
SATURATION OF THE DRELL-HEARN-GERASIMOV SUM RULE

Izz for vi,b
~ 0.45 GeV due to P33(1236) has the follow-

ing values resulting from different analyses: 260 pb
with Walker's fit, 210 p, b with the Moorhouse-Oberlack
fit, and 237 pb with the Pfeil-Schwela fit.

The Pfeil-Schwela analysis is limited to the first
resonance region and to 0, 1, and 1+ partial waves.

H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev.
165, 1594 (1968).

PHYSIC A L RE VIEW D VOLUME 7, NUMBER 9 1 MAY 1973

Multiperipheral Cluster Model"

C. J. Hamer
California Institute of Technology, Pasadena, California 91109

and Brookhaven National Laboratory, Upton, New York ll973f
(Received 11 September 1972)

A multiperipheral cluster model of high-energy inelastic collisions is discussed. A physical

justification for the model is given, in that it accounts for "Ericson fluctuations" in the inelastic cross
sections. These incoherent resonance contributions are ignored in most multi-Regg models. The major
assumption is made that the ratio of the average fluctuation cross sections between different channels is

governed by phase space. This allows a description of the cluster decay processes via the statistical

bootstrap theory of Hagedorn and Frautschi. A simplified mathematical formulation of the model is

studied, and it is shown that, subject to certain resistrictions on the vertex functions for cluster

production, Feynman scaling occurs. The relationship with other models of inelastic processes is

discussed. It is shown that the model includes both the ordinary multi-Regge model and the
diffractive excitation models of Hwa and of Jacob and Slansky, as limiting cases, and that the approach
is equivalent to, but is a refinement on, Hagedorn's thermodynamic model. A search for a
power-behaved "tail" in the multiplicity distributions at high energies would provide an important test

of the model.

I. INTRODUCTION

Two of the most popular models of high-energy
inelastic hadron collisions are the multiperipheral
or multi-Regge model, in various guises, and the
thermodynamic model of Hagedorn (see, for ex-
ample, the recent review by Frazer et al. '). These
two models are almost orthogonal to each other in
approach, and their main results concern quite
different areas of interest. It is our object to show
how a "multiperipheral cluster model" can com-
bine the essential features of them both, and to
give a physical justification for the new model.
Similar ideas have been expressed by Ranft and
Ranft. '

In the multiperipheral cluster model, the total
inelastic cross section is taken to be made up of a
sum of terms,

&get = &n y

as represented diagrammatically in Fig. 1. Here
O„represents the cross section for production of
n "clusters, " via a multiperipheral mechanism
(i.e., repeated exchanges of Reggepns). Thus the
coherent, or dynamical, part of the cross section
in any given channel is assumed to be given by a

multi-Regge model. Each "cluster, " on the other
hand, will be identified with theincoherent, or
non-Regge, contributions of intermediate reso-
nance states decaying according to the statistical
bootstrap model of Hagedorn and Frautschi. '
The cluster may therefore have a variable mass.
At the lower limit of its mass range it will consist
of a single stable hadron (e.g. , a pion), while at
high mass it consists of an unstable resonance
which eventually gives rise to a cloud of stable de-
cay products, all moving with limited momenta in
the center-of-mass system of the cluster. The
multiplicity of decay products is thus proportional
to the mass of the cluster (which is also called a
"fireball" by Hagedorn'). This decay process has
recently been studied in detail by Frautschi and
the present author. "

A justification for this model is provided in Sec.
II, on the grounds that it accounts for the inco-
herent resonance contributions to hadron cross
sections, commonly called "Ericson fluctuations"
in nuclear physics, which were recently discussed
by Frautschi. ' These fluctuation terms are due to
random (incoherent) variations in the resonance
coupling strengths and spacings: They average to
zero in the reaction amplitudes, over suitably
large energy intervals, but provide important
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FIG. 1. Multiperipheral cluster model of a high-
energy inelastic collision. Each box represents a "clus-
ter, " i.e., the incoherent production and decay of hadron
resonances.

positive contributions to the c~oss sections at low

subenergies. These terms are left out of con-
sideration in the usual multi-Regge models, and

there is no "double counting" involved when we add

them in. If one assumes that at a given energy the
fluctuation cross sections in various channels are
governed by statistical laws, then they are equiva-
lent to the cross sections resulting from cluster
production as in the model above.

In Sec. III a comparison is made with the thermo-
dynamic model, and various advantages of the
cluster model are summarized. A simplified
mathematical model is constructed in Sec. IV, in
which a simple power behavior is assumed for the
dependence of the vertex functions on the cluster
mass. Provided that this power lies within cer-
tain bounds, one finds that the cluster model ex-
hibits all the characteristic features of both the
thermodynamic and multiperipheral models, but
with various more or less important quantitative
modifications. Some consequences are explored
in Sec. V, and our conclusions are summarized in
Sec. VI. It is emphasized that accurate measure-
ments of the tail of the multiplicity distribution in
inelastic collisions will provide an important test
of the model. We do not attempt to make any de-
tailed comparisons with data.

II. COMPARISON WITH THE MULTI-REGGE MODEL

In any multiperipheral scheme, one has to an-
swer the two basic questions': What is exchanged,
and what is produced at the vertices? We have no
new answers to the first question, and it is likely
to prove just as vexing as ever. ' But let us con-
sider the second one carefully.

In the usual forms of the multiperipheral model,
one considers only the production of one type of
final-state particle at each vertex, such as pions
or occasionally p mesons (two r's). It is recog-
nized that the true multi-Regge kinematic region
in which this provides an accurate description of

[Im A' j l~
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Regge term.
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FIG. 2. (a} The amplitude ImA att = 0 in xN
charge-exchange scattering, and Regge fit.
(b} ( lmA'( &(t =0}] for xlV charge-exchange scattering
and Regge term.

the scattering process contains only a small frac-
tion of all possible events': Most events occur
where the subenergies of various groups of the
produced particles are low, and the cross sections
exhibit the usual resonance bumps. But the hope
is expressed" that the treatment will also provide
a reasonable average description even in the reso-
nance region. This assumption rests on the hy-
pothesis of "duality"": the idea that Regge ex-
changes and direct-channel resonance terms pro-
vide equally good alternative descriptions, on the
average, for at least the imaginary part of a non-
diffractive amplitude.

This argument has been criticized before on
several grounds. " But perhaps the main reason
for its failure is the fact that we are dealing with
cross sections and not amplitudes. Consider, for
example, the famous amplitude ImA' occurring
in wN charge-exchange scattering. As shown by

Igi and Matsuda and by Dolen, Horn, and Schmid, '4

the Regge term does provide a good average de-
scription of the amplitude at 1 =0, even in the low-
energy region where isolated resonance bumps ap-
pear:

ImA' ) =ImA„~, +Im6A,

where 6A is a term fluctuating about zero [Fig.
2(a) j. But when one squares the amplitude to form
a differential cross section, one finds
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(ImA'& ')' =(ImAR, ~,) +(Im6A)'

+ (interference terms
averaging to zero}, (3)

and at energies up to 2 GeV or so it is the fluctua
tion term (Im6A)' which is of paramount impor-
tance [Fig. 2(b)]. It is such fluctuation terms
which we hope to describe by introducing the clus-
ter concept.

Fluctuations of this sort are well known in nu-
clear physics, and methods for treating them have
been developed by Ericson. " The approach has
been extended to hadron physics in a recent paper
by Frautschi, ' in which the statistical bootstrap
model is employed to predict the resonance level
density. Consider, for example, a two-particle
scattering reaction in which we shall suppose that
only resonance terms contribute (the discussion
can easily be generalized). The scattering ampli-
tude can be expressed as the sum of a coherent
term (determined by the dynamics of the reaction
process) and an incoherent (or fluctuation) term

A(8) =A'(8)+A (8). (4)

with the interference terms averaging to zero.
The quantities o~ and o~ obviously correspond to
the first two terms on the right-hand side of Eq.
(3), for the example illustrated in Fig. 2.

As the energy increases, the ratio or/oc will
tend to fall like 1/N, where N is the number of
resonances coupling to this channel at a given en-
ergy, i.e.,

N=Fp, (6)

where I' is the average resonance width, and p is
the resonance level density. The reason for the
fall is statistical; the random resonance contri-
butions to A cancel each other with increasing ef-
ficiency as their number rises. This fact was
made use of by Frautschi' to explain the rapid de-
crease of the K p backward elastic cross section
as the energy rises.

We will now make the major assumption that at
a given energy the ratio of the fluctuation cross

Here Ac(8) arises from the constructive inter-
ference of the resonances, and is determined by
their average coupling strength and level density,
while Ar(8) arises from additional random fluctua-
tions about these average values.

Upon squaring the amplitude, and averaging over
a suitable range of energies (several fluctuation
lengths), one finds the average "differential cross
section" is

&a) =-&I A(8) I)'

=[Ac(8}P+&(Ar(8)})'-=ac+or,

sections between different channels is governed by
statisticai laws (i.e., pha. se space). Then the sum
over all available channels of the fluctuation cross
sections is equal to the term cr, in Eq. (1) and Fig.
1. The average fluctuation cross section for any
given final state e is given by

o:(E)= o,(E)
y. (E)

(I)
tot

where P (E) is the phase space available to the
final-state constituents (which may consist of any
hadrons, stable or unstable) within the standard
resonance volume V,

' and P„,(E) is the total phase
space available at energy E:

y...(E) = Z y.(E).

In the statistical bootstrap model, the asymptotic
behavior of P„,(E}is" (neglecting angular mo-
mentum conservation)

(8)

(E) cE-see/kro (9)

where T, is Hagedorn's "maximum temperature. '~

This assumption is familiar in the case where no
coherent terms 0~ are present, and the resonance
couplings can be presumed to be completely ran-
dom in all channels; it is equivalent to Bohr's
"compound nucleus" model" in nuclear physics.
The statistical bootstrap analog of Bohr's model
in hadron physics was recently used by the present
author to predict branching ratios in NN annihila-
tion reactions at rest, with a reasonable degree of
success. The model succeeded in explaining the
high multiplicity of final-state pions, and the nar-
row multiplicity distribution, as the result of a
"cascading" decay process through resonance in-
termediate states; the low branching ratios into
individual two-body final states were explained by
the strong statistical competition from the rapidly
increasing density of final states given by Eq. (9}.
Such a treatment is equivalent to dropping all
terms except e, in Eq. (1).

Given this statistical hypothesis, the rest of the
series of terms a„ in Eq. (1) follow from the usual
multiperipheral-model assumption, that Reggeon-
particle and Reggeon-Reggeon scattering process-
es have the same characteristics as particle-
particle scattering.

The resulting model treats the fluctuation cross
sections af a given energy just as one would des-
cribe the incoherent production and decay of reso-
nances of that energy if no coherent terms were
present. They are therefore represented by the
production of a "cluster, "or a resonance of the
appropriate mass, which then decays statistically.
The model therefore shares the virtue of the orig-
inal statistical bootstrap model, in that it treats
the production and decay of all hadrons on the
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same statistical footing, whether they be stable
final-state particles or unstable resonances. It
should be noted, however, that a statistical treat-
ment of this kind, where one averages over many

resonances, is strictly applicable only in the in-
termediate and high-energy regions where the
resonances are strongly overlapping. At low ener-
gies, where the resonances are separable, they
should properly be dealt with individually.

FIG. 3. Multiperipiheral diagram for n -body produc-
tion.

III. COMPARISON WITH THE THERMODYNAMIC MODEL

The thermodynamic model was pioneered by
Hagedorn4 several years ago, and he and his col-
laborators have elaborated on the subject in a
series of papers, "and performed many detailed
fits to high-energy data. The incoming particles
are pictured as two blobs of hadronic rnatter,
which collide in such a way that afterwards one
finds a distribution of "hot" material moving with
various velocities in the longitudinal direction. It
is assumed that no "turbulence" occurs, i.e., that
no transverse momentum is exchanged during the
collision. The distribution of longitudinal veloci-
ties is taken as an input in this model.

The hadronic matter "heated" in the collision by
the conversion of kinetic energy then decays by
emission of particles, in the way predicted by the
statistical bootstrap model. ' Hagedorn uses the
methods of thermodynamics (i.e., the canonical
ensemble) rather than phase space (the micro-
canonical ensemble) in order to discuss this pro-
cess, but the basic results are the same. The
important physical consequences are the following:

(i) A prediction is made for the transverse-momen-
tum spectrum which should have a thermodynamic
Boltzmann form controlled by the temperature 7,.
Fits of this type to high-energy data work rather
well, with kT', = 140-160 MeV.

(ii) Production rates for heavy particles are
predicted. The statistical competition implies that
the probability of producing a given heavy particle
(or particle pair) decreases exponentially with its
mass. Production rates have been calculated" "
for K, p, d and even He' particles on this basis,
and they agree well with experiment.

Now this picture is essentially equivalent to the
multiperipheral cluster model. The advantages of
the cluster model are as follows:

(i) It provides a popular and plausible explana-
tion for the longitudinal-momentum correlations,

via the multiperipheral-exchange mechanism,
which is a natural extension of the processes ob-
served to occur in two-body reactions. In the
thermodynamical model, on the other hand, the
correlations had to be accounted for by seemingly
ad hoc assumptions. The implied equivalence be-
tween the two mechanisms has already been in-
vestigated by Ranft and Ranft. '

(ii) It allows one to incorporate the effects of
energy and momentum conservation, which are
neglected in the thermodynamic approach.

(iii) It allows one to describe a reaction via
phase space, and to avoid thermodynamic calcula-
tional techniques which may lead to incorrect re-
sults for this rather unique model. "

(iv) It provides a more detailed description of
the reaction process, and allows one to make
statistical predictions for the cross sections in in-
dividual exclusive channels, whereas the thermo-
dynamic model can only predict inclusive proper-
ties."

The major disadvantage of the cluster model
with respect to the thermodynamic model is likely
to be the increased difficulty of making realistic
calculations. This means that for many practical
purposes the thermodynamic model will remain
more useful.

IV. CONSTRUCTION OF A SIMPLIFIED
MULTIPERIPHERAL CLUSTER MODEL

In order to exhibit some of the basic qualitative
features of such a model, we consider a simplified
version patterned after a discussion of the Chew-
Pignotti model~' given by DeTar. ~ Ignore all
spina, internal quantum numbers, and transverse
mornenta, and consider a diagram in which two
incoming particles a and 5 give rise to n clusters
in the final state as in Fig. 3. The cross section
for this process wi11 be taken as

dp, dp, d, II (pl, —p, —m, )5(rp, —p, -p)(2g')" vT 2 (+) 2

1

xg E, -E, -E,
j-"1

(10)
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In this equation, 1/s is a flux factor, g' represents a vertex coupling constant, and the variables p„E„
and m, ' are the longitudinal momentum, energy, and mass squared of the ith cluster, respectively. The
bracketed factors give the Reggeized dependence of the cross section on the subenergy and masses of the

j th and ( j+1)th clusters, where we have

s/ l„=(E5+Ei„)'—(p, + p), l)'. (11)

The constant z„ is an "average" Regge trajectory value. Finally, the factors m, 2~ represent an assumed
power dependence of the vertex couplings on the mass of the produced clusters. Such a power behavior
seems natural, but we have no theoretical justification for it whatever. The coefficient & has nothing to do
with any Regge trajectory a. The vertex behavior is determined by some unknown mechanism of "cluster
production. "

Let us now transform to the rapidity variables

y; =sinh '(p;/m;), (12)

and specialize to the laboratory frame in which the target a is at rest, and b moves with rapidity Y so that

s = m.m, e~.

Then apply the "strong-ordering approximation"~

E,, »E,.» m, .

(13)

(As noted by DeTar, "the strong-ordering assumption is unrealistic, but allows one to derive some useful
conclusions by simple means. ) This allows the replacements

and

s„s„~~ s„,„/(m, 'm, ' ~ ~ m„,') = s (16)

2
5 rP; —5, —5, 5 QE; —E—E)- —, 5(Y,, —)n(m/m. ))5(Y —5„-ln(m„/m)).

t

We shall also let the lower limit to the mass spectrum be m„and suppose for simplicity that

m, =m, = m = m, = m„.
Then the cross section can be written

(16)

(5' lns)"-'
(n& 2). (18)

Now suppose that 5E gEm Ek/( (21)
& —= co —2(y~+ 1 & 0; (19)

m 2b, -2 m2b n 2
s2a@2 g 2 o lns(-&)O' CK

(n -2)! (n) 2).

(20)

This result is identical to that obtained in the
Chew-Pignotti model" by De Tar,"except that the
coupling constant g2 has been replaced by a new
value

then the mass integrations can be done immediate-
ly, giving

(n) =g" lns,

and the total cross section is

G = ~0' fXS2a&-2+g'2
n

(22)

(23)

So provided that the constant 6 defined by Eq. (19)
is l.ess than zero, only low cluster masses are
important in the partial cross sections, which then
behave in the same way as in the Chew-Pignotti
model.

From the Poisson distribution ' of o„ in Eq. (20),
one then deduces that the average cluster multi-
plicity is
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But g"-~ as 4 tends to zero from below. So the
boundedness condition (19) is in fact necessary in
order that o, should not violate the Froissart
bound.

The average cluster mass can also be deduced:
n da'„PP jdee

(m)=
ft do'„

ZZ Jd-,„"

-~ to -&. Recent CERN Intersecting Storage Rings
(ISR) data, for instance, give"

d(n „) = 2.26, (28)d lns

which would correspond to b, = -1 by Eq. (2V).

V. CONSEQUENCES

The value of the parameter 4 is of interest for
several reasons.

=m,
+ 2

provided that

4+ &&0.

(24}

(25)

A. Distribution of Cluster Masses

The value of b, determines the relative probabili-
ty P (m} of producing a cluster of given mass.
From Eq. (18) one finds

But the average number of pions produced per
cluster is proportional to its mass, in the statisti-
cal bootstrap model. So the over-all average num-
ber of pions produced is P(m}=

b,(n„)= c (m) (n) = cm, , g" lns .
h, +— (26)

If 4+&)0, however, the average cluster mass
grows like s~+~'"', and so does the multiplicity
(n„). That would violate the Feynman scaling hy-
pothesis, "which appears to be a feature of the
real world, and so we will exclude this case also
by assuming that the bound (25) is observed.

Provided that this bound is respected, one can
go on to calculate the single-particle inclusive
rapidity distribution, as done by De Tar." One
finds that scaling occurs, and that the produced
pions are, on the average, "uniformly spaced in
rapidity with a density proportional to cm,g"
X [6/(b, + R)].

It has thus been demonstrated that under con-
dition (25) the multiperipheral cluster model gives
results which are qualitatively the same as in the
ordinary Chew-Pignotti model. " The main effect
of including resonance production (i.e., the fluctua-
tion terms) via the cluster model is to increase
the multiplicity of produced pions. Let us give an
example, for purely illustrative purposes (we can-
not pretend that our simplified model is at all
realistic in quantitative terms). Suppose that the
total cross section 0, is constant, and that a„= &

for the leading Regge exchanges; then from Eq.
(23) it follows that g"=1. Next take cm, =1, cor-
responding to the fact that at the threshold mass
m, each cluster consists of a single pion; then the
slope of the multiplicity versus lns is

d(n„)
d(lns) 27

which increases monotonically as 4 increases from

(29)

The upper bound (25) therefore implies that

P(m) =o(m ') (30)

(assuming g" is finite and nonsero). This is to be
contrasted with the diffractive excitation models of
Hwa, "and of Jacob and Slansky, "in which clusters
are assumed to be produced with probability P(m}
~x: m '. Such behavior is not allowed if clusters
can be produced by a multiperipheral mechanism
with constant total cross section, and scaling is to
hold.

The function P(m) is of practical interest in
making refinements to the predictions of Hage-
dorn's thermodynamic model. "' It will affect
the production rates of heavy particles in a high-
energy collision, for instance. Hagedorn" as-
sumes that the production rate R(m') for a particle
of mass m' is given by

R( ') f d e d[-e( e"~)e')''"Ikr, ], (31)

R( ') Jd R( )

d3pexp —m' +pl" kT,~ m, p

(32)

which is the thermodynamic result appropriate to
the decay of a cluster of infinite mass. A more de-
tailed model of cluster production such as the
present one will replace this by
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where the "effective temperature" T,«depends on
m and P in a way recently discussed by Frautschi
and Hamer. ' The momentum spectra of the emit-
ted particles will be similarly affected.

B. Multiplicity Distribution

-I
10

The parameter & also controls the multiplicity
distribution of pions produced at high energy.
From E(l. (l8} it follows that

,~s, (g'lns)" '
Cf:g &R

d M (n —2)!
n

xn d ( )''5M —Qm;), (33)
Hap

where M is the total of all the cluster masses.
Now for M large, the mass integrals are dominated
by the configuration in which one cluster mass is
large and all the rest are small, so that

-2
IO

I der

a& dn~

IO
-3

-4
IQ

d (m )*'5 M —g,)3

I05
I IO 50

Therefore,

26
2nM'

3C»n~

(34}

FIG. 4. Multiplicity distribution at a fixed energy,
for the example discussed in the text.

section is therefore

(n& 2) . (35)
C$0'„ 2z-i -2~

But the total number of pions produced is pro-
portional to M:

do't

og du~ (Jg ~ dn~

g' lnsn
-2b

(cm, /m„)'~ (38)

In„=c +b.
mw

(36)

(We neglect the narrow Gaussian distribution of
n, about this average value. ') Therefore,

so that at large multiplicities the distribution ex-
hibits a "tail, "which drops off like a power of n„
(Fig. 4). The bound (25) implies that this power is
such that

~n -2&
dn„„„„"(cmo/m, ) ~ (n& 2).

j der,
=o(n, ').

o, dn„ (39)

This behavior is illustrated in Fig. 4, where we
have chosen the parameters as follows: a„=~,
~=-O.V, g"=1, mp=m„, c=0.3, b=O.V.

The multiplicity distribution for the total cross

At smaller multiplicities, the distribution is
Poisson-like, as illustrated in Fig. 4. Let Q, be
the relative probability of producing k pions from
each cluster, which behaves asymptotically like
k'~ '. Then the average number of pions produced
in all inelastic collisions is

(,) Q 2, ' Q Q,Q,, Q „(k„+k,+ . . +k„}
(g" lns)" '

S-~ ~ -2 ( } (k(), 'I =1'

m
(

g2 ins)n-2
e "~'n(k) -g'*lns(k), (40)

(n -2)!
fl =2

where (k) is the average number of pions produced per cluster. According to Eq. (26)
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(41)

So the average number of pions produced grows logarithmically in the same fashion as in the ordinary
multiperipheral model. This was already shown in Eq. (26). But we can now go on to deduce the correla-
tion parameter f„which characterizes the width of the multiplicity distribution:

(42)

Asymptotically, we have

oo t2 l 6~2

(n„(n, —1))-g, e ~ '"' g Q, ,Q,, Q,„[(k,+k, +. . .+k„)(k, +k, +. . . +k„—1)]

e ~ '"'[n(k(k —1))+n(n —1)(k) ]3-g'~lns(k(k —1))+(g"lns)2(k)'. (43)
(n —2)!

ff =2

Therefore,

f, -g" lns(k(k —1)), (44)

so that f, increases logarithmically, in accordance
with the analysis of Mueller, "provided that
(k(k —1)) is finite (i.e., 6& -1).

This multiplicity distribution is to be contrasted
with those of simplified multiperipheral models, "
on the one hand, and the diffractive excitation mod-
el, on the other. In simplified multiperipheral
models the distribution is of the Poisson type, with
a peak which moves outward proportionally to lns;
whereas in the diffractive excitation model the mul-
tiplicity distribution peaks at a small, constant
value, and drops off like n„2 at large multiplici-
ties. The present model is intermediate between
these two extremes. In the limit [6--~,
g'/(-&) =const] it reduces to a simplified multi-
peripheral model; and in the opposite limit
[4- ——„g /-(A+ —,) =const] it becomes equivalent
to the diffractive excitation model.

The experimental situation is not yet clear, but
there are some indications of the clustering ef-
fect. A preliminary experiment at the National
Accelerator Laboratory" (NAL) appears to con-
firm the logarithmic increase of (n, ) with energy.
It also indicates that the width parameter f, for
the m distribution has begun to rise, a feature
which is compatible with Eq. (44), but which is not
allowed in ordinary multiperipheral models. " The
correlation found at lower energies between the
average number (n,o) of neutral pions produced in
inelastic collisions and the number n,„of charged
particles may also be evidence of resonance pro-
duction, ' or "clustering. " No evidence for a "tail"
has yet been found. But at low energies this tail
is cut off by the purely kinematic restriction that
the total cluster mass M must be less than (s)"'.
At NAL and ISR energies there should be enough
room for the tail to develop, and precise experi-
ments will detect whether it is there or not.

C. Central Collisions

e, =o(s '"). (46)

Let us now compare the expected contribution
from this term with Frautschi's treatment of fluc-
tuations in KN ela.stic scattering. ~ Equations (7)
and (45) imply that the total fluctuation cross sec-
tion in the elastic channel at center-of-mass ener-
gy E is given by

(47)

~@2(d+3 -EllfTO (48)

The differential cross section doe/dO is isotropic
in the present crude treatment where angular mo-
mentum conservation is neglected"; hence the
amplitude behaves like

Ee(E e) ~ (E2M+5e elkTo)~/~- (49)

Now using the relationship oe/e' ~1/N at 8=0', '
where all the resonances couple with positive sign,
and assuming that the average resonance width I
is approximately constant, one finds that the imag-

Finally, we consider the behavior of the partial
cross section o„which was neglected in the pre-
ceding considerations. This term is peculiar to
the present model, and describes the small frac-
tion of events which are "central collisions, " giv-
ing rise to a cloud of decay products which are
all emitted with small momenta in the center-of-
mass system, and whose multiplicity rises pro-
portionally to the center-of-mass energy. The
model gives

(45)

and since os & 1, one finds from condition (25)
that



MULTIPERIPH ERAL CLUSTER MODEL 2731

inary part of the coherent resonance amplitude at
0 is

ImF,„(E,0')~IF (E, 0')I(E 'e '" ')"'
Etd +1 (50)

Frautschi, on the other hand, determined Imh,
from the non-Pomeranchuk part of the total cross
section, using the optical theorem and the duality
hypothesis. " This implies that

ImF,„(E,O') ~E. (51)

Taken at face value, "a comparison of Eqs. (50)
and (51) requires that &y =0. Such a value is al-
lowed under condition (25) (i.e., 6=v —2a„+I&-&}
if u„= 1, but is forbidden if ~„=&. This would
imply the interesting conclusion that the multi-
peripheral cluster model with e„=&, plus the
scaling hypothesis, is inconsistent with the usual
form of duality in which the imaginary amplitudes
due to non-Pomeranchuk Regge exchanges are
taken to be identical to the coherent direct-channel
resonance contributions. This does not exclude the
possibility that direct-channel resonances may
"generate" the exchange terms via unitarity.

There remains the question of how o, contributes
to the multiplicity distribution. The statistical
bootstrap model gives'

do, 1 [n. —c(s)"*]'
o dn (2v)" o 2o (52)

with o proportional to the square root of the mass
of the cluster, i.e.,

o =ds"4. (53)

~ s~+g ~-spa (55}

It can be seen that the answer is model-dependent.
If we were to assume a constant inelastic cross
section resulting from multiple exchange of the p
family of trajectories (&„~&), then g's= 1 and the
central collision peak wi11 be submerged in the tail
of the multiplicity distribution at high energies. If

So the term o, gives rise to a narrow Gaussian
peak in the multiplicity distribution. The question
now is whether this peak can be experimentally
distinguished from the tails of the other terms,
do„/dn, (n~ 2). To test this, we compare the ener-
gy dependence of the peak

do'~

(n, = c(s)"*}~s (54)du„

with the behavior of the high multiplicity tail from
Eq. (38}:

do, tS(n =c(s)x"}~san 2m+t' s~-I-I*
dn„

we were to assume multiple Pomeranchuk ex-
changes, on the other hand, then g" would be
small, and central collisions would be experimen-
tally distinguishable at high energies as a separate
bump in the multiplicity distribution —a rather
surprising possibility.

VI. SUMMARY AND CONCLUSIONS

A multiperipheral cluster model of high-energy
inelastic collisions has been constructed, as a
way of accounting for Ericson fluctuation terms in
the inelastic cross sections. These fluctuation
cross sections are due to random variations of the
resonance coupling strengths and spacings about
their average values, and are ignored in the ordi-
nary multiperipheral model. The major assump-
tion was made that the ratio of the average fluctua-
tion cross sections between different channels is
governed by phase space. Under this assumption,
the fluctuation terms can be regarded as resulting
from the formation of "clusters, "or resonances
whose decay proceeds according to the statistical
bootstrap theory of Hagedorn' and Frautschi. ' As
in the statistical bootstrap, such a theory has the
virtue of treating the production and decay of all
particles, whether stable or unstable, on an equal
footing.

It should perhaps be emphasized that this model
involves no "double counting. " Any coherent reso-
nance contributions are indeed included in the
Regge exchange terms (oc of Sec. II). The terms
we are adding are the incoherent resonance contri-
butions, o~ of Sec. II.

It was argued that this model is essentially
equivalent to Hagedorn's thermodynamic model,
but offers several theoretical advantages, chiefly:
(i} It incorporates a more fundamental explanation
for the longitudinal-momentum correlations,
namely, the multiperipheral-exchange mechanism,
which is a logical extension of the well-studied
dynamical processes of two-body scattering. (ii)
It incorporates energy and momentum conserva-
tion. (iii) It "predicts" (in a statistical sense) ex-
clusive as well as inclusive cross sections. On the
other hand, it may prove moxe difficult to make
realistic calculations with the cluster model.

The present scheme will be subject to many of
the same theoretical difficulties and ambiguities
as the ordinary multiperipheral model. It will im-
prove matters in two respects, however, in the
following ways.

(i} By including fluctuation terms, in a statisti-
cal way it takes account of resonance production,
which was missing in earlier models. " It will
thus tend to increase the multiplicity of final-state
pions, and raise the effective coupling constant
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6= Qp 2Qg+1 ( 1 (25')

then the asymptotic properties of the model in-
cluded

(i} Feynman scaling, "a logarithmic increase in
the average multiplicity of produced particles, and
a flat, constant plateau in the single-particle in-
clusive rapidity distribution;

(ii) a probability distribution for producing clus-
ters of mass m,

P (m) ~ m'~ ' = o(m-') (29')

which determines the predicted production rates
for heavy particles, and their momentum distri-
butions;

(iii) a multiplicity distribution which peaks at a
value

n„~ lns

and drops off like

P(n, )- n„'~ '=o(n, ')

(56)

(88')

[g" of Eq. (21)]. This should facilitate better
agreement with experiment in phenomenological
fits.

(ii) The error made by ignoring interference
from "crossed" diagrams in estimating the cross
sections should be reduced. These diagrams are
most important at low subenergies of the produced
particles; but at low subenergies the dominant
term in the cluster model will be that in which the
particles in question emerge from a single cluster,
for which the interference problem does not arise.

The question as to which exchanges are most
important will remain as difficult as ever. It has
not been settled whether the Pomeranchuk, the p
family, or the pion provides the dominant links in
the multiperipheral chain. ' Lower-lying trajec-
tories are usually ignored. Their influence will be
qualitatively similar to that of the fluctuation
terms, in that it wil1 mainly be felt at low sub-
energies; so it will be phenomenologically difficult
to separate the two effects. Nevertheless, they
are theoretically distinct: One is a coherent term,
and drops off like a power of the energy in any
given channel; the other is an incoherent term, and
dies away exponentially.

In Secs. IV and V a simplified mathematical. mod-
el was studied which incorporates the cluster con-
cept. Spins, internal quantum numbers, and
transverse momenta were ignored, and the ex-
changes were parametrized by an average Regge
trajectory z„. The square of the vertex coupling
constant was assumed to be g'm'~, for a cluster
of mass m. It was then shown that, provided the
parameters ~ and z„obeyed the bound

at large multiplicities; and a correlation parame-
ter f„describing the width of the multiplicity dis-
tribution, which rises proportionally to lns.

The model is thus intermediate between the ordi-
nary multiperipheral model (e.g., Ref. 22), which
is obtained in the limit [d- -~, g /(-I) = const],
and the diffractive excitation model, ""which cor-
responds to the limit [4--2, g'/-(4+-, ) =const].
Qur model is certainly oversimplified. The aver-
age cluster mass is likely to be low (unless 4 = -&},
and at low masses there is no reason to suppose
that the vertex coupling will behave like a simple
polynomial as assumed in Eq. (10), or that a sta-
tistical treatment will provide a very precise de-
scription of the resonance decay modes. Never-
theless, the model should give a qualitatively cor-
rect idea of the effects of clustering.

The question of the manner in which the asymp-
totic limiting behavior (scaling) is approached is
also of interest. Qrdinary multiperipheral models
usually predict that the limiting logarithmic curve
in (n, }versus s will be approached from below,
and that the single-particle rapidity distribution in
the central (plateau) region will be approached
from above. " But experimental results from NAL
and ISR show the opposite behavior. " The diffrac-
tive excitation model, on the other hand, predicts
the correct behavior in this regard: This is one of
the main reasons for the model's phenomenological
success. We expect the cluster model to share in
this success.

The "central-collision" cross section, o„was
discussed, together with the relationship between
our model and Frautschi's treatment' of Ericson
fluctuations. The possibility of observing a bump
in the multiplicity distribution corresponding to
"central collisions" was observed. But these ef-
fects are too model-dependent for firm conclusions
to be drawn.

An important test of the concept of cluster pro-
duction will consist of a precise experimental
measurement of the behavior of the tail of the
multiplicity distribution at NAL and ISR energies,
which is predicted by Eq. (88') [which results, in
turn, from the ad hoc assumption of a power law
for the mass dependence of the cluster couplings
in Eq. (10)]. If this power-law decay is observed
to occur, then the parameter 4 can be measured
directly and determines the behavior of P(m) by
Eq. (29') -this connection seems to be independent
of any detailed model of the way in which the clus-
ters are produced. Several refinements to the pre-
dictions of Hagedorn's thermodynamic model
could then be made immediately (see Sec. V). If,
on the other hand, the tail of the multiplicity dis-
tribution falls faster than a power, then either our
present model of cluster production is incorrect,
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or else the probability ot' producing high-mass
clusters is negligible.

Finally, it should be pointed out that although we
have here chosen to discuss cluster production in
association with the multiperipheral model, the
idea can be applied in much more general situa-
tions. Incoherent resonance cross sections wi11

occur in any process to which the resonances
themselves contribute.
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