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Analytic and computer-derived solutions are presented of the problem of slicing the Schwarzschild
geometry into asymptotically-flat, asymptotically-static, maximal spacelike hypersurfaces. The sequence of
hypersurfaces advances forward in time in both halves (u ) 0, u & 0) of the Kruskal diagram, tending
asymptotically to the hypersurface r =

2 M and avoiding the singularity at r = 0. Maximality is
therefore a potentially useful condition to impose in obtaining computer solutions of Einstein's
equations.

We report (1) the results of a computer study of
the problem of maximally slicing the Schwarzs-
child geometry and (2) an analytic solution of the
same problem. The computer study was part of a
much larger program currently under way at
Texas to study the behavior of colliding black
holes. Data obtained in such studies will be of in-
terest to two groups of physicists: those who wish
to learn something about the gravitational energy
radiated to infinity and those who are curious about
details of the growth and coalescence of event hori-
zons and the dynamical processes taking place near
the singularities hidden inside. In order to obtain
data of use to both groups one must employ coor-
dinate systems that guarantee the following:
(A} The metric must pass smoothly to a familiar
metric (e.g. , spherical Minkowskian) at infinity.
(B) The hypersurfaces x o = constant must be
spacelike and must penetrate the event horizon(s).
(C) The metric must remain nonsingular for the
duration of the computation.

It has long been speculated that a good way of
securing these conditions is to require the hyper-
surfaces x =constant to be maximal. ' The maxi-
mality condition is expressed by the statement

y"K„=O,

where, for each x', y'f and K,f are, respectively,
the (contravariant) 3-metric and second fundamen-
tal form on the corresponding hypersurface. When
(1) holds, Einstein's vacuum equations reduce to

K,. K"=~"Rif
if( )R (2)

(3)

(4)

In an effort to determine whether the maximality
condition in fact secures conditions (A), (B},(C)
above, and whether solution of Eqs. (1}-(5}is
practical on the computer, four of us (S.C., B.D. ,
L.S., E.T.) undertook to run a test on the simplest
nontrivial example: the Schwarzschild black hole.

Constraints (1), (2), and (3) were satisfied by
choosing the initial hypersurface to be the u axis
in the familiar Kruskal plane. ' Equations (4) and

K". =0,'f

K,f 0 = a ' R„—e.,f —2@K;I,K'f + Z BK;f,

where, for each x', ' Rif is the curvature tensor
of the corresponding hypersurface, u and P,. are,
respectively, the lapse function and shift vectors
relating this hypersurface to its neighbors, dots
denote covariant differentiation in the hypersur-
face, and indices are raised and lowered by means
of the 3-metric. '

Equation (1) may be treated on a par with the so-
called initial-data constraints (2) and (3). If these
three equations are imposed on an initial hyper-
surface then they will automatically be maintained
on each succeeding hypersurface by the dynamical
equation (4) together with the following condition
on the lapse function'.
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(5) were then solved as difference equations sub-
ject to the boundary condition that the lapse func-
tion u become unity at spatial infinity and be con-
stant over the initial hypersurface. The diffusion-
relaxation technique was used on Eq. (5) while
standard second-order methods with stability con-
straints on the time steps were used on Eq. (4).
The mesh consisted of 25 points. The results are
shown in Figs. 1 and 2.

Figure 1 depicts the progression of hypersur-
faces x =constant in the Kruskal quadrant u&0,
v& 0. Each curve represents a maximal slice
through the Schwarzschild space-time, with to-
pology S'xR. An accurate metric visualization
of these slices can be obtained by suppressing an
"ignorable" dimension (arising from the spherical
symmetry) and embedding the result as a surface
of revolution in a Euclidean 3-space. The curves
that generate the surfaces of revolution are shown
in Fig. 2. Strictly speaking, only half of each
curve is shown. In the maximally extended
Schwarzschild geometry each hypersurface con-
sists of two congruent asymptotically flat sheets
connected by an Einstein-Rosen bridge; only the
upper sheet is shown in the figures.

The condition that the lapse function be constant
on the initial hypersurface guarantees that the sub-
sequent hypersurfaces generated by the computer
will not be trivial static hypersurfaces t=constant
(in standard Schwarzschild coordinates) for which
time runs forward on one sheet and backward on
the other. Here time is forced to run forward on
both sheets.

It is immediately apparent from Figs. 1 and 2

that the maximal hypersurfaces avoid the singular-
ity at r=0. Indeed, so well do they avoid the sin-
gularity that the inevitable contraction of the Ein-
stein-Rosen bridge, associated with upward mo-
tion in the Kruskal plane, is arrested long before
"pinch-off" occurs. Instead of pinching off, the
bridge merely stretches. This behavior can be
understood qualitatively as follows: The initial
hypersurface has the metric of a 3-paraboloid. If
it were a 2-paraboloid, it would have negative
(scalar) curvature, but as a 3-surface it has van-
ishing "R. As soon as the hypersurface moves
off the gg axis in the Kruskal plane, the bridge be-
gins to stretch and its central portion begins to
assume the shape of a 3-cylinder. A 3-cylinder,
in contrast to a 3-paraboloid, has positive curva-
ture (essentially that of its generating 2-spheres).
When '"R becomes positive, Eq. (5) forces the
lapse function to become concave upward (as a
function of r) at the center of the bridge. Because
a is held equal to unity at infinity, it quickly plum-
mets toward zero in the cylindrical region and
causes the bridge to stabilize at a constant r.

The numbers generated by the computer show
the stabilization radius to be very nearly equal to
1.5', where M is the mass of the black hole. '
The question immediately arises: Is the coeffi-
cient exactly —,'P An affirmative answer is strong-
ly suggested by the fact that the hypersurface r
=1.5M is itself maximal, as one may readily
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FIG. 1. The solid curves are the projections of the
hypersurfaces x~(= t ) =constant in the Kruskal plane.
Each tends asymptotically to a straight line t =constant.
As x (= t ) —~ the projections converge to the curve
r = 1.5M . The dotted curves are the projections of
another family of maximal hypersurfaces, lying inside
r=1.5M (see Ref. 8).

FIG. 2. Generating curves for the maximal 3-geo-
metries. Choose a value of t . Rotate the corresponding
curve about the z axis. The result is a 2-surface having
the metric properties of a symmetric (e.g. , equatorial)
slice through the maximal hypersurface corresponding
to that value of t.
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3a 2ply i =y —1 —r(lny) „,
[ln(a 'py 'r')], =0,

[»(a 'p)])=(3pr ,
'+a'p 'r- a'p ')» '

(2')

(3')

+3r 'P„+ l(a'P ,
' —4Pr ')(Inr)„

check.
While the computer analysis was being carried

out, two of us (F.E. and H.W. ) were obtaining an
explicit analytic solution of the problem. The solu-
tion was first discovered with the aid of a previ-
ously developed spacelike dyadic formalism"'
(analogous to the Newman-Penrose null-tetrad
formalism employed in radiation studies), which
is particularly well suited to problems of the pres-
ent type. Here, however, the solution will be de-
rived straight from the equations used by the com-
puter to show that what the computer can do we
can do better.

It proves convenient to start from a line element
having the form

ds =(-a'+y 'P2)dt'+2Pdtdr+yd»2

+r '(da '+ sin' 8 dy ),
where e, P, and y are functions of r and t only.
Evidently r, 8, and y are standard Schwarzschild
coordinates, but t is not. In these coordinates
Eq. (1}takes the form

-(I r),—, Pr-'[1 (P*r "')]„=o.
This equation may be used to eliminate t deriva-
tives of y from Eqs. (2), (3), and (4), which then
simplify, respectively, to

As a consistency check, one may verify by
straightforward computation that Eq. (5'), which
is a consequence of Eqs. (1') to (4'), is identically
satisfied by (7), (9}, and (11).

The t dependence of T remains thus far com-
pletely undetermined, because attention has been
confined to a single sheet of the 3-geometry. The
dependence may be fixed by imposing the require-
ment of smoothness across the Einstein-Rosen
bridge. This is most easily done by passing to
standard Schwarzschild coordinates t(t, r), r, 8, y.
It is readily verified that t(t, r) satisfies the differ-
ential equations

at/at =ar'",

at/a»=y (2Mr ' —1) 'Tr '
(12)

(13)

Equation (13) is solved by

x(r)
t= TM (2x —1) '(1 —2x+T M 'x') ' dx,

Vr -i

while Eq. (4') tells us simply that M must be t-
independent. The complete analytic solution of the
problem, which incorporates the condition that a
become unity as r- ~, is therefore given by Egs.
(7) and (9) together with the particular integral of
(10):

a = (1 —2Mr '+ T r )"
Nr -1

x 1+ ' (1-2x+T'M 4x') '"dx
M 0

-(Py '+a'P ')(lna) „. (4') (14)

Finally, Eq. (5) becomes

a „+2r 'a „——,'(lny) „a,=2r 2[y -1 —r(lny), ]a .

(5')

Equation (3') immediately yields

which also satisfies Eqs. (11)and (12) provided the
function X(T) is required to satisfy

dX/dT= T (2X —1)(1—2Xy T M X )ii2

(1 2x+ T 2M-4x4) -»2dx
0

P=&XT& 'y (7)
(15)

where T is a function of t only. Insertion of this
result into Eq. (2') yields

y ' =-(y ' —1+3T'r ')r '

a linear first-order equation with the solution

(9)

y '=]. 2~y-i+ T2y-4 (9)

(10)

where the constant of integration 1lf is a function
of t only. If one now makes use of Eq. (7) to elim-
inate P from Eqs. (1') and (4'), and then invokes
Eq. (9), one finds that Eq. (1') reduces to

In Schwarzschild coordinates the requirement of
smoothness across the bridge (in the region r(2M)
is t-0, at/ar- ~ as r approaches its smallest
value r (at the center of the bridge}. Applying
this requirement to Eqs. (13}and (14) one sees
that r must be M. /X(T), where X(T) is the small-
er of the two real roots' of the quartic 1-2x
+ T'M 4x4. By a careful limiting procedure one
may verify that Eq. (15) is automatically satisfied
when X(T) is a root. Because t and t must coincide
at spatial infinity (modulo a constant which may be
set equal to zero), Eq. (14) now yields the desired
relation between t and T:
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(2x —1) '(1 —2x+ T'M 'x') '"dx.

(16)

Here the integration across the pole at x= is
taken in the sense of the principal value.

For each value of T (or t ) Eq. (14) yields a
space-time plot of the corresponding hypersurface.
When converted into Kruskal coordinates, this plot
takes precisely the form of one of the curves shown
in Fig. 1, thus confirming the accuracy of the com-
puter results. With care one may also derive the
initial-value limits T-O, dT/dt-1, a-I as t-0.

The integral (16) diverges when the two real
roots of the quartic coincide. This occurs at T
= &v 3 M', X= &. In this limit one finds t- , cr -0,
r-M/X= ,'M, wh—ich implies that the hypersurface
has become an infinitely long cylinder of radius
1.5M. This confirms rigorously the stabilization
effect discovered with the computer.

One may conclude from these results that the
maximality condition is workable in computer solu-
tions of Einstein's equations and that it very likely
guarantees the conditions (A, B, C) mentioned at

the beginning. There are, however, two consider-
ations that may prevent one from adopting it in
many cases: (1) Although the diffusion-relaxation
method used to solve the elliptic lapse-function
equation [Eq. (5}Jwas found to converge rapidly
after the first few time steps (t) 2M), the equation
must be re-solved every time step, whatever
method is used. This can present storage and real-
time complications for large meshes. (2) Our ac-
tual program assumed a vanishing shift vector and
a line element that differed somewhat from Eq.
(16}. In consequence, our coordinate mesh was
gradually sucked down the black hole as the Ein-
stein-Rosen bridge stretched. In order to avoid
this phenomenon it is necessary to use an outward-.
pointing shift vector. What sort of equation should
be introduced in non-spherically-symmetric situ-
ations to govern the growth of the shift vector is
presently unknown.

Note added. After submitting this paper we
learned that Bruce L. Reinhart has recently ob-
tained identical mathematical results by introduc-
ing a simple orthonormal frame. We are indebted
to Professor Reinhart for communicating his re-
sults to us.
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A second family of smooth maximal hypersurfaces
is obtained by taking

t =-gM ~ (2x —1)-i(l —2x+T2M-4x4)-1/2dx
r(r)

where Y(T) is the larger real root of the quartic and
the range of T is now

—A@3M (T(0.
All members of this family intersect the r =0 singularity
and grow outward to the limiting r =)M surface, lying
always completely inside the horizon. They are shown
as dotted lines in Fig. 1. This family and the first
family together completely fill the Kruskal diagram
with spacelike maximal hypersurfaces. Members of
the second family, however, cannot be conveniently
visualized as surfaces of revolution in a Euclidean space.


