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The decay rates for V ee are calculated using an octet of transition operators that has
been introduced previously in the framework of an algebraic model. The results are com-
pared with experimental data, and restrictions on the symmetry-breaking relations for these
transition operators are obtained which are shown to be the analog of other well-known

symmetry-breaking relations.

Within the framework of an algebraic model, an
octet of vector operators and an octet of axial-
vector operators have been suggested as transition
operators between one-hadron states. ' These tran-
sition operators are given by"

v ={p + pr Eg = v&'& + v&'~"
if &

A„={P„+pI'„,F ) =A ' +A '

A ') ={P,F,}, A ""=I' {p,FQ,
n =+1, +2, +3, 0, 8

where E „(scalar) and F„(pseudoscalar} are the
generators of' an SL(3, C)s ~ or noncompact
SU(3)s„,~ SU(3)s, ~„, P„(p =0, I, 2, 3) are the
momentum operators, and T „are infinite-dimen-
sional generalizations of the Dirac gamma ma-
trices. p must have the dimensions of mass in
order that both terms in V„and A„have the same
dimensions (MeV}. The simplest assumption one
could make for p is that p is a constant of dimen-
sion MeV and is somehow connected with the ele-
mentary length that had been introduced in the
framework of these algebraic models. ' However,
this possibility can already be ruled out' by re-
quiring that V„and A„have definite transforma-
tion properties under time reversal and charge
conjugation. It could, however, still be possible
that p commutes with the "charges" E and "axial
charges" F .

To obtain some information on p from experi-
mental data, and to further test the applicability
of our algebraic model, we want to investigate the
electromagnetic transitions of mesons. In an ear-
lier application of these ideas, the weak leptonic
and semileptonic decays of pseudoscalar mesons I'
have been calculated. ' In these calculations, only
V„' and A„" appear because the matrix elements
of V„" and A~~' between spin-zero states are
zero.

In the present work, we will calculate the elec-

tromagnetic transitions

vector meson- ee

using the same method as employed in Ref. 6 for
the weak decays I'-P'Iv and I'- lv. Only the
term V„""gives nonzero contributions to the decay
rates in the present calculation. We will calculate
the decay rates first under the assumption that

p = const and show that this will lead to disagree-
ment with the experimental data. The next simple
and —because of its position in the transition opera-
tors (I) —more natural assumption for p is that it
is an operator proportional to the mass operator.
We will show that a calculation with this assump-
tion will lead to agreement with the experimental
data. We will then give a theoretical argument for
this assumption.

In Ref. 6, we had assumed that the dynamics of
the transition is described by the matrix elements
of the operators V„and A„between the hadron
states and that the function of the leptons is purely
kinematical, i.e., the lepton pair is treated as two
"free" noninteracting particles (this is in analogy
to the y in the quantum theory of radiation for the
transition of an excited atom into the ground state).
In order to calculate V-ee, we will just replace
the lepton matrix elements of ev by the corre-
sponding ones for ee and perform the calculation
without any assumption other than those regarding
the operator p, which we want to test.

In Ref. 6, we made the further simplifying as-
sumption that the SU(3)s [and SL(3, C)s~, ] is that
SU(3) which classifies the particles. ' This as-
sumption permitted us to express the reduced ma-
trix elements of the "charges" E„and I' by the
numbers that characterize the representation of
the particle-spectrum-generating SL(3, C). We
will have to remove this simplification here and
treat the reduced matrix element as the parameter
that has to be fitted from the experimental data.

(I) The decay rate for V- ee is calculated here in
complete analogy to the calculation of the leptonic
weak decays K'-Ev and m'-Lv in Ref. 6:
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where E, and p, are the energy and momentum of e', Ev and p„are the energy and momentum of the vec-
tor meson V, and

l P„(p„)l' is the expectation value for the momentum p„ in the ensemble of decaying vec-
tor mesons. The number c is due to our normalization of the generalized hadron states

l p„a& (Appen-
dix B, Ref. 6).

The transition operator T ("interaction Hamiltonian") is split into a leptonic part L" and a hadronic part
H„which is an operator in the space of the hadron:

T=L'H, . (3)

(4)

The hadronic part H„will be proportional to the charge components' of V„+A„:
1 1

Pp+plp, H +—H2 + P~+plp, G +—G2

I." acts only on the lepton quantum numbers and H„ is given by the hadronic transition operators (1) of our
algebraic model for hadrons. The leptonic part L„ for the electron-positron pair is immediately obtained
from (3.11b) of Ref. 6 by replacing (1+@,)u("' with the positron spinor v, (P, ):

(e'e p,p IL"l(~.&~,)p„o& = " 6'(p, +p -p,&~(P»'v, (&,&.
2mv

Whether a term like

A~= P„+p~„, G +—G
1

is present in the electromagnetic interaction needs much further discussion. Fortunately it will not con-
tribute to the decay of V ee, as will become apparent below; therefore, in the case under investigation
we take for 4'„'

V~'=" P„+pr„, H + H, =' P +pr„, Q'
W3

Q=H + H
1

3

We will now investigate two different assumptions
for Hp'.

(6a)

where G is a constant that specifies the strength
of the interaction, and

(6b)

where p and G are quantities of the type described
above. For the calculation of V-ee the magnitude
of these quantities is inessential, because further
unknown over-all constants enter through the re-
duced matrix elements of E and I'„. [These con-
stants are the ones that characterize the represen-
tations of the SL(3, C) and SO(3, 3}r„~„„.] With as-
sumption (6a}, our model implies a complete anal-
ogy between weak and electromagnetic interaction
(although it does not allow a comparison of the
strength G with the strength for the leptonic decay
of pseudoscalar mesons because different reduced

matrix elements enter into the two types of calcu-
lation; see below}. This of course goes against
our feeling that the electromagnetic interactions
are mediated by the photon, whereas for the weak
interactions there is not such an intermediate bo-
son. Assumption (6b) is constructed so that our
algebraic model reproduces the photon propagator
term and can therefore be accepted as at least a
"first approximation" neglecting two-photon ex-
change.

For the process under consideration, V- ee, as-
sumptions (6a) and (6b) lead to results that differ
by a factor mv' if we assume that p is just a con-
stant with dimension MeV. These are the effects
which we want to investigate. We want to see what
choices for p the experimental data will permit;
therefore, we want to keep both cases (b) and (a).'
Assumption (6b), when applied to baryons, leads
to a relation between the electromagnetic and the
weak coupling constant and p, which could suggest
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that the weak and electromagnetic interaction are
of the "same strength" G.

(2) The calculation of

A=&eep, p I
TI p~ss, v

&

proceeds now along the same lines as in Ref. 6:

d p&=I:f,~',~" (eel.i ( ')(i.~)2E ~&(p c

x
& op(&l Hyl p& v& &

where
I p„n& is a basis in the representation space

of the hadron tower. As I-~ does not change the
hadron quantum numbers, we obtain

x&op. lH, lp, v&, (6)

where
I p, o& is the vector in the hadron tower with

the hadron quantum numbers of the vacuum. ~'

The vector mesons are assigned to the states with
n=+1, s=1 of the particle tower described by
6 ".' o. is assigned to the state n =0, s=0; con-
sequently, only the term I'„[p,g of (5) contrib-
utes to the matrix element (cl H J V &, since

(n =0, s=0'I P„l n =1, s= 1
&

=0 .

Thus we obtain

d'p
2

" &«IL'I P.o&&p. ol I',(p, Q}1p, v&
a a

[I'„,E„]= [I')„F ] = 0 for all a .
Then we obtain

(12)

if we use the assumption (6a} for H„. Using as-
sumption (6b) with a constant p we calculate

«op. l
&'„'I p, v& = p-*(p~) -p(,~}'&op. l H. l P„v&

so that

Gp'
&op I H&. l p& V&

(p p )2(V)- (a)

& p. l [pl'., 0)l p.v& (10)

The matrix elements &op, I (I'z, Q] lp„V) are calcu-
lated under the model assumption

[X,P„M '] = 0 for X= I'&, F. , F
The shortcomings of this assumption have been
discussed before"' (constancy of the form factors);
however, for V-ee these shortcomings are irrel-
evant. We make the further use of the reasonable
assumption

&op, 1
[1'&, Qjl pvv& =2&(o}1Q' 'I (V)&(n=O, s=O, p, l

I'J n=l, s=l, (m, /m„)p„) . (13)

(n) indicates only the intrinsic quantum number I, I„v, . . . ; thus
& (o)1 Q~'

I (V)& is the matrix element of Q
reduced to the space of intrinsic quantum numbers (i.e., an SU(3) matrix element). The action of I'~Q on
the mass has been taken care of in the matrix element

&n=0, s=0, p, l
I'J n=l, s=l, (m, /m„)p~& .

I'„ indicates that I'~ no longer acts on the mass, but only on n, s, s„(p/m). The possibility of splitting I'~
into such a direct product is of course a consequence of (ll). The calculation of (n', s', s,', p'I f J nss~&
can be done in various ways. We choose the following:

&n's's,'p'I I' J nss, p& = &n's's~' =01 U(L(p')) r „U-'(L(p')) U(L(p'))
I nss~&

=L '~ "(P')(n's's, '011'„U(L(P'))I nssp&

=I. '~ "(p')&n's's'01 I',10nss, &(nss, 01 U(L(p'))
I nsssp&

= L '„"(p')(n's's'01 I'„10nss,& 2c(„)H(,)(p)5~(p' -p) . (14)

Here L '(p) is the boost and we have made use of (11)and the fact that U(L) does not affect n, s, s,. There-
with we obtain for (13)

&cp. 1[1'i Q}l p, V& =2&(c}lQ"'I (V}&&n=0, s=OI I'„I n=1, s=l, s,&L
' "(P,)2c,E,(p, )5'(p, —(m, /m„}p ).

(15)
Inserting this into (9) we obtain for assumption (6a)
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&(.) = &eel L'I (m. /m»)p» c&2PG& (c)l Q"'I (I')&L 'g"((m. /m»)p»)&O, OI r. l I, 1&,

and using (4}for the leptonic matrix element we obtain

' 2PGn(p )X'~(p. )5'(p, +p —p») & (o)l 0"
I (V)& L ' "(p,)&O, Ol r. l I, » .

2mv

Here we have used L '~ "(p») =L '„"(cLP»).
If we use assumption (6b), we see from (10) that an additional factor p'/[(m, /m») —1]'m»' appears.

2

~ n(P )y'c(P, )5'(p, +p -p»)&(o&l Q 'I (y')&L 'g "(P»&&O, OI r.I I, »202 V PPl p

(15)

(17a)

(17b)

Here me have already used m, -0."
In (17) &(o)~ Q '~ (V)& is the SU(3) matrix element of the charge component of an octet operator and there-

with a familiar quantity. To reach resemblance with the conventional calculations' me replace

L '„"(p»)(n=o, s=oi r„i n=1, s=l, s, =)&

by the polarization vector e„(p», X).
(3}We define the quantity

e„(p, X) =I '„"(p)(n=o, s=o~ r„~ n=1, s=l, s =X& (19)

and show that this quantity possesses the properties that are required of the vector-meson polarization
vector. For this we mill have to use the properties of the matrix elements of I'„ in the generalized Dirac
representation of SO(3, 2) (Ref. 11) to which the vector mesons are assigned. We calculate

ge„(p, ~)e„(p,~)=L-', ~(p)L-'„(p)g&O, O~ r, ~
1, 1~&&0, 0~ r. ~

1, 1, ~&

=L-'„(p)L-'„'(p)p&0, 0] r„[ 1, 1, ~& &o, 0[ r, [ 1, 1, ~&,

where r, s=1, 2, 3 because &0, 0~ rJ 1, 1& =0.
From Ref. 11 we obtain the matrix elements of I'(r) defined by

r(o) = r„r(+I)=w (r ~fr, ) .1
&2

From Eqs. (Ill, ll), (1II, 15), and (III, 18) of Ref. 11 one obtains (a phase factor has been chosen real)

&0, 0~ r(r)~ n=1, s=l, s, =X& =[-,'(1 —c )]'"C(1,1, 0;r, 1,0),

(19)

(20)

where C(1, 1, 0; r, X, 0) is the SU(2) Clebsch-Gordan coefficient and c is the imaginary number that charac-
terizes the irreducible representation of SO(3, 2). It is connected with the eigenvalue R of the second-or-
der Casimir operator by —,'(R —2) =ic The m. eson tower, among other things, is characterized by (R, O),
and a favorable assignment for the mesons was the degenerate representation (R =2, 0), i.e., c =0.

Using the properties of the Clebsch-Gordan coefficients, we obtain from (20)

+&0, 0~ r(r)~ n=l, s=l, &&&0, 0~ r(s)~ 1, 1, A& = —'(1 —c ) 5„, ,

and therewith

i-c'g &0, 0( r„l 1, 1, ~&&o, 0) r, )1, 1, ~& =

2g

Q „(P,~),(p,'~) =L '„"(P)L ':(P)g,.(-f') (22)

As the boost is given by the matrix

where we have called

(21)
v=0 V=K

Therewith (19) gives

(21'} p'p'
m(m+p )

(23}
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one calculates

„(p, x)g, (p, x) = — g, — ",")f' (24)

Consequently, if one defines

e„(p, ~) =
1 + I,-'„"(p)&o,ol r„l n=l, e=l, e, =~&, (25)

then e„(p, X) fulfills all the properties that are needed for the vector-meson polarization vector
(4) With (25), (17) becomes

1/2
"2pG &(o)l Q 'I (v)&5'(p, +p —p»)24(p )y"v(p, )e„(p», x) .~) 2m, 2' (28a)

We insert this into (2} and calculate the transition rate under the usual assumption:

I 4»(p»)l' = 2E»(p») e»5'(p» —q}, (27)

i.e., that the ensemble of decaying vector mesons is exactly at rest.

I'(
)

—— ' 5 (E„E+-E-)5 (p, + p —g)

~ I &( )I 4 'I (v)&I*BI (P)y" (P.)e, (q»l'
mv Pol

(28)

This is integrated in the usual way to give

I'( )=3@m~ 0 Q
' V 1- 2 1+

(29a)

where

=(.~)
If we use the assumption (6b), we obtain with (17b}

2 4

I'~» = 3@m„~ cr ~' V

Comparing this with the usual expression [e.g. , E(I. (8) of Ref. 10] we obtain for case (a)

&(o)l q' 'I (v)&, (30a)

and for case (b)

&(.)I 0"
I (v)& . (30b)

If we assume that p is constant (more precisely, that p is the same for all the vector mesons (P, &u, p} then
assumption (a) leads to the same results as model III of Ref. 10, i.e., to the prediction that m»/f » obey
the SU(3) relations, and I'(V) obey the Das-Mathur-Okubo sum rule

(5) Since the present experimental data differ from those used in Ref. 10, we shall make a comparison
with the latest experimental results":
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I""(p-e'e }=6.11+0.53 keV (Orsay)

= 5.2 +0.5 keV (Novosibirsk) ~

I""(&u-e'e ) =0.76 +0.08 keV (Orsay} i

I""(4& e'e )= 1.36 yo. lo keV (Orsay, Novosibirsk},

=0.56+13% .
I *(4&-ee)

For the above three cases, the matrix elements of the SU(3) vector operator Q are as follows:

((«)I Q+'I (p )) =&I=0, Y=o{1}l[H, +(I/v 3)H2]II=1,IS=0) Y=O{8}&

= (-l)(1/v 8}&{1}I I 51I 1{8}&,

&(o)la"I(~}&=&I=o, Y=O{I}l[H, +(I/~~)H. ]II =O, Y=O{a}&(-sin&&)

=(+1)(1/v 8)({1}I I Xl I {8}&(1/&3)(-sin&&),

&(o)10 'I (4)& =&I=O, Y=o{l}l[H, +(1/v 3)H, ]II=0, Y=O{8}&cos&&

=(+I}(I/~8}&{I}II3III{a]&(1/v 3)cos&&.

(31)

(32)

, &{1}11311I {8}&. ~
Wa

'
2&3

One sees that it is just the unknown reduced ma-
trix element ({1}lI Xl I {8}& that prevents us from
obtaining an estimate on all three decay rates and
a check on the values of a, G, and c obtained from
different processes.

The decay rates (29}are now written

I'&, &(V-ee) =g'm„(p/m„)'K»',

with

(34a}

Here ({1}I I 3II I {8})is the reduced matrix ele-
ment" of the E between the SU(3) singlet and
octet, and 8 is the Q-cd mixing angle. For 8 we
take two values: 8=35.2, the value that is ob-
tained under the assumption that the mesons be-
long to SU(4) multiplets [SU(6) value], and &&

=40.2', the value that follows from the experimen-
tal masses of 4& and &u and the Gell-Mann-Okubo
mass formula.

We introduce the new constant

I'&„(&d—ee)
= 0.65 + 1.3/o

I'&,
&

4&-ee&

There is not too much discrepancy between these
values and the experimental data (31), although
the values for I'&, &(Q - ee) and I'&, &(&L&- ee}/I', (p
—eel do not quite agree with the experimental val-
ues; using the Novosibirsk value instead of the
Orsay value for I""(p-ee) increases the disagree-
ment. With 8 = 40.2', I'&, &(P - ee) is still smaller
and I'&, &(&d)/I'&, &(Q) =0.93, so that this value is cer-
tainly excluded for case (a). With a smaller value
for 8 (8=29'), I'&, &(Q-ee) can be brought into
agreement with I""(4&-eel. However, then I'&, &(&u- ee) and I"'"(&d- ee) will disagree. So we conclude
that agreement of case (a) with experiments is not
very likely, but cannot be ruled out completely.

With I"*(p-ee) as input, we calculate from
(34b)

I'&»(&d-ee) =0.602 keV +80%,

I'&, &(4&-ee) =0.322 keV+80%,

and

K~ =1, K =(I/v 3) sin8,

K~=(1/v 3) cos&&,

I'&»(V- ee) =g'm „(p/m„)'K» (34b)

and there is no way this can be brought into agree-
ment with experimental data.

Thus constant p is definitely ruled out if we use
the theoretically favored assumption (b) for H~.

(6) Let us now assume that p is not a constant,
but that the matrix element of p is proportional to
m~, where V is one of the nonstrange vector
me sons:

We first try to fit the experimental data with p
=const. Using the Orsay value for I""(p-ee) as
an input, one calculates" from (34a) with 8 =35.2'

I"
&, &(&u- ee) =0.66 keV +20%,

I'&, &(Q - ee) = 1.02 keV + 20%,

& vl pl V& =pm» .

In this case I'&,
&

as well as j."&» will give

r(V) =g "m, K,',
with g' = lg in case (a) and g= &'g in case (b).

(35)

(36)
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The result (36) is the same as that obtained from
the mass-mixing model (model II of Ref. 10). We

will see that this result is in agreement with the

latest experimental data. With I""(p) of (31}as
input one calculates

for 61=35.2' for 8=40.2'

[P» [P', &„J]=&'"(S"„,p'),

from which one obtains the result (36).
It is clear that (37) is not the only possibility

for obtaining (35); e.g. , if g were strongly de-
pendent upon the hypercharge we could not have
noticed it here.

(7) If one observes the place that p takes in the
transition operators (1), one cannot be surprised
at all about a relation like (3'l), which means
that pI'„has the same SU(3) properties that P„
has, and it is worth discussing further theoret-
ical arguments for (37).

The charges and axial charges E and E do
not commute with the mass operator M or the
momentum P„but fulfill certain algebraic rela-
tions as a consequence of which SU(3) or SL(3, C)
[SU(3) SSU(3)] is "broken in an orderly fashion. "
Relations of this kind have been proposed for
certain models and applied to the mass-spec-
trum problem. " These algebraic symmetry-
breaking relations imply certain symmetry-break-
ing relations on the transition operators V and
A„"of (1). For example, for the spin-zero me-
son tower one obtains

(38)

for all n, with no summation over a. %e will
generalize these relations and assume that the
following symmetry-breaking relations are ful-

I'(u&- ee) =0.70 keV +1(Pq =0.87 keV +I&o
I'(P- ee) = 1.81 keV s 10%%u&& = 1.58 keV sl(Pp
I'(u - ee} = 0.549 .
I'(Q —ee)

Although the SU(6) value for 8 does not quite fit
the present experimental data, B =40.2' fits very
well. Thus (35) is definitely suggested by the ex-
perimental data.

One way of obtaining (35) is to assume that p
is an operator and that

(37)

where ( is a number and M is the mass operator.
hf does not commute with all E„and I (or w'ith

I', , which is however, irrelevant for the present
case). When p is an operator, one has to replace
(6b} by the Hermiticized expression, e.g. ,

[E„,.[P~, V&" ]]=0,
[P~ y(~)~]] 0

(40)

(41)

Generalizing (40}, we will assume that all the
symmetry-breaking relations (39) are valid for
both parts V„", A.„"and V„', A~„" indepen-
dently.

In the following, however, we will use only (40)
to show that p cannot be an SU(3) scalar. After

filled:

(a) [E., [P~, V„"]]= 0, (c) [F„,[P~, V„]]= 0,
(39)

(b) [E., [P",&„]]=0, (d) [&., [P",&„"]]=0,

not summed over u. These relations are the
algebraic analog of relations between charges
and current divergences which have been suggest-
ed by Nishijima for the exclusion of strangeness-
2-changing transitions in his model of CP viola-
tion and which have been used extensively in the
literature. ""

This brings us to the question of some possible
connections between this algebraic approach and
the existing approaches. The expressions (1)
for V„"and A"„and relations (39) show that this
algebraic model has many of the structures that
current algebra also has [in particular the
SU(3)s „~ ISSU(3)s„,~„as a "broken", "dy-
namic" symmetry]. The approach followed here
is however rather different. We started with a
very simple model of relativistic one-particle
quantum mechanics which describes a very nar-
row domain of particle physics, and gradually
enlarged this model by enlarging the algebra in
such a way that an increasing number of experi-
mental data were incorporated. Our model is
therefore much simpler. But it also has some
additional structures which are not specified in
current algebra and which have physical conse-
quences (e.g. , a mass spectrum of states of dif-
ferent angular momenta and parity). Therefore
it could well be that our empirically constructed
expressions are in a certain way approximations
of a representation of the continuously infinite
algebra of currents. Another possibility could
be that our algebraic expressions have properties
that are not contained in the currents and that the
usual currents and our transition operators have
only certain structures in common.

Returning to our particular problem we will
show now that as a consequence of (39) p ca.nnot
be an SU(3) scalar. As there is experimental
evidence for (38) because it is in agreement with
the experimentally correct mass relations for
pseudoscalar mesons, (39a) will have to be valid
for both parts independently.
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a short calculation, it follows from (40) that

[z„,[M', z.]]=0.
From this it follows that

0=[z,(M, [M, z.])]
=(M, [E, [M, E„]])+([M,E ], [E,M]},

from which we see that

(42}

ators.
Let us now investigate the assumption (37) for

p, which yields agreement with the experimental
data for I'(V-ee). With p =/M, we calculate

[z., [M, (p, z„H]=g[z„,(M, [M, z„])]

=I[z„,[M', E„]]=0

[E, [M, E ]]=0 only if [M, E ]=0. (43}

(This is the case for a =0, a 1, 3 but not for a
=+2,w 3.) As we are here only interested in the
relation of p to E and I', we make the assump-
tion that p fulfills the relations

[I'",p]=0 (44)

Under these conditions, and with [I'",E ]=0,
one calculates

(45)

[I'",(pi'„, Egl=[I'"I'„,(p, z H

= [M, (p, Eg]Z„r&,
where P„=M 'P„and where we have used
[P„I'",E ]=0. Using (45) in (41) yields

[E., [M, (p, z.H]=0. (41')

Let us now assume that p is a SU(3) scalar [i.e.,
p = const if one also take (44) into account]. Then
we would obtain from (41') [E„,[M, E )] =0,
which is impossible according to (43). Thus (41)
cannot be fulfilled with p =const.

Hence we have shown that p =const, which is
ruled out by experimental data for I'( V- ee), is
ruled out by theoretical arguments using reason-
able assumptions concerning the transition oper-

according to (42). Consequently (41'}, and also
(41), is a consequence of (40) for p given by (37).
It is easily seen by analogous arguments that the
other symmetry-breaking relations of (39}are
also in agreement with (37). However, we wish
to mention that the relations (39) are not very
restrictive relations and do not contain all infor-
mation for the symmetry breaking. Furthermore,
(37) is not the only possibility for p that fulfills
the symmetry-breaking relations. p can very well
be an operator that reduces to (37) when applied
to the process V- ee. In order to check how gen-
eral (37), is we have to investigate additional
processes.

In conclusion, we have shown that the transi-
tion operators (1) provide a description of the
process V- ee in agreement with the known ex-
perimental data. The experimental data as well
as some theoretical considerations suggest that
p has nontrivial SU(3)-transformation properties,
and the assumption that p transforms like the
mass operator is in good agreement with the ex-
perimental situation.

Many of my colleagues have given me advice
and I am particularly grateful to B. G. Mainland
and Jan S. Nilsson for their help.

~Supported by the U. S. Atomic Energy Commission
under Grant No. AT(40-1) 3992.

~A. Bohm and G. B. Mainland, Phys. Rev. D 5, 872
(1972).

~(A, B)+ AB+BA.
It is always assumed that fE~, I'&J = 0; however, in

general if p is an operator, fp, I'&J ~ 0, so V&&
&~ should

read more precisely V'&&~& = z {(p, I'&) ~ E "), and
similarly for A(&~, E~. This has been taken into
account in the calculation.

Gz, indicates that the generators of the group 6
are the observables X&.

5A. Bohm, Phys. Rev. D 3, 367 (1971); 3, 377 (1971);
Phys. Rev. Letters 23, 436 (1969), and references there-
in.

6A. Bohm and E. C. G. Sudarshan, Phys. Rev. 178, 2264
(1969); 182, 1918 (1969).

~The 5nal results in Ref. 5 for the ratios of the rates
for strangeness-changing and strangeness-nonchanging
decays do not depend upon this assumption.

In our notation 3 [H& + (1+3) H2) = (7~ + ~ Y), where
E3 and f are the I3 and Y components of octet opera-
tors.

The 1/p factor could, of course, also have been
included in the leptonic part if we would have chosen
instead of (3) a suitably modified expression which
would differ from the leptonic part in Ref. 5.

M. Gourdin, in Symmetries and Quark Models,
edited by R. Chand (Gordon and Breach, New York,
1970).

L. Jaffe, J. Math. Phys. 12, 882 (1971).
J. Lefrancoise, in Proceedings of the International

SymPosium on Electron and Photon Interactions at
High Energies, 19', edited by N. B.Mistry(Cornell
Univ. Press, Ithaca, N. Y., 1972).

J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, J.
Math. Phys. 6, 722 (1965).

~4%herever mz enters in the calculation we have also
included the error on this mass. As it is not clear what
to take for this error, the total width of the p or the



LE PTONIC DECAY OF VECTOR MESONS. . . 2709

error on the central value of the mass distribution b, m&,
we have decided to do the following: Where a disagree-
ment has to be established (as in the calculated I'~,~

and

I ~~~) we take the largest possible error (20%); where
an agreement has to be established (as in the calculated
I') we take the smallest possible error (10%).

~5A. Bohm, Phys. Rev. 158, 1408 (1967).
K. Nishijima in Proceedings of the Fifth Coral enables

Conference on Symmetry PrinciPles at High Energies,

University of Miami, 1968, edited by A. Perlmutter,
C. Angas Hurst, and B. Kuryunoglu (Benjamin, New

York, 1968); K. Nishijima and L. J. Swank, Phys. Rev.
146, 1161 (1966),

~~S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento
40, 1171 (1965).
~M. Gell-Mann, R. J. Oakes, and B. Renner, Phys.
Rev. 175, 2195 (1968).

S. Matsuda and S. Oneda, Phys. Rev. D 1, 944 (1970).

PHYSICAL RE VIEW D VOLUME 7, NUMBER 9 1 MAY 1973

Optimal Bounds on Cross-Section Moments in m-n and n -N Scattering
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Froissart-like bounds are derived for a selection of moments of the total cross section in
7t-~ and n-N scattering. These bounds stem from an economical set of constraints —unitarity
and the Froissart-Gribov representation of the D-wave scattering length in the crossed
channel u2- which are rigorous to within the value assigned to this scattering length. The
results are optimally tight for the given constraints and represent a substantial improvement
on the bounds of Yndurain and Common, from whose work this paper has been developed. In
the case of n-N scattering, it is possible to invert the argument by using experimental data
on total cross sections to impose a lower bound on u2 .

I. INTRODUCTION

Yndurain and Common' ' have originated a meth-
od of clarifying the role of the Froissart bound in
inhibiting the growth of total cross sections with
energy. They define moments of the total cross
section by

S2

o„(s„s,) =- q(s')cr(s')ds', (&)
Sg

where q(s') is a positive weight function normalized
over the energy range (s„s,), and bound this quan-
tity. Their results are explicit for finite s, (in
their work, s, is invariably fixed at threshold),
and the energy scale in the 1n'(s/s, ) is defined.

These bounds are rigorous to within a value as-
signed to a D-wave scattering length and, have been
evaluated both here and in the work cited above
for m-m and n-8 scattering.

In this paper, we employ a variational technique
described by Einhorn and Blankenbecler4 to im-
prove and generalize the results obtained by
Yndurain and Common. The main aspect of im-
provement is that general theorems of optimiza-
tion theory show that the bounds derived here are
mmimally tight for the given set of constraints.
The principal sources of generalization are that
we consider a wider class of weight functions q(s),
and that in the method applied here it is not nec-
essary to keep $'y at threshold: Any energy inter-
val in the physical region can be considered.

The rest of the paper is organized as follows:
Section II contains a resume of earlier work in
the field. In Sec. III, we give an account of the
method employed here. The numerical outcome
of this analysis is presented in Sec. IV. Finally,
conclusions and further applications are summar-
ized in Sec. V.

II. CASE HISTORY

From an input of partial-wave unitarity and sufficient analyticity to guarantee the Froissart-Gribov rep-
resentation of the t-channel. , D-wave scattering length o.,', Yndurain manipulated the following bound from
the partial-wave expansion of a,', for mo-w' scattering:

(2)


