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The problem of propagation of electromagnetic waves in a gravitational field can be reduced to the

problem of wave propagation in a material medium in flat space-time. This method is used here to

calculate the scattering cross section of a Schwarzschild black hole and the polarization of the

scattered wave. It is shown that the polarization of the wave (as measured at infinity) is not affected

by the presence of the spherically symmetric gravitational field of the black hole. The light scattered
from a rotating or "live" black hole is, however, expected to be polarized for ae incident unpolarized

plane wave. This may offer a new way to detect a live black hole.

I. INTRODUCTION

Electromagnetic and gravitational radiations of-
fer powerful means to detect a black hole. Such a
collapsed object may exist as the unseen compo-
nent of an x-ray-emitting binary or the nucleus of
some radio-galaxy. An account of the scattering
of gravitational radiation from a Schwarzschild
black hole has been given by Vishveshwara. ' In
this paper we calculate the cross section for the
scattering of electromagnetic waves from a
Schwarzschild black hole and study the polariza-
tion properties of the scattered radiation. We also
discuss qualitatively the behavior of electromag-
netic waves in a Kerr background. The results
may offer a new way to detect a black hole under
suitable circumstances.

The equation for the propagation of electromag-
netic waves in a gravitational field can be obtained
from the following formulation of the field equa-
tions. ' Let F""be the antisymmetric tensor of the
electromagnetic field. ' The equations that govern
electromagnetic fields in a Riemannian space are

F"' =4m)"

and

where J" is the electric current vector. Consider
a definite coordinate frame where -ds' =g„,dx" dx"
and define the dual tensor H"" = (-g)"2F"", and—
I" -=(-g)'"J". In this notation Maxwell's equations
take the form H"' „=4~I" and F„„,+F„,„+F,„„
=0. A space and time decomposition in a Cartesian
coordinate system such that F„„-(E, B), H""
-(-D, H), and P -(p, J) yields

v ~ B=0, vxE= —BB/st,

V D=O, VXH= SD/St+4v J .
Here t=x', (x), =x', and ap/&t+V J =0. These
equations look like Maxwell's equations in a flat
space-time.

The "constitutive equations" H"" =(-g)'"g~~g"
&& F~, can be written as

D( ——e,~F~ —(Gx H),

a, =&,,e, +(GxE. ), ,

where

Fpv,.o+Fv~., l +F,i., ~ =0
~
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Therefore a complete description of the electro-
magnetic fields in a gravitational field can be ob-
tained through the solution of Maxwell's equations
in flat space-time but in a medium which is spec-
ified through the above constitutive equations.
These latter equations are similar to those in a
moving bi-anisotropic medium.

In this formulation the conformal invariance of
Maxwell's equations is reflected in the fact that
(e„)and G are independent of a conformal factor.
Conversely, experiments using scattering and ab-
sorption of electromagnetic waves to determine
the background gravitational field can fix the met-
ric only up to a conformal factor. This can be
shown simply by noting that such experiments de-
termine (e,,) and G and hence also

+ r '(da'+ isn6'd ti~), (10}

where p, is the mass of the body. Maxwell's equa-
tions can be cast into a simple form if this metric
is written in isotropic coordinates. Consider the
coordinate p defined by r -=p +p+ p. '/4p. We note
that r is left invariant when p is replaced by p, '/4p.
Therefore we shall choose as the basic coordinate
p/2& p&~ which corresponds to 2P &r&~ ("upper
sheet"; lesser positive values of p give the "lower
sheet" of the 3-geometry). Let g(p) =r(p)/p and

f(p) =1 —2P./r(p), then

-ds2 = f(p)dt 2-+g2(p)(dp2+ p2de2+ p2 sin2edit') .

The solution of Einstein's equations correspond-
ing to the exterior field of a massive spherical
body is given by the Schwarzschild metric

-ds = — 1-—dt + 1 —— dr2p, 2 2p.

r

g a/goo= t'(' ') a-+G Gs

where A. = (-g)'"/(g„)' can be obtained from the
solution of the equation

-det(g„„/g~) = X' .

(5)

(6)

We now introduce the Cartesian coordinates t = x',
x' = p sinl9 cos Q, x' = p sin& sing, and x' = p cos 9.
Hence

-ds'= f(p)dt'+g'-(p)(5, ,dx'dx') .

and

+» j i j ~~ijl Gl (6)

We note that this formulation of Maxwell's equa-
tions in a gravitational field offers a way to dis-
cuss the dispersion of electromagnetic waves in a
gravitational "medium. " Let J" =0 and consider
the Fourier transforms of E, B, D, and H, e.g. ,
E(x, t) = j E(k, id) exp(ik x —t&ut)dkdid Let.

F'=E +iH
n(P) =g(p)/(f (P)]'"~ 1 . (12)

For large p, n(p) has the interpretation of the
index of refraction of the gravitational field and
n(p)-1 as p-~. The Maxwell's equations can
then be written as

As far as electromagnetic phenomena are con-
cerned we can think of space-time as Minkowskian,
occupied by a "medium" which is characterized by
dielectric and magnetic permeability tensor c»,
= p. „=n( p) 5,, where

where e» j, is the totally antisymmetric symbol
with e», =1. Then we see that in matrix notation

1 - - BF'
—. V'&&F'=+n

at (13)

ZF'=+ 3' k —k', —' F' k', u)' dk'dc@',

(9)

where 2, , = e„,k, and (X,-, ) are Hermitian matri-
ces. For a conformally flat space-time equation
(9) implies that F'=0 unless &a= k. For a gen-
eral space-time, this linear homogeneous integral
equation will have a nonzero solution only for a
definite dispersion relation id = &u(k). Thus only a
wave that satisfies this dispersion relation can
propagate in the gravitational field. We note that
the relation ~ = ur(k) is reasonable for a constant
gravitational field where (e,.&) and G are time-in-
dependent.

Let us now consider ingoing 2~-pole radiation of
frequency ru

d
lpF ] = +~pn(p)& (16)

and

F~„(p, t}= Q F~ii (P, id)Y~„'(P)e ' ', (14)
X=e,m, o

where Y~'„' and Y~„' are the transverse and Y~'„' the
longitudinal vector spherical harmonics. '

When one puts Eq. (14) into (13) one obtains

[Z(J + 1)]'"F'~-' =+ (upn( p)F '"&
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[p+jg ] —[J(J+1)1 +jg =+&ps(p)+jr
Xj~"' ~ A j'g'exp(-ikx)+B j~g'exp(ikx)

(k = (u), (23)

We now introduce a new coordinate x; dx/dp =-n( p)
and a new function h(x) -=p(x)n(p(x)). Then x(p)
can be written in terms of r(p) as and Eq. (20) implies

(24)

x=r+2p, ln(r/2p. —1) (18)

so that as r-~ (2p), x-+~ (-~). Define a new

radial function and

Xj~' ~ + iA j~„'exp(-ikx} viB j'„"'exp(ikx) (25)

X'„' '(x, (u} =p(x)P j„'(p(x), (u} . Xj~'~ ~ +iC'j'~+exp(-ikx) . (26)

and

d Xj„"/dx + [(u —2Uj(x)]Xj~ '=0,
X,'„"=+ (1/(u)dx,'„' '/d»,

X'"' =+ (1/(o)[J(J + 1)]'"k '(x)X'„'"' .

In terms of this function the radial part of the
wave equation reads

(19)

(20)

(21)

Equation (21) implies that Xj„"'(x-+~)-0as ex-
pected. Since as x-~, x- p, we see that ingoing
magnetic and electrical spherical waves are re-
flected with an amplitude Bj„' /A j"„' (Bj„' '/A j„' '

=Bj„~/A „"'), and a reflection coefficient Bj
=

I
Bj„'/A j„'I' The .amount of radiation that goes

down the black hole is then given by the transmis-
sion coefficient

Equation (19) is similar to the Schrodinger equa-
tion in one dimension for a particle of unit mass
and energy —,

' ~' in a potential

For x-~,

1 J(J +1) 2P
'() () (22)

25~0& UJ (x)Jl

J (J+1)

I I

0 1

FIG. 1. The effective potential for electromagnetic
waves in the Schwarzschild background.

Uj(x) —-
~ J(J+1)/x

and for x--~,

(
J(J+ 1)

8p, '
The maximum of Uj(x) occurs at r(x ~) =3P
(Fig. 1).

It is now simple to calculate reflection coeffi-
cients for ingoing spherical waves. We have

Tj 1 Bj I CjNIAjjjI

Therefore the scattering amplitude for the mag-
netic 2~-pole radiation is

g(m) ( 1}jB I/2eni hj
Zht (27)

(28)

where p, and p, are the turning points, that is so-
lutions of

(upn( p) = [J(J+1)]'" .
For x sufficiently close to x we can write

Uj(x) = Uj(x ) —2k, (x- x )', k, &0 .
Let

~ = [(u'/2 —Uj(x )]/(k, )' "
then the reflection coefficient "above" or "below"
the barrier (but near the top of the barrier} is giv-
en by'

and for the electric 2~-pole radiation is a~„'=-a~„'.
We note that the potential barrier vanishes for
J=0 and U~ goes up as J' for large J. Therefore
the reflection coefficient R~ increases with J for
a given value of the frequency. The complex form
of the potential does not allow an exact analytic
solution for a~„. Here we present only limiting
formulas for R~. For large values of J such that
2J& (da, + 1, where ao is the width of the potential
and is of the order of p. , the quasiclassical approx-
imation yields

P2
Bj(ur) = 1 —exp -2 [J(J+1)/p' —uPn']'"dp
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R = 1/[1+exp(2 we)] . (29)

When &u'&2U~(x ) such that exp(2ve)«1, then

R = 1 —exp(-2v~ e~) and we recover the quasiclas-
sical barrier-penetration formula given above.

III. SCATTERING OF PLANE WAVES

A plane wave can be expressed as a superposi-
tion of spherical waves; therefore we can use the

results of the previous section to study the scat-
tering of a plane wave of arbitrary polarization
from a Schwarzschild black hole. Let us consider
an ingoing plane wave of frequency cu. It will be
enough to consider right circularly polarized (F
=0) and left circularly polarized (F' =0) photons.
Therefore the solution of the wave equation V x F'
= +n~F' can be written as

F'~ X„exp(ikxcosg)+6. "(k)exp(ikx)/p, (30)

x [(-1}~+a~(™~]5„

f+ ( 8 ) —$ if+ ( I&

(36}

(37)

The spherical symmetry of the problem allows us
to put fI} =0 in the following without any loss in gen-
erality. Then we can choose the outgoing polariza-
tion basis such that

X,i = 2(1+cosg)X, +-, (1+cosg)X ~

+ (I/W2) singX, , (36)

X o~" = -(I /u 2 ) s in 8 X, + (I/J 2 ) sin 8 X, + cos 8 X, .

v~'„~, = i(-i)~5„„[(2J+ I)/81r]"

v ~„', = w (-i) 5„„[(2J+I)/Sv]'"

and putting Eqs. (30)-(35) together with (23)-(2"I)

we obtain the following formulas for the scattering
amplitudes:

f~a ——+ (i) '(2v/k)[(2J+ I)/8v]"

where the initial plane wave is incident along the
x' axis, k = ~, and k=(k, 8, Q). We have used the
orthonormal vectors X, =ix' and X„=(x'mix ')/
(2)'". In the asymptotic formula for F', we have
written x in the exponents instead of p to take due
account of the long-range nature of the gravitation-
al interaction. ' The vectors 5' can in general be
written as

It can be shown (Appendix) that

6." = -(i/4k)(1+cosg)Q(pk, cosg)X,',",
where

Q(pk, cosg) = Q (2J+ 1)[R~"exp(2i5~) —1]

(39}

(4o)

f' (k)Y „'(k) .
JN g =e, m

To obtain expressions for f~'„' we expand
exp(ikxcos8) as follows:

1 exp(ikxcosg)= —g (i)~ yu, (k)
Jlm

x u, (kx}Yu~, (x '),

(31) x Q~(cosg} .

Let z =cosg; then Q~(z} is defined a.s follows:

Q~(z) -=2[J(J+1)] '

d2x, [(J+1)(2J+1) 'P~, (z)dz2

+2(2J+1) 'P~„(z}—P~(z}],

(41)

where 1 is the unit tensor and u, (z) =zJ, (z). From

u, (z) ~ sin(z —lv/2)

we get

X„exp(ikx cos 8) — g Yz'„'(k)u'z'(kx)v'z'„', ,
p kP Je o=e, m

(32)

where

(42)

where P z(z) is the Legendre polynomial of order
J. The Q~(z), J=1, 2, 3, . . . are polynomials of
order (J —1}with Qz(1) =1, i.e., Q, (z}=1, Q, (z)
=2z —1, Q,(z}=(15z'—10z —1)/4, etc. These poly-
nomials form a complete set and are orthogonal
with (1+z}as the weight function, that is

(1+z)2Q~(z)Q~, (z)dz =8(2J+1) '5~~, . (43)

u~g' = [exp(ikx) + (-1) exp(-ikx)]/(2i),

u~ ' = [exp(ikx) —(-1) exp(-ikx)]/(2i),

and

Therefore

(33)

(34)

(35)

Let p,. be the density matrix of the initial plane
wave and F the scattering matrix. F is a 2&2 ma-
trix with elements F„R, F RL FLR and F LL RL

say, is the amplitude for scattering of an incident
left-circularly polarized plane wave to an outgoing
right-circularly polarized spherical wave. From
Eq. (40) we can see that F is a multiple of the unit
matrix and hence the scattering cross section is
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(for any initial polarization)

do„„,/dQ =(1/16km)(1+cos8)3~ Q(pk, cos8)~'

(44)

and the final density matrix p& is the same as p, ,
p&

= p, , so that the polarization properties of the
initial wave are unchanged.

The absorption cross section is given by

IV. ELECTROMAGNETIC WAVES IN A KERR
GRAVITATIONAL FIELD

The Kerr solution to Einstein's equations de-
scribes the geometry of space-time outside a ro-
tating collapsed object. In Schwarzschild-like co-
ordinates the metric is

-ds2=ZA 'dr +Zd62

o,b, =sk ' g (28+1)(l R~) .- (45)
+ Z ' sin'8 [adt —(r '+ a ')d Q P

-Z 'n[dt —asin'8dp]', (48)

From (45) we recover the usual expression

in the limit of geometrical optics. Thus for a giv-
en large k value (kp» 1) partial waves go down the
black hole (R~ =0) or do not (R~ =1) according as
the classical impact parameter b =J/k is less than
or greater than the critical impact parameter
b=(27)'"I .

From (44) we recover the Rutherford law of
scattering

where Z =r'+ a'cos'I9, b, =~' —2pr + a', p, is the
mass, and p, a the angular momentum of the black
hole about the x' axis. The stationary limit sur-
faces occur at r, = p, +(p, 2 —a2cos'8)'". The re-
gion outside r =r, is the subject of all the remarks
that follow. We again introduce the Cartesian co-
ordinate system (t = x, x', x', x') and write the
metric as -ds' =g„,dx"dx'. The electromagnetic
properties of the Kerr field can be described by
the dielectric "tensor" e, ,(x) =-(-g)'"g"/g» and
the "vector" G,.(x) =-g„./g„. We can therefore
write

do „/dQ = 16', '/8' (46) ~F1
e, ,, 8,. ——(ate, „—e, ,~. G,.) (48)

for small-angle scattering of photons (large im-
pact parameter) in the same semiclassical limit.
For k p, » 1 and 0«1, the main contribution to the
sum in (41) comes from J» kg, (in fact from J
close to J„J,+ —,

' =4k'/8). The phase shift and
the reflection coefficient for such high J values
are then 6~-2k'. ln(J+-,') and R~-1. Hence

(1+cos8)Q(pk, cos8) = (16pk /8 )e", (47)

where s(8) =4pk[ln(4p, k/8) —1]. This analysis ne-
glects photons which make a 2s (or 4w or 6w, etc. )
loop around the black hole, an approximation which
is the more justified the smaller the scattering
angle (predominance of Rutherford scattering over
"orbiting").

When one turns to 180' scattering, one might ex-
pect no back scattering from a first look at (44)
because of the factor (1+cos8)' and the fact that
Q~(-1) =(-1) "Z(2+1)/2. However, this result
stands in complete contrast with the most elemen-
tary concepts of black-hole physics. ' A photon
can take a v = 180.' (or 3v or 5m, etc. ) loop around
a black hole and return straight back to the source.
Moreover, this scattering gives rise to a glory. '
Thus geometrical optics predicts infinity for the
scattering cross section at cos8 = -1. The appar-
ently contradictory predictions of zero and infinity
can be reconciled when more knowledge of R J and
5 J is available.

Assuming solutions that vary with time as e ' '
we get

1-
V —(dG x F =Vs(dE ' F (50)

where (e F'),. =e,,F,'. The solution of this equa-
tion in the general case is complicated and hence
we shall limit the discussion to some qualitative
remarks. We know that in a (conformally) flat
space-time the equations of electromagnetic wave
propagation are

I - - 8F'—VxF'=y
&t

which can easily be written in Dirac form. For
waves of frequency (d, we get V x F'= + urF'. In
the Schwarzschild geometry the corresponding
equation was shown to be

V x F'+ ~V, F'= + ~F', (51)

where V, = + (1 —n) has the interpretation of gravi-
tational potential. The corresponding equation for
the Kerr metric is the relation (50) where besides
the tensor gravitational potential we have an extra
vector potential G. Hence the motion of electro-
magnetic waves in the Kerr geometry is similar
to that in the Schwarzschild case except for the in-
clusion of a "gravitational magnetic" field.

We have ignored the effect of electromagnetic ra-
diation on the black hole itself in all of the above
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discussions, that is the change in the mass or an-
gular momentum of the collapsed body in the pro-
cess of scattering has been neglected. It is clear
that an electromagnetic perturbation of the Kerr
(or Schwarzschild) field produces only a second-
order correction to the metric. For a charged
black hole however the correction to the metric
will in general be of the first order and cannot be
ignored.

We have seen that a Schwarzschild black hole
usually absorbs electromagnetic radiation. A ro-
tating black hole is also capable of absorbing elec-
tromagnetic waves. However there are arguments
which suggest the possibility that such an object
can also amplify electromagnetic radiation of the
right frequency co and component of angular mo-
mentum in the direction of the rotation of the black
hole. The black hole itself instead of gaining ener-
gy loses it in the process. '" Recently Teukolsky"
has produced separable equations for the radiative
part of the electromagnetic perturbation of the
Kerr field, and has thereby rendered tractable the
scattering problem for rotating black holes.

V. ASTROPHYSICAL IMPLICATIONS

In the scattering of electromagnetic radiation by
a material medium, the effect of matter usually
dominates that of the gravitational field of the me-
dium. A black hole, however, scatters electro-
magnetic waves by its gravitational field only, pro-
vided that it is not accreting fresh matter. We
have shown that a spherically symmetric black
hole does not affect the polarization of light as
measured at infinity with respect to the local po-
larization basis. In contrast the discussion of the
electromagnetic scattering in the Kerr background
tells one that incident right circularly polarized
photons must scatter differently from left-circu-
larly polarized ones due to the interaction of the
photon spin with the gravitational "magnetic field. '*

Let a right circularly polarized plane wave (F =0)
be incident on a Kerr black hole. We have seen
that the electromagnetic equations break up into
an equation for F' and another for F, so that the
scattered wave will also have F =0 and far away
from the black hole it is again right circularly po-
larized. Similarly an incident left circularly po-
larized plane wave will always have F' =0, and
the scattered wave will be left circularly polarized
at infinity. The scattering amplitude, however,
will be different in the two cases. Thus one must
expect partial polarization in the scattered light
when an unpolarized plane wave is incident on a
Kerr black hole.

It has been suggested that a collapsed star may
exist as the unseen component of a binary star

system. ' Thorne and Trimble" investigated
known binaries. However, they reported that no

definitive identification was possible. If the light
scattered from a black hole is polarized, then a
binary system with a black-hole component might
show a periodically variable polarization due to
electromagnetic scattering from the gravitational
field of the black hole. Observation of polarized
radiation from some eclipsing binaries has re-
vealed variable polarization. " Due to its small
size, however, a black hole cannot perhaps pro-
vide effective eclipsing. This variable polariza-
tion has been interpreted to be mainly due to
Thomson scattering in a nonspherical gaseous en-
velope. Such envelopes can be formed by accre-
tion of matter, which is perhaps the dominant dy-
namical interaction in a close binary system.
Some of the accreted matter will probably form a
thin, hot layer in the equatorial plane of the dense
component of the binary. "

Consider a single-line binary where the invisible
component is a massive rotating collapsed star
and negligible accretion is occurring (Fig. 2). The
visible component gives off radiation, some of
which is scattered from the black hole and re-
ceived by the observer. The scattering is domina-
ted by the gravitational field if the average elec-
tron density around the black hole is much smaller
than a critical value N, for which a crude estimate
can be given as follows. Most of the radiation is
emitted in wavelengths that are very short com-
pared with the size ot the black hole (p & 2Mo).
Thus the scattering cross section is proportional
to p, . N, is obtained from N, p. 'o~- p, ', where
or=(8v/3)(e'/m, c')' is the Thomson cross sec-
tion. Thus for y. -10Mo, we get Ã, -10"electrons/
cm'. In other words, gravitational scattering will
dominate over Thomson scattering if the number
density of electrons is less than 10"/cm', a con-
dition that is not difficult to meet. " Thus the po-
larization properties of the light scattered from a

~BLACK HOLE

OBSERVER

STAR

FIG. 2. The radiation received by the observer is
mainly due to the normal star, but contains a contri-
bution from the radiation scattered from the Kerr black
hole. Hence if the observer is in the plane of the binary
the observed polarization is the product of the fraction
of the intensity scattered by the black hole and the
intrinsic polarization of the scattered light.
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black hole may provide a further clue in the con-
tinuing search for black holes.
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APPENDIX

Let us define the quantities f~, II~, and 3I~ as
follows:

3I~=(i)" '[(2J+1)/8w]'"(I —z ')

(A8)

(1 —z )Pz"=2zPz' —J(J+1)Pz,
(J+1)P~=P~„'—zP~',

JP~ =zP~'-P~, ',
(1 —z )P~ '= [J(J+ 1)/(2J+ I)](P~, —P ~„),

(A9)

(A10)

(A11)

(A12)

x [S~(z) ——,
' (1+z}'Q~]

It now remains to show that S~(z) = —,'(I+z)'Q~(z).
Let P ~' =dP~/dz and recall the following relations
between Legendre polynomials:

f~ =(-i)~[z(2J+ I)/2]"'k '[R~'" exp(2i5~} —1],
(Al) (2J+1)zP~ =JP~, +(J+1)P~„. (A13}

and

3g —[Y(e) + iY( )] .~ (k)e

[Y(')+ iY ] y
)

(A2}

(A3)

Relations (A10) and (A11) imply

(J + 1)P~,'+ JP~ „'=(2J+ 1)zP~ '. (A14)

We differentiate (A14) and insert it into Qz(z) to
get

One can then show that

(A4)

Q~(z) = [2/J(J +1)][P~'-(1 —z)P, "],
then

(A15)

and

(AS)

(1+z)Q~(z) = [2/J(J+ 1)][(1—z)Pi'+ J(J+ 1)P~]

using the relation (A9). Now

We want to prove that X~ =0. To do this we need
to define polynomials S~(z), J =1, 2, 3, . . . with

S~(1)=1 as follows:

~(1+z)zQ~(z) = [2(2J+1)] '

x [(2J+1)(l+z)Pz+P ~, —P~„]

S~(z) =-', [(J+1)(2J+1) 'P~, ( )z
+J(2J+ 1) 'P~„(z)+P~(z)];

then one can show that

3}Iz=(i) '[(2J + I)/8w]'"(I+z ')

x [S~(z}——,
' (1 —z)'Q~]

and

(A6)

(A7)

(A16}

if we use the relation (A12). Finally by using
(A13) we can put S~(z) into the form S~(z) =-,'(1+z)'
x Q~(z). It then follows that

3m~=(i)~ '[(2J+ I)/8z]'"(I+z)Q~(z) . (A17)

When we put this equation back into (A4) and (A5)
we obtain Eq. (40).
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Analytic and computer-derived solutions are presented of the problem of slicing the Schwarzschild
geometry into asymptotically-flat, asymptotically-static, maximal spacelike hypersurfaces. The sequence of
hypersurfaces advances forward in time in both halves (u ) 0, u & 0) of the Kruskal diagram, tending
asymptotically to the hypersurface r =

2 M and avoiding the singularity at r = 0. Maximality is
therefore a potentially useful condition to impose in obtaining computer solutions of Einstein's
equations.

We report (1) the results of a computer study of
the problem of maximally slicing the Schwarzs-
child geometry and (2) an analytic solution of the
same problem. The computer study was part of a
much larger program currently under way at
Texas to study the behavior of colliding black
holes. Data obtained in such studies will be of in-
terest to two groups of physicists: those who wish
to learn something about the gravitational energy
radiated to infinity and those who are curious about
details of the growth and coalescence of event hori-
zons and the dynamical processes taking place near
the singularities hidden inside. In order to obtain
data of use to both groups one must employ coor-
dinate systems that guarantee the following:
(A} The metric must pass smoothly to a familiar
metric (e.g. , spherical Minkowskian) at infinity.
(B) The hypersurfaces x o = constant must be
spacelike and must penetrate the event horizon(s).
(C) The metric must remain nonsingular for the
duration of the computation.

It has long been speculated that a good way of
securing these conditions is to require the hyper-
surfaces x =constant to be maximal. ' The maxi-
mality condition is expressed by the statement

y"K„=O,

where, for each x', y'f and K,f are, respectively,
the (contravariant) 3-metric and second fundamen-
tal form on the corresponding hypersurface. When
(1) holds, Einstein's vacuum equations reduce to

K,. K"=~"Rif
if( )R (2)

(3)

(4)

In an effort to determine whether the maximality
condition in fact secures conditions (A), (B},(C)
above, and whether solution of Eqs. (1}-(5}is
practical on the computer, four of us (S.C., B.D. ,
L.S., E.T.) undertook to run a test on the simplest
nontrivial example: the Schwarzschild black hole.

Constraints (1), (2), and (3) were satisfied by
choosing the initial hypersurface to be the u axis
in the familiar Kruskal plane. ' Equations (4) and

K". =0,'f

K,f 0 = a ' R„—e.,f —2@K;I,K'f + Z BK;f,

where, for each x', ' Rif is the curvature tensor
of the corresponding hypersurface, u and P,. are,
respectively, the lapse function and shift vectors
relating this hypersurface to its neighbors, dots
denote covariant differentiation in the hypersur-
face, and indices are raised and lowered by means
of the 3-metric. '

Equation (1) may be treated on a par with the so-
called initial-data constraints (2) and (3). If these
three equations are imposed on an initial hyper-
surface then they will automatically be maintained
on each succeeding hypersurface by the dynamical
equation (4) together with the following condition
on the lapse function'.


