitude of the transient is very low, of the order
of (P/k?)'/3 if we ignore the branch cuts, and

of (P/k?) if we include their influence.

The task of evaluating the contribution from the
branch cuts in the dispersion function D for rel-
ativistic kinetic theory is delicate, because the
zeros of D are usually more damped in time than
the branch points. In addition, the arbitrary
orientation of the cuts can influence the very exis-
tence of zeros of D. For example, choosing them
to join w/k=%*1 in Fig. 1 defines a Dj, With no
zeros at all - the physics becomes entirely hidden
in the behavior of D, along the cuts. We chose
vertical branch cuts in the (w/k) plane because

P i- | du[(1=12)/ (= w/R))2/(1 +Auy

iIm(w/k)
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FIG. 1. The branch cuts and poles of D (F;w,k) in
the w/k plane for an isotropic photon gas. The depen-
dences on the small pressure-scale/wavelength ratio
P/k? are characteristic.

their contribution was then small and in a form to
be subtracted from the poles’ amplitudes.!

IV. AN ANISOTROPIC CASE

In general, anisotropic media entangle the field
components of the wave equation (1.8), making it
hard to solve. However, if one has gravitational
wave propagating along an azimuthally symmetric
anisotropy, then the polarizations decouple nicely.
An example of cosmological interest is Misner’s
mixmaster universe,!? where a once -isotropic
radiation field can be expanded or compressed
collisionlessly to give a pitch-angle-dependent
temperature T(u):

F={exp[p®/T(u)] -1} "1, (8.1)

where

= TJ-
T(u)‘ (1 +Au2)l 2
(3.2)
T2-Ty*

-1<A=
T,?

The dispersion function is then structurally simi -
lar to the isotropic case in Eq. (2.1):

Dmis=(w2—k2)’:1 +61 5

B fildu/(1+Au2)2

1 2 2
} +6ﬂpf_1du(l—u )@+ 7)/(1 +Au) 3.3)

J1 au/(1+AwY

Here, P is the average radiation pressure. The integrals in Eq. (3.3) are complicated functions:
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a———,——rcf,‘“f L ifAZ0
1
I(A)E%f du/(1 +Au?) = (3.4a)
-t 1 1+ A2\ |
2|A'1/21n 1—|A|1/2 ,ﬂASO,
f‘ du/(1+ARP =1 A)+1/(1+A), (3.4b)
-1

[ du(@ -7 418)/(1 + AR =[14 -3 + (A7~ 64 +3) 1 (A)) /A2, (3.4¢)
20 -1) 4(1+A)F-1 -1
fldu[(l—u’)/(u—ﬁ)]’/(l +Au®f = (l(iﬁz)a) & (+1 +i§§z)z ) [ﬁ In 2+1 +(1 —Aﬁz)I(A)]
C'l
(1+APIA) (1+A)1-AP) 4mi(1+A)B(F° -1)
YAQ+AP) T AQ+AFY ~ (+Apy  HeB),  (.4d)

where B=w/k is the phase velocity. So, even for
this relatively simple anisotropic case, it is hard
to find the wave modes represented by the zeros
of D gpjs-

Table I lists the approximate dispersion rela-
tions in several limiting situations. For very
small anisotropy, all modes are essentially the
same as for the strictly isotropic case in Eqs.
(2.3) and (2.4). For moderate positive anisotropy
(T.2Ty), the near-vacuum modes are unaffected,
but the evanescent mode proceeds at a much slow-
er rate, determined by the anisotropy. The am-
plitude of this relaxation mode is still weak —it is
of the order of P/¥?, when the contributions from
the branch cuts are included.

For strong positive anisotropy (7,> Ty), the
vacuum mode is still retarded by a fraction of the
order of P/F?, but the collisionless damping is
faded. Physically, this is due to the fact that the
retarded wave finds very little parallel momentum
to resonate with when Ty < T,. For A-«, the
evanescent mode becomes very slow, a fact of

r
obscure physical significance. The amplitude of
these transient modes was not calculated for large
anisotropy because the contribution from the branch
cuts is then difficult to estimate.

For strong negative anisotropy (T,<< T,), the
relaxation mode is very fast, and the interaction
terms in the vacuum mode vanish. Physically,
this is due to the wave coupling into the transverse
momentum in Eq. (1.8), so that all interactions
vanish along with T',.

We can conclude from our analysis of all these
anisotropic cases that, in general, the vacuum
modes are fractionally retarded by P/k* and
collisionlessly damped by (P/#?)?, while the eva-
nescent modes are sensitive to the details of the
distribution, but have low amplitude.

V. DISCUSSION

We found that the imaginary part of the vacuum
modes was understandable in terms of a retarded
wave resonating with the longitudinal gradient in

TABLE 1. There are two kinds of dispersion relations for a gravitational wave traveling along the symmetry axis of
an anisotropic photon gas characterized by two temperatures, T, and T,,. The near-vacuum modes are only weakly
affected by particle anisotropy, while the nonpropagating modes are very sensitive.

Anisotropy
A= -T\Y/T

“Vacuum” mode
dispersion relation

“Evanescent” mode
dispersion relation

-1SsAorT,<T

-1

|AP?2 «P/k?<1lor T, ~T
1]
Same as above

P/RYP<A<@P/Y) or T, 2T,

A»@P/rYtor T, »T,

i"— ~i[1-216m(1 +A)P [k +igltgTpt —ELE)" @

L ny 1+E’l£ +
k 5 k*

3
o~ [1-217P /k? +i2433721f4<_"i_k2§ /2)

/b 2)3 w -Inl3(1 +A)] -
“In[}(1+4)] k& ‘9em(1+A)P/EY) °
22354 (P )3 @ i -
5 \k? k- (24mP /RD)IP7T
w i
% S’
© i
k. 24r°AP/k?
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the momentum, 3F/8v, at vy =p*/p°=w/k

~ 4 (1-P/F%) in Eq. (1.8). So, we get collisionless
damping if 8F/avy |/, <0, and could get collision-
less amplification of gravitational waves if
8F/av|,/,>0. Ordinarily, such amplification
should be negligible, since the streaming must be
severe to have many particles faster than the
slightly (P/k%<« 1) retarded wave, and the secular
rate is always slow [<(P/k?)*].

All of the interaction effects are scaled by P/k?,
so one naturally wants to look at long-wave or
high-pressure situations in order to speculate on
the largest possible effects. For example, the
3°K cosmic radiation has a pressure scale
P =GP/c*~ (10* cm)~2, larger than the Hubble
scale ¢/H=~ 10%® cm. Likewise, the degeneracy
pressure inside of a neutron star gives P~ (10°
cm)~2, which is larger than the 108-cm object. It
is, of course, no accident that objects have the
scale hierarchy: Schwarzschild radius < physical
radius < radius of space-time curvature due to
density < radius of space-time curvature due to
pressure. Consequently, the term P/k? is small
when there is more than one wavelength inside of
an object.

Indeed, the perturbation analysis developed here
has concentrated on that part of the dispersion due
to wave -particle coupling. There are two other
important sources of deviation from flat-space,
null-geodesic motion which have been ignored: the
background space-time curvature, and the non-
linear action of the wave. Since some of the back-
ground radii of curvature are < P~'/2 these terms
in a correct curved-space wave operator on the
left-hand side of Eq. (1.1) are at least as large as
the interaction terms of the right-hand side. Like-
wise, terms like 22h% have been dropped. Now,
observable waves might carry a strain of h~107'7,
which is much larger than, say, P/k2~107% for
kilohertz waves dispersed by the 3 °K radiation.
Thus, both deviations can be larger than P/k2,
They are familiar terms,® representing both
deviations from null geodesics and conceptual
errors in the use of a separable, flat background,
while the P/k? terms represent the error in the
use of sources separate from the wave. Although
such a general perturbation analysis, mixing all
of these scales, is beyond the scope of this paper,
we expect that the effects will add independently
in the short-wave limit.

The analysis here was for photon ensembles be -
cause their simple momentum-energy relationship
make the stress integrals easy to do. Dust ensem -
bles have been analyzed and found less effective,
since massive particles have less momentum than
photons of the same total energy.

Very general considerations indicate that one

will find strongly dispersed modes in a medium
that has some short characteristic scale that can
interact with the wave. For instance, the cyclo-
tron frequency is an important scale in plasma
physies. Unfortunately, the magnetic field analog
in general relativity is weak in ordinary situations.
A high collision rate could be introduced into the
Boltzmann equation (1.4) to give a natural short
scale, but, since collisions decrease the shearing
ability of the ensemble, we-expect collisions to
decrease the net wave-particle interaction, al-
though they might increase dissipation.

Analogies between light waves in an ionized
plasma and gravitational waves in gas cannot be
pushed too far. For instance, while the pressure
P introduces a gravitational scale analogous to the
density -dependent electron plasma frequency, the
signs on these quantities are such that the phase
velocity of lightlike modes are greater than c,
making resonant interactions impossible, while
gravitational waves have near-vacuum modes at
less than ¢, allowing collisionless secular effects.
This seems due to the fact that electrons are
electrically repulsive but gravitationally attractive.

Two of the barriers to considering gravitational
waves in more complex media have already been
mentioned: (i) The several field components in Eq.
(1.8) are generally coupled, making the dispersion
function a large determinant of terms like Eq.
(1.9); and (ii) the interaction integrals, called
Jmnrs in Egs. (1.8) and (1.9), are generally intrac-
table. Another constraint, not previously men-
tioned, is the need to keep the theory gauge-in-
variant. For the chosen form of metric fluctuations
in Eq. (1.3), we tailored the ensemble to this
coordinate system by restricting it to be homoge -
neous and in the “center of momentum,” so that
T ® (h) =0 was satisfied in the wave equation (1.1).
More general gauge formulations can be made, of
course, but the physics then gets lost in the nota-
tion.

Naturally, one could apply a multitude of kinetic-
theory techniques to the coupled Einstein and
Liouville equations to derive the effects of particle
correlations, wave-wave coupling, inhomogeneities,
etc. However, these are unpromising and difficult
calculations, due to the weakness of the coupling
and to the many nonlinear terms.

Finally, the retarding pressure term in the
dispersion relation for the vacuum modes has the
same effect as assigning an effective mass or a
long-wave cutoff to the graviton. This probably
has no significance for the fundamental problem
of formulating a quantum theory of gravity,!® but
it may be a useful concept for heuristic models of
the interaction of gravitational waves with, say,
phonons inside of a neutron star.
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VI. CONCLUSIONS

A gravitational wave in a collisionless gas has
the familiar vacuum modes retarded, allowing
resonant interactions with the particles. New
evanescent modes, sensitive to the details of the
ensemble’s momentum distribution, are also

possible. However, the strengths of the inter-
actions depend on the ratio of wavelength to pres-
sure, GP/c%*k?. This is so small that the modes
are indistinguishable from the vacuum case in
practical situations. Once again, the fundamental
weakness of the gravitational coupling constant
keeps life simple and uninteresting.

*Based on a Ph.D. thesis done in the Astronomy Pro-
gram of the Physics Department of the University of
Maryland at College Park.
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A thought experiment and some model systems are studied in an effort to examine the
relation between the cosmological and thermodynamic arrows of time. Some doubt is cast
on the hypothesis that the latter must follow the former.

A discussion of the physical problems associated
with the arrow of time is given by Gold."»? We
here wish to make only the brief remark that a
physical “solution” to these problems may take
one of the following forms: (1) proof that vari-
ous arrows are correlated, e.g., that the thermo-
dynamic arrow must follow the expansion of the
universe (the cosmological arrow); (2) proof that
some arrow arises as a spontaneous symmetry-
breaking effect, a catastrophe.®'*

This article is confined to analyzing a thought
experiment and some models which are supposed
to correlate the cosmological arrow with the ther-
modynamic arrow. The abbreviations AT and AC
stand, respectively, for the thermodynamic arrow

and the cosmological arrow. AC points in the di-
rection of the expansion of the universe. AT points
towards increasing entropy. That AT and AC are
well defined is an experimental fact.

The following thought experiment has been used!
to demonstrate that AT follows AC. A star is put
in an insulating box and in due course comes to
thermal equilibrium. Motion pictures or other re-
cords of occurrences inside the box now show no
arrow (AT is lost in equilibrium). A window is
then opened for some period of time and radiation
is allowed to escape. It escapes because the uni-
verse outside the box is cooler than the star. This
in turn follows (as in resolutions of Olber’s para-
dox) from AC. After the window is closed, the



