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Numerical Solutions to Two-Body Problems in Classical Electrodynamics: Straight-Line
Motion with Retarded Fields and No Radiation Reaction*
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Trajectories of two charged particles of equal mass have been calculated for straight-line motion using

retarded fields without radiation reaction. Both attractive and repulsive interactions are considered. For the
attractive case, in which particles are released from rest with various initial separations d, the acceleration
is shown to approach —~(in natural units) as the particles approach each other, and oscillations which

are significant for d & 1 are strongly damped for d &) 1. For the repulsive case, in which the particles are

thrown directly at one another with high initial velocity, no lower limit is found for the distance of closest
approach as initial velocities are increased. Furthermore, the particle energy is found to increase during

collision. We explain this result in terms of an energy-conservation theorem and discuss its significance with

regard to the omission of radiation reaction.

I. INTRODUCTION

Basic difficulties in quantum field theory are
related to problems of self-energies and of inter-
actions among elementary particles and between
particles and fields. One naturally looks to the
simplest classical problems for solutions which
may shed light on the quantal difficulties.

We consider here the problem of two charged
point particles of equal mass interacting in
straight-line motion by means of retarded Lienard-
Wiechert potentials when either (i} the particles
have opposite charges and attract one another when
released from rest at an initial separation d, or
(ii) the particles have like charges and are thrown
at each other with initial velocities dx, ( ~)/dt,
from a large initial separation. Even this relative-
ly simple problem has, till now, not been fully
solved. One of the difficulties has been to solve
differential equations involving both present and
retarded times. We have studied such problems
for the scalar field' and apply them here to the
electromagnetic case.

Synge' has considered analytic solutions to the
two-body problem and has applied a method of
successive approximation, valid when the masses
of the interacting particles are greatly different,
to the case of nearly circular orbits. He finds a
gradual loss of mechanical energy, a loss however
much smaller than that predicted when radiation
reaction is included.

The existence and uniqueness of solutions to the
two-body problem with retarded interactions has
been discussed by Driver. 3 When the past history
of the particles is specified, as we have done, the
problem of future trajectories is mell-posed and
has a unique solution. For some two-body prob-
lems with straight-line motion, Driver' has shown

that the assumption of retarded electrodynamic
interaction at all past times implies a unique so-
lution for each set of instantaneous position and
velocity values. In our treatment of cases (i) and
(ii) [see above], the past histories specified be-
come consistent with the retarded electrodynamic
interactions in the limit of large initial separation,
and we have increased the initial separations used
until no further difference appeared in the quali-
tative behavior of the collision.

Case (i) has recently been treated numerically
by Kasher and Schwebel. ~ They used initial sep-
arations d &~~ e'/m (we use units with c = I), i.e. ,
they did not consider the problem for initial sep-
arations larger than ~3 classical charge radii.
After applying an initial analytical starting solu-
tion, they followed the particles in toward the
origin with a rather coarsely meshed numerical
integration. We have repeated their calculations
obtaining higher accuracy, and have extended the
results to much larger, physically more meaning-
ful starting separations. The deviation from their
results is significant.

Case (ii) has been solved for half-retarded plus
half-advanced fields by Andersen and von Baeyer, '
who used a method of successive approximation to
calculate trajectories for particles with initial
velocities up to 0.95. At higher velocities their
iteration method no longer converged. They sug-
gested that the distance of closest approach 2x, (0)
of the particles might not decrease monotonically
with increasing initial velocities, but rather might
have a minimum value of about 2x~(0}=0.9. We
have found some striking differences for the re-
tarded-field results.

Our calculations include no radiation reaction.
Computational difficulties with the Lorentz -Dirac
treatment of radiation reaction are well known. '
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In some formulations of classical electrodynam-
ics" either radiation reaction does not exist or
its existence depends on the choice of "boundary
conditions. " Our work may be considered a con-
sistent model calculation within such a formulation,
or it may also be taken as a calculation in con-
ventional classical electrodynamics, the equations
of which have been approximated (as is often done)
by ignoring radiation reaction. From the results
of our calculations, we will be able to draw some
conclusions about the importance of the radiation
reaction.

In Sec. II the retarded theory including the equa-
tions of motion and a statement of the conservation
laws is presented. Section III discusses the method
of attack used to compute the numerical solutions
which are discussed in Sec. IV. Conclusions are
drawn in Sec. V.

ever and no radiation-reaction terms, an energy-
conservation law [ Eq. (2)] is still valid. The
above equations form a simple and consistent
mathematical model; the equation of motion is
equivalent to that used by Kasher and Schwebel.
We will see below that solutions have some un-
physical behavior which can be traced to the lack
of any sort of radiation-reaction term, or equiv-
alently to the non-positive definiteness of the
field energy.

Specifically, we consider two particles of equal
massm=l at positions sx, (t, ) on the x axis. We
let x,(t, ) be the position at the retarded time t, :

(3)

and find from Eq. (1) for cases (i) (minus sign) and
(ii) (plus sign),

II. EQUATIONS OF MOTION AND
CONSERVATION THEOREMS dt, ' ' ' ' ~ 1+dx/dt, '

(4)
We consider a system of charges which interact

with each other via Lienard-Wiechert potentials. "
We label the potentials and eliminate all self-inter-
action terms. This is equivalent to the interaction
theory of Leitero with the boundary condition &

(in the notation of Ref. 9) and leads to essen-
tially the same equations used by Synge, ' Driver, '
and others. The equation of motion may be written

(r) (E) —P q(x) E(+) (R( ) )
seK

where m is the mass and q the charge of the
Kth particle which is at R with respect to the
observer, y' ~ =[I-(dRi i/dt)'] '~', a dot indi-
cates a derivative with respect to the observer's
time, and E~~i(R+ri) is the electric field of the 4th
particle at Rt . The left-hand side (L.H.S.) of
Eq. (1) is the time derivative of the rest plus ki-
netic energy of the Eth particle.

The energy-conservation theorem may be ob-
tained by summing both sides of the equation of
motion over all particles and converting the right-
hand side (R.H. S.) by application of OA
= -4sJ i" to an expression of interacting fields.
The result is

Pm y . = —Y — d'R[E ~E

(2)

where the right-hand side is the integration over
all space of the field interaction energy density.
Even though we consider no self-interaction what-

y, '=-1-(dx, /dt, )' .

The product q
' q@~ is taken equal to unity so that

distances in Eq. (4) are in units of the classical
charge radius q' q" /mc'.

III. NUMERICAL CALCULATION

The numerical approach is in principle that used
to solve retarded scalar-field problems'. The
kinematic information is stored in arrays and
retrieved by interpolation when needed later for
the retarded quantities. Now, however, an im-
proved Hamming predictor -corrector method" is
used in which the integration step size is varied
in a way to preserve accuracy and stability of the
solutions. The kinematic quantities are stored at
every step in large arrays which can be recycled
to flush old data which are no longer needed. The
interpolation of retarded values proceeds now by a
stable and accurate double quadratic procedure:
To find a value lying between storage points i and
i +1, for example, Eq. (3) is solved twice, once
using x„x„and i', values at i, and once using
these values at i +1, and the results are averaged.

All calculations were performed in double-
precision on IBM 360/50 and 360/65 computers.
Accuracies demanded were generally in the range
10 ' to 10 ' and were achieved by step sizes
which ranged from around 1 at large separations
to less than 10 "at small separations. Runs
made with different specified accuracies were
compared to ensure that numerical error was kept
negligibly small.

The Hamming-method integration is initiated
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by three Gill-Runga-Kutta~ steps. The seven
most recently found present and retarded kine-
matic quantities are generally kept in temporary
arrays for use in the integration procedure. This
keeps searches and interpolations among the
permanent arrays containing past information to
a minimum. The step size changes only by factors
of two. The normal criterion for doubling the step
size was stiffened to prevent doubling more often
than once every four steps.

IV. RESULTS

A. Attractive Case

The oppositely charged particles are held fixed
at a separation d until t = 0, when they are re-
leased. Runs were made with small d values for
comparison with the Kasher and Schwebel result4
as well as with larger, physically more meaning-
ful d values. In Fig. 1, results for d = 1 are com-
pared. The apparent discontinuities in the slopes
of the Kasher and Schwebel x, and dxz/dt, curves
(dashed lines) and the corresponding inconsis-
tencies in x„dx,/dt„and d'x, /dt, ' values were
not found in our results. Some oscillatory be-
havior as found by Kasher and Schwebel was
present, however.

In Figs. 2 and 3 the velocity and acceleration of
the particles are followed to distances ay& 10 ".
The solid line is for d = 10, the dashed for d = 1,
and the dot-dashed for d =0.5. The oscillations
are most pronounced in the d =0.5 curves, de-
crease as d is increased, and practically dis-

appear for d as large as 10.
From the unit slope in the log-log plot in Fig. 2,

it is evident that (i) the particle velocity dx, /dt,
is approaching -1 as the particles approach the
origin, and (ii) the acceleration d'x, /dt, ' is
nearly a constant.

From the equation of motion, it is straightfor-
ward to show that the acceleration d'x, /dt, ' must
approach a constant as x, -+0: Let sg t ty be
the time left until collision, i.e. , x,(t, ) =0; and
let d" x, /dt, " (t;t,) =-a be the lowest-order time
derivative of x~ with n & 1 which does not vanish as
xg + 0 For sufficiently small s„we can expand
x, and x, in a Taylor series:

x, = s, -as,"/nl + ~ ~ ~,

x, =s, -as,"/n! + ~ ~ ~, (5b)

Sm —S~ =Xg+X2 . (5c)

Differentiation and combination give the expres-
sions

dh, 1 as," '
dt, (n-l)! (6a)

2g gg 8 2
1 j, + ~ ~ .

dt, (n-2)! (6b)

dx, c 2n1

dtm (n-l)! a (6c)

where sm
-=t, —t2 is the retarded time correspond-

ing to s:
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FIG. 1. Position (in units of classical charge radius)
and velocity (in units with c =1) of particles with opposite
charges starting from rest with an initial separation
d =1. The dashed curves are from the calculation of
Ref. 4.

FIG. 2. The velocity in the attractive case approaches
—1 as the particles reach the origin. The coordinates
for part (b) of the curve are on the upper and right-hand
margins. Curves are shown for three initial separations:
d =10 (solid curve), d =1 (dashed curve), and d =0.5
(dot-dashed curve, which in order to keep the diagram
clear is shown only for x) & 0.1).
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FIG. 3. The acceleration in the attractive case approaches -W2 as the particles reach the origin. Curves are shown
for d =10 (solid curve), d =1 (dashed curve) and d =0.5 (dot-dashed curve). The small triangles indicate minima (T)
and maxima {k) in the d =10 and d =1 curves. The small arrows indicate the position at which, due to retarded effects,
the motion of the other particle is first felt.

2a1(1)f 1 + ~ ~ ~ (6d)
results, we have no problems with stability of
solutions and can investigate collisions in the
high-energy region. We find no minimum for

Sutstitution into Eq. (4) gives directly

as" 2 2a ' ' 2n! "+
1 4(n-2)! (n-1)! a

1 0--

X S s g x) /2- (P+ x) /n
1

Equating powers of s, gives

n=2 (6)

5--

Figure 3 shows that indeed the acceleration does
approach -/2 as x,-+0.

Oy

B. Repulsive Case

Like -charged particles are initially moving
directly at each other from large separation 'mth
energies (kinetic plus rest) y, (-~) and velocities
dx, ( )/dt, The n-umerica. l calculation is started
with the particles at various separations large
enough (d~ 200) that the results show no depen-
dence on small changes in d. A plot of x,(t, ) is
presented in Fig. 4. In contrast to the half-re-
tarded plus half-advanced case treated by Ander-
sen and von Baeyer, ' it is clear here that
x,(t,)e x,( t,)-

Also in contrast to the Andersen and von Baeyer

0 5--

-1.0--

FIG. 4. The position in the repulsive case for an
initial velocity of —0.8. The dashed lines show the
relation between present (right-hand side) and retarded
Peft-hand side) positions. Note the asymmetry of the
curves about t& =0.
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2x, (0), the distance of closest approach; instead,
as shown in Fig. 5, x,(0) decreases monotonically
with increasing initial energies and shows no
indication of nonmonotonic behavior over energies
investigated, y, & 25, and over separations down

to 2x,(0)= 10 '.
The most striking feature of our results for the

repulsive case is that, after collision, the particle
energies y, are appreciably higher than before (see
Fig. 5): y, (~)&y,(-~). Since there is no radiation
reaction in our formulism, we expected the ener-.
gies to be the same before and after collision, as
found by Andersen and von Baeyer in their calcu-
lation with half-retarded plus half-advanced fields.
On closer examination however, it does appear
understandable that the particles gain energy:
Since each particle "sees" the other at its retarded
position, the maximum repulsion between the two
particles occurs after the particles have turned
around and are traveling outward. This is shown

in Fig. 4, which is for the relatively low initial
velocity -dx~(-~)/dt, =0.8. When one particle is
at its turning point x,(0), its interaction with the
other particle is due to the other particle's posi-
tion and motion at the retarded time, connected
in Fig. 4 to x,(0) by a dashed line. The motion of
one of the particles at t =0 affects the other par-
ticle much later, at a time well off the diagram
in Fig. 4.

The equation of motion is, however, consistent
with energy conservation [Eq. (2)], so that the
energy in the fields [R.H. S. of Eq. (2)] must de-
crease during the collision and approach a con-
stant level lower than the original one. This is
no longer paradoxical when we recall that since
no self-interaction occurs, the electromagnetic-
interaction field energy is not necessarily positive
definite.

For t-~~, we can estimate the field energy.
By differentiating the Lienard-Wiechert potentials,
one obtains" for rectilinear motion on the x axis

10 -R;id@,/dt d'*, R-RA,
}I 8 2

pg Rg dt's Rj ret

(1o)
B =-R xE

10 10

10 10
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10—

1-'d
X1 (-co)/dt's

10
10~

FIG. 5. The increase in particle energy during col-
lision and the distance of closest approach to the origin
as a function of initial velocity for the repulsive case.
The dashed curve is the analytic high-energy approxima-
tion tzq. (11)j.

where 2 is a unit vector along the x axis, 8, is the
vector from the point at which the field is deter-
mined to particle 1, R, is a unit vector in the
direction of R, and has the x component g—=A~ x,
and x = 1+$dx~/dt~ The first. term on the R.H.S.
of Eq. (10) is the Lorentz-transformed static
field. The second term is the radiation field.

At t = -~ there has been no acceleration, and
consequently, only the Lorentz -transformed static
field exists. The interaction term thus has the
form of an integral over all space of an expression
varying as R, 'R, '. This interaction vanishes as

~ R~-R~~ '. At t=+ ~, there exists an additional
radiation field. Now the particle acceleration is
appreciable only over a small interval ht of time
near t =0. As a result, the radiation field is con-
fined to a spherical shell of thickness = At and
radius = t, approximately concentric with x,(0).
Furthermore, it is seen to be zero along the x
axis. Since the volume of the shell increases as
R,"whereas the overlap of the Lorentz-trans-
formed static field of particle 2 with the radiation
field of particle 1 decreases as R~ R, ' or faster,
this interaction also vanishes in the limit t -~.
Similar arguments can be made for the magnetic
fields as well.

The only contribution to the electromagnetic-
interaction field energy which survives in the
limit t -~ is due to the overlap of the radiation
fields. The interaction volume is the overlap of
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the two expanding shells and is sketched for a
number of times in Fig. 6. This volume is approx-
imately v(RLt) /x, (0) for t »n, t. The approximate
values of E' 8@ and B' ~ B" at large I, are
easily found by evaluating Eq. (10) in a plane
perpendicular to the x axis and cutting the axis
at x~ ~

E&» ~ E@&

\

I

I
I

'\ I
\ I

I
I
I

=-R '[d'x, (0)/dt, ']'.

The fields E, and E, are in opposite directions;
hence, the minus sign. The same holds for B,
and B,. In the limit of high particle energies, the
interaction energy is therefore roughly given by

d R[E ~ E@ +B ~ Bs]
4m

—[~td' x,(0)/d t,'] '
2x, (0)

I
I
II~)

I
I

\
I
I

I 1

I
I

I
I

I
I

\

l
\
\

This expression has been evaluated by setting the
full width at half height of the d'x, (t, )/dt, ' curve
equal to At. Results shown in Fig. 5 are seen to
be in quite satisfactory agreement (considering
the rough nature of the calculation) with

&ri -ri("=-)-+r,(- )

V. SUMMARY AND CONCLUSIONS

The dynamics of two charged particles of equal
mass moving along a straight line in the model
with interaction via retarded fields and with no
radiation reaction have been investigated by
numerical calculation. New and unexpected re-
sults have been found for both attractive and re-
pulsive cases and these have been explained
analytically. In the attractive case, the accel-
eration is found to approach dx, /dt, ~-W2 -as

x,- 0. In the repulsive case, the particles gain
a substantial amount of kinetic energy during the
collision, even though the total (field plus particle)
energy is conserved. The latter result appears

FIG. 6. The interaction radiation pattern resulting
from the collision of particles of like charges. The
negative-energy pulse is shown at successive times as
it moves outward from the origin.

unphysical and provides an argument for not
omitting radiation reaction.

In this connection, we remark that we have cal-
culated the energy radiated by the accelerating
particle by integrating the Larmor power term"
and find that in all cases, much more energy is
radiated than the energy gained by the particle.
Consequently, a proper inclusion of radiation re-
action would cause the particles to lose rather
than gain energy. The effect of the negative inter-
action energy which we have found would still be
present, but it would be overshadowed by the
effects of radiation reaction.
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We point out and discuss an ambiguity which arises in the quantum theory of fields when the

background metric is not explicitly Minkowskian-in other words, when an external gravitational field,

real or apparent, is present. A general theory of a canonical neutral scalar field in a static universe,

including the construction of a Fock space, is presented. It is applied to a portion of two-dimensional

flat space-time equipped with a non-Cartesian space-time coordinate system with respect to which the

metric is nonetheless static. The resulting particle interpretation of the field is shown to be different

from the standard one in special-relativistic free-field theory. The ambiguity frustrates an attempt to

define uniquely the energy-momentum tensor by the usual method of normal ordering. We discuss

various suggestions for (1) distinguishing a unique correct quantization in a given physical situation, or

(2) reinterpreting seemingly inequivalent theories as physically equivalent. In passing it is shown that

the vacuum state and the energy density of a free field in a box with periodic boundary conditions

differ from those associated with a region of the same size in infinite space; this result should be of
interest outside the gravitational context.

I. INTRODUCTION

In recent years generalizations of elementary
quantum field theory to Riemannian space-times'
have begun to be applied seriously to various cos-
mological and astrophysical problems. ' ' In this
work it is necessary to proceed beyond the estab-
lishment of field equations and commutation rela-
tions' to the construction of some framework of
observables and quantum states, and to give this
apparatus a physical interpretation. This is tradi-
tionally done in terms of a Hilbert space of quan-
tum-state vectors in which the fields are realized
as operators. ' The most common strategy in the
Riemannian context is to choose (if possible) a co-
ordinate system in which the field equation can
be solved by separation of variables and to quan-
tize the resulting "normal mode" structure in close
analogy to the standard quantization of a free field
in flat space. In the case of a static metric (e.g. ,
Ref. 2) one is thus led to what appears to be a
unique theory, which we outline in Sec. II A. In time-
dependent problems (e.g. , Refs. 2, 4, 5) the situation
is less clear, since there is not an unambiguous di-
vision of the solutions of the field equation into

positive- and negative-frequency parts; it has been
suggested that the concept of particle loses some
of its physical significance in such situations. ' "

Such constructions are not manifestly generally
covariant. If a given space-time admits two or
more of them, there is no guarantee that they will
agree physically; if not, of course, at most one of
them can be correct. In particular, any procedure
which purports to apply to all Riemannian metrics
of a certain form (e.g. , static metrics) must yield
physically sensible results when the metric con-
sidered is that of ordinary flat sPace equipped with
a curvilinear coordinate system. One might hope
to use this principle as a criterion for the correct-
ness of the theories, or as a guide to the choice
of the correct ansatz in the cases where ambigu-
ities remain.

In this paper a neutral scalar field in a patch of
two-dimensional Minkowski space is quantized ac-
cording to the "unique" prescription for static me-
trics referred to above. It is shown that the re-
sulting notions of particles and vacuum state are
completely different from those of the standard
Fock representation. This ambiguity affects the
definition of the energy-momentum tensor, the


