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The Drell-Hearn-Gerasimov sum rule for the forward spin-flip amplitude of nucleon Cornpton

scattering is decomposed into separate sum rules originating from different isospin components of the

electromagnetic current. The resulting sum rules are reexamined using recently available analyses of
single-pion photoproduction in the region up to photon laboratory energies of 1.2 GeV. All three sum

rules receive important nonresonant as well as resonant contributions. The isovector sum rule whose

contributions are known best is found to be nearly saturated, lending support to the assumptions

underlying the sum-rules. The failure of the isoscalar-isovector sum rule to be saturated is then

presumably to be blamed on inadequate data for inelastic contributions.

I. INTRODUCTION

The Drell-Hearn-Gerasimov' sum rule for the
spin-flip amplitude in forward Compton scattering
rests on two assumptions. These are the low-
energy theorem' for the spin-flip amplitude and
the validity of an unsubtracted dispersion relation.
Since these are simple and relatively well-ac-
cepted assumptions, and are often used together
with additional stronger assumptions in deriving

other sum rules, it is of interest to look into the
validity of the Drell-Hearn-Gerasimov sum rule
in the light of the present experimental data.

In their original paper, Drell and Hearn' did
attempt to investigate the validity of the sum rule
for a proton target by using an isobar model of
single-pion photoproduction. Their results were
generally encouraging, but some important con-
tribution from high energy (greater than 1 GeV)
seemed to be likely. Somewhat later, Chau et al. '
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extended the examination of the proton sum rule

by using an analysis of single-pion photoproduction
through the second resonance region. They found

good agreement, without any high-energy contri-
bution. Finally, in the course of an analysis of
many sum rules, Fox and Freedman' have con-
sidered the Drell-Hearn-Gerasimov sum rule,
using Walker's partial-wave analysis' of pion
photoproduction. They found the somewhat sur-
prising result that while the sum rule involving

only the isovector part of the electromagnetic
current appeared well satisfied, the sum rule in-
volving one isovector and one isoscalar current
(equivalent to the difference of proton and neutron
sum rules) was badly violated.

Since that time, there has been a considerable
improvement in both the pion photoproduction data
and their analysis. In particular, relatively good
neutron data are becoming available and have been
incorporated in the recent analyses of Pfeil and
Schwela' and Moorhouse and Oberlack. '

Given this changed situation, we reexamine in
this paper the Drell-Hearn-Gerasimov sum rules
for both proton and neutron targets, with partic-
ular attention to their difference. In Sec. II we

give the relevant definitions and present the con-
tributions to the sum rules using several recent
analyses of pion photoproduction. In Sec. III we

present some conclusions.

II. ANALYSIS OF CONTRIBUTIONS

The unsubtracted dispersion relation for the
forward spin-flip nucleon Compton amplitude f„

1 1
Kp= p Kg+p Ky

1 1K„=gKg —2K@

(2)

where zs (s'v) is the isoscalar (isovector) compo-
nent.

In this way we obtain the isovector, isoscalar,
and the "interference" Drell-Hearn-Gerasimov
sum rules:
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helicity state 2 (—,'). These cross sections
enter the sum rule through the unitarity equation
which relates the imaginary part of the forward
scattering amplitude to the total cross section
into the intermediate states.

We decompose the left- and right-hand sides of
Eq. (l) into components of different isospin char-
acter and then relate the corresponding parts.
The anomalous magnetic moments of the proton
and neutron are defined by

2V dV
Ref, (v) = — „,Im f,(v'),

Vp
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Vp V

gives the Drell-Hearn-Gerasimov' sum rule
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when the low-energy theorem is applied to f,(v).
Here K is the nucleon's anomalous magnetic mo-
ment, M the nucleon's mass, vp the threshold
energy for a single-pion photoproduction, which
in the laboratory frame is given by

2

V = +SZ
2M

= 150 MeV,

and a2~2 (o, &2) is the total cross section for the
process photon + nucleon - hadrons in the net

Presently the data limit the study of the satura-
tion of these sum rules to the contributions (to the
total cross sections o, g2 and os~2) of a nucleon and
one-pion final hadronic state. Resonance domi-
nance only allows one to estimate a part of the in-
elastic contributions. Still, one may well hope
that the largest contributions come from not too
far from threshold, so that the nucleon-plus-one-
pion state at least provides an indication of the
sum rules' saturation.

Single-pion photoproduction amplitudes have a
simple isospin decomposition'.
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=(-')' '[M"'-v2 (M" -M")]

M' o =(-')' '[M" +Q/v2) (M" -M")] (4)

M,„„., =(-,')' '[M" -~2(Mo'+M")] .

M ' corresponds to the isospin-2 state andM' to
the isospin-~ state created by the isovector part
of the photon current; M ' describes the inter-
action of the nucleon with the isoscalar part of

this current.
The cross sections of definite isospin char-

acter for one-pion photoproduction are then pro-
portional to the following combinations of ampli-
tudes:

o'" ~ IM"'I'+ IM"'I'

o""IM" I',

o "—[(M )*M'+M'(M')~].

Additionally, the cross sections of definite
helicity in this process are conveniently ex-
pressed in terms of A„~,B„~amplitudes".

o„,= P (s+1) (I~„,I'+ I~,„&-I2),
n=o

8mq
o,~, =

A
Q —,'[n(s+1)(s+2])
n=0

x(Ia„+I'+ I&a„)-I')

The above relations allow us to consider the

isovector, isoscalar, and interference sum rules
separately, to insert the single -yion-plus-nucleon
intermediate states' cross sections into the inte-
grals, and to separate the contributions due to
each partial wave. ' Since we can extract the con-
tributions of definite isospin and of definite total
and orbital angular momentum, we are able to
separate the contributions due to resonances of
known inelasticity and subsequently to evaluate the
corresponding part of the inelastic contributions
to the integrals.

A. The Isovector Sum Rule

Table I presents the contributions to the iso-
vector, I«, sum rule. For the photon laboratory
energy, v„, below 0.45 GeV, we find good agree-
ment" between the results obtained with the anal-
yses of Refs. 5, 6, and 7. Since the Pfeil-Schwela
fit extends to the lowest energy, we have chosen
to list the contributions obtained with their anal-
ysis, where possible. ' For v» above 0.45 GeV
the values resulting from Refs. 5 and 7 also agree
well, and listed are contributions obtained with
the very recent Moorhouse-Oberlack fit.

The inelastic part is evaluated as a sum of in-
elastic contributions of N(1520), N(1670), and
N(1688) (D», D», and E», respectively).

The behavior of O, ~g oy/g as a function of energy
is shown in Fig. 1. One can easily recognize on
this graph the dominant features of a big negative
nonresonant s-wave contribution and a large
positive contribution from the P»(1236) and the
two other resonances.

TABLE I. The isovector-isovector contributions to the Drell-Hearn-Gerasimov sum rule (Ref. 12).

Partial wave
0.18~ vgb~ 0.45 GeV

(pb)

0.45~ vt b~1.2 GeV
(Wb)

Total
(pb)

I=—.
2
1
2

I=(
I=2;

0+

includes P 33(1236)

includes D &3(1520)

includes D &~(1670)

-115a

—2a

+237 a

+12 a

+7b
+13

+1 b

2b

-51 '
-9 b

+2b
+17 b

+5b
+41 b

-2 b

+1b

—166

+ 239
+29

+12
+54

=3I=2
I=2, includes E&5(1688)

Inelastic

Total

+1 b

+2 b

+12

+170

+1b
+7b

+49b

+2
+9

+ 219

Pfeil and Schwela, Ref. 6.
b Moorhouse and Oberlack, Ref. 7.
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8. The Isoscalar Sum Rule

Table II presents the results for the isoscalar
Drell-Hearn-Gerasimov sum rule. There are
serious discrepancies between the results obtained
with different fits; the signs of various contri-
butions even disagree between analyses. This
difficulty has been previously noted by Fox and

Freedman. ' The isoscalar amplitudes cannot be
extracted directly from the data. Instead they are
obtained indirectly from the sum and difference of
the proton and neutron data, which results in rel-
atively large errors as the isoscalar amplitudes
themselves are small compared to the isovector
ones.

nor of os/s -ox/s in Fig. 2 combin
the Pfeil-Schwela and the Moorhouse-Oberlack
results. There is no systematic trend and further
data are necessary, both more accurate and in-
cluding higher energies, in order to evaluate this
sum rule.

FIG. 1. Single-pion pQotoproduction contribution to the
difference between the photon-nucleon cross sections in
the helicity pand -helicity (stat-ee c&&t —o't&t for the
isovector photons.

C. The Interference Sum Rule

Table III presents the results for the isovector-
isoscalar interference sum rule. This part
corresponds to I =1 exchange in the t channel,
or in other words, it corresponds to the difference

TABLE II. The isoscalar-isoscalar contributions to the Drell-Hearn-Gerasimov sum rule (Ref. 12).

Partial wave
O.18 ~»~ O.45 GeV

(pb)
0.45~ v»~1.2 Gev

(eb)
Total

(Vb)

0+

2
[includes D f3(1520)]

2+

[includes Dgg(1670)]

3
[includes P ~5(1688)j

Inelastic

Total

-1.07
-0.80
-1.93 b

-o.ss'
0 29c

-0.26 b

+0 30'
0 28c

+1 77

+O.3O'
+1.30"

+ 0.01
-O.1O"

+0 25c
+0.01"
+ 0.41 '
+ 0.95 b

-o.4o '
+1.74'

-0.50
-1.O6b

-0 34
-1~ 61 b

0 60c
+2.62b

-O.21'
-1.75b

+0.04 c

+0.25 b

1 38c
+2.49 b

+0.62
+0.24 b

0 39c
+1.18 b

1 30c
-2.99b

0 63c
-1.87b

0 88c
+ 4.39"
+ 0.09 c

-o.45'

+0.05 '
+0.15 b

+1 63c
+2.50"

1 03c
+1.19"

0 Olc
+2.92'

' Pfeil-Schwela analysis, Ref. 6.
Moorhouse-Oberlack analysis, Ref. 7.

'Walker analysis, Ref. 5.
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FIG. 2. As in Fig. 1 but for the isoscalar photons.

between the proton and neutron Drell-Hearn-
Gerasimov sum rules. It should have a negative
value, being proportional to a~'- g

We find agreement between the results obtained
with different analyses, where they overlap, and
present the values resulting from the Pfeil-
Schwela fit for v» & 0.45 GeV, ~ and from the
Moorhouse-Qberlack fit for v» ~ 0.45 GeV.

Each of these fits results in a big, nonresonant,
s-wave contribution of the wrong, positive sign.
This contribution, however, is canceled almost
entirely by the nonresonant part of 1' partial wave
in the Moorhouse-Qberlack analysis. The second
and third resonances cause the total result for this
sum rule to be of gypping, positive sign, which
reflects the stronger coupling of these resonances
to the proton than to the neutron. Figure 3 shows
this behavior in terms of g, &, -e",~,.

III. DISCUSSION AND CONCLUSIONS

The Drell-Hearn-Gerasimov sum rule rests on
two assumptions: the low energy theorem and the
validity of an unsubtracted dispersion relation for
the f, (spin-flip) Compton amplitude. The first is
quite general and has a very solid theoretical
basis. Therefore, the validity of the sum rule is
presumably dependent on the second assumption.
This one is equivalent to the absence of a fixed
pole (with 8 = 1') in the f, amplitude. "

Strong evidence for the correctness of this hy-
pothesis comes from the evaluation of the contri-
butions to the isovector sum rule, shown in Table
I. This sum rule seems to be rather well satu-
rated by the results obtained with the single-pion
plus nucleon data, complemented by some esti-
mate of the inelastic contributions, up to v» = 1.2
GeV. Even more pleasing is that this saturation
occurs in a nontrivial way. There are strong
cancellations, mainly between the large negative
s-wave and the positive P(1336) contributions
(see Fig. 1). The large nonresonant s-wave con-
tribution is of interest in itself, however, as it
violates two-component duality. The imaginary
part of a nondiffractive amplitude like f,(v) should
contain only s-channel resonances.

Qur total numerical result for the isovector sum
rule is in general agreement with previous anal-
yses. 3'~ While contributions from still higher
values of v» need not be small, we expect the
contributions listed in Table I to be the largest
individual ones, particularly since the sum rule
integrands involve the factor 1/v» times a dif-
ference of total cross sections which is expected

TABLE III. The isovector-isoscalar contributions to the Drell-Hearn-Gerasimov sum rule (Ref. 12).

Partial wave

0+

[includes D f3(1520)J

2+

[includes D ~5(1670)J

[includes E~5(1688)J

Inelastic

Total

0.18» ~b~ 0.45 GeV
(vb)

+17

3b

0.45 ~ "„b~ 1.2 G v
(Vb)

+5b

+2b

-17b

+16b

+1b

+8b

+32

Total
(Vb)

+22

+13

+15

' Pfeil-Schwela analysis, Ref. 6.
Moorhouse-Oberlack analysis, Ref. 7.
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FIG. 3. As in Fig. 1 but for the interference term
between the isoscalar and isovector photons.

to vanish at high energies.
The isoscalar sum rule presents some problems.

Because of the sensitivity of the isoscalar ampli-
tudes to the relatively small differences between
the neutron and proton photoproduction data, it is
very difficult to achieve reliable values for the
isoscalar contributions. Furthermore, Table II
shows that individual, nonresonant, partial waves
make (canceling) contributions, each of which is
of the order of the expected total value. In such a
situation, small shifts in the data or the contri-
butions of inelastic states may easily remove the
present disagreement between the total value shown
in Table II and that predicted (Inn) by Eq. (3).

In this light, the behavior of the isovector-iso-
scalar sum rule is puzzling. Since the isovector
sum rule is almost saturated, we have every rea-
son to expect the validity of the underlying assump-
tions for the interference sum rule as well. The
total contribution in Table III is of the wrong sign,

however. This general difficulty had been previ-
ously noted by Fox and Freedman4 using an earlier
analysis' of pion photoproduction. We note in
particular that there are large nonresonant con-
tributions in the 0' and 1+ partial waves, which
tend to cancel. The second and third resonances
contribute to the sum rule with the wrong sign.
This again is of interest in itself as it violates
local two-component duality. Global duality would
still seem to be satisfied for this part of f,(v)
because the various nonresonant partial waves are
canceling in the full amplitude. This leads one to
believe that if the sum rule is to work, it may well
be the contributions of quite inelastic resonances,
many in low partial waves, that saturate the sum
rule. Unfortunately, the determination of these
contributions would be very difficult experimen-
tally.

In summary, we find no reason to doubt the
validity of the Drell-Hearn-Gerasimov sum rule.
The isovector sum rule's near-saturation even
furnishes some direct evidence of support. There
seems little reason to be alarmed at the nonsatu-
ration of the isoscalar and isovector-isoscalar
sum rules at the present stage of photoproduction
analysis. What is needed is the more direct
experimental determination of o~y, (v) and o,&,(p)
using a polarized beam and target, something
which is now becoming a real possibility.
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resonance region and to 0, 1, and 1+ partial waves.
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A multiperipheral cluster model of high-energy inelastic collisions is discussed. A physical

justification for the model is given, in that it accounts for "Ericson fluctuations" in the inelastic cross
sections. These incoherent resonance contributions are ignored in most multi-Regg models. The major
assumption is made that the ratio of the average fluctuation cross sections between different channels is

governed by phase space. This allows a description of the cluster decay processes via the statistical

bootstrap theory of Hagedorn and Frautschi. A simplified mathematical formulation of the model is

studied, and it is shown that, subject to certain resistrictions on the vertex functions for cluster

production, Feynman scaling occurs. The relationship with other models of inelastic processes is

discussed. It is shown that the model includes both the ordinary multi-Regge model and the
diffractive excitation models of Hwa and of Jacob and Slansky, as limiting cases, and that the approach
is equivalent to, but is a refinement on, Hagedorn's thermodynamic model. A search for a
power-behaved "tail" in the multiplicity distributions at high energies would provide an important test

of the model.

I. INTRODUCTION

Two of the most popular models of high-energy
inelastic hadron collisions are the multiperipheral
or multi-Regge model, in various guises, and the
thermodynamic model of Hagedorn (see, for ex-
ample, the recent review by Frazer et al. '). These
two models are almost orthogonal to each other in
approach, and their main results concern quite
different areas of interest. It is our object to show
how a "multiperipheral cluster model" can com-
bine the essential features of them both, and to
give a physical justification for the new model.
Similar ideas have been expressed by Ranft and
Ranft. '

In the multiperipheral cluster model, the total
inelastic cross section is taken to be made up of a
sum of terms,

&get = &n y

as represented diagrammatically in Fig. 1. Here
O„represents the cross section for production of
n "clusters, " via a multiperipheral mechanism
(i.e., repeated exchanges of Reggepns). Thus the
coherent, or dynamical, part of the cross section
in any given channel is assumed to be given by a

multi-Regge model. Each "cluster, " on the other
hand, will be identified with theincoherent, or
non-Regge, contributions of intermediate reso-
nance states decaying according to the statistical
bootstrap model of Hagedorn and Frautschi. '
The cluster may therefore have a variable mass.
At the lower limit of its mass range it will consist
of a single stable hadron (e.g. , a pion), while at
high mass it consists of an unstable resonance
which eventually gives rise to a cloud of stable de-
cay products, all moving with limited momenta in
the center-of-mass system of the cluster. The
multiplicity of decay products is thus proportional
to the mass of the cluster (which is also called a
"fireball" by Hagedorn'). This decay process has
recently been studied in detail by Frautschi and
the present author. "

A justification for this model is provided in Sec.
II, on the grounds that it accounts for the inco-
herent resonance contributions to hadron cross
sections, commonly called "Ericson fluctuations"
in nuclear physics, which were recently discussed
by Frautschi. ' These fluctuation terms are due to
random (incoherent) variations in the resonance
coupling strengths and spacings: They average to
zero in the reaction amplitudes, over suitably
large energy intervals, but provide important


