
UNITARITY BOUNDS ON ELASTIC CROSS SECTIONS

der of 10%) to account for this discrepancy. But
this only shows that the experimental errors can-
not concur in producing a violation of the condition
(7), which therefore imposes bounds on the magni-
tude and relative sign of such errors.

As an example of another possible use of cond¹
tions (7), consider the distribution indicated in
Ref. 1:

G(x) = Z(1+3x')'",

whose analytic form has been determined on the
basis of a model to represent m'p elastic scatter-
ing at 1236 MeV. In this case, only the coefficient
A, must be determined from experimental data. As
one can easily check, c, = 1.38013., which makes the
value A, = 0.988 indicated in Ref. 1 unacceptable.

On the other hand, for a lower value like A, = ~3/2,
which is still compatible with experimental data,
c, =. 1.195, but this is hardly s~rprjLsing since for
this value of A. , Eq. (1) is known' to have an exact
solution. Note also that c„=0 for odd n, while c„
&0 for n even. Since (v/2(2n+1)]"" =1/v2 for A.

=@3/2 and n = 1, it follows that out of all conditions
only the one for n = 0 provides an effective bound.

From a theoretical viewpoint, one might ex-
press the hope that the bounds (7), (8), and (10)
could provide an indication as to the direction and

range of an extension of the Martin-Newton condi-
tion covering all cases of physical interest.

I am deeply indebted to Professor A. Martin for
suggesting the proof which l.eads to the lower
bound (10), and for correcting a number of errors
in an earlier version of the manuscript.
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The possibility of binding an axial-vector meson in the vr~ system is considered. A sub-
stantial admixture of s and d waves is required to bootstrap this particle, and the decay
angular distribution calculated is in good agreement with the recent experimental information.

In this note, we would like to report on a simple
8-matrix dynamical calculation which gives a reso-
nant state in the J~ =1' state of the w~ channel. In
this state, the n~ system can take two angular mo-
mentum values l =0 and 2, and the calculation is
carried out by taking into account these two angu-
lar momentum channels.

Alj. previous attempts ' based on the self-con-
sistency idea have preferred a bound state in the
2 state. They are usually carried out either in
the static approximations or in the relativistic dis-

persion methods. But none of them have seriously
considered the possible admixture of the two angu-
lar momentum channels in the unnatural-spin-
parity state. In fact, the recent experiments'~ not
only favor 1' over 2 for this @co resonance but
also give the angular distributions in detail, indi-
cating the presence of both s and d waves.

We can explain these experiments from a tzvo-
channei N/D calculation, which assumes the driv-
ing forces coming from the u-channel exchanges
only. The matrix N/D equations are solved alge-



270 PU SHEN AND KYUNGSIK KANG

ImT'(0 —2) = q,q, g, g„m5(s —me'),

ImT '(2—2) = q, 'g„'m5(s —m~'),
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where W = (M '+ 0 ')'", 8 = (m'+ 0 ')'" (0 being the

(d, t.+(4)),g ((d)

braically by approximating the phase-space inte-
grals at energies below threshold by a few poles,
and the parameters are determined by demanding
the self-consistency of the resonance in addition to
the conditions coming from the p meson coupled to
the n(d system. The results show that the mass
and width of this resonance agree well with those
of the B meson, and the decay angular correlations
deduced from our coupling constants are in good
agreement with the recent experiments;

The driving force coming from the p(1 ) and
B(1') exchanges in the u channel are calculated by
taking the effective interactions at the nwp and mcuB

vertices (Fig. 1) as

I.„,=(g.../m(, )e„„,.e„(~)q„(~)e,(p)q. (p),

e =g, mee„(B)e„(&u) (1)

+(g, /me)e„(B)q„((d)e„((u)q„(B) .

By following the same scheme used in I to remove
the kinematic singularities from the transition am-
plitudes T~(L —L') between the states of definite
angular momenta, we find that (1) is equivalent to
taking the imaginary part of T (L —L') as

ImT "(1—1)= q,'g, ~'7(5(s —m z'),

ImT "(0—0) = q,'g, 'm5(s —me'),

barycentric momentum); so=(M+m)'; and M(m) is
the mass of &u (n). Notice that the transition am-
plitudes exhibit the correct threshold behavior
[i.e., T'(I.—L')-(sk')~~"~ 'j through q~, which
gets the mixed contributions from the s and d
terms in (1) for the unnatural-spin-parity state.

Furthermore, qo and q, (also q, ) are polynomials
in s, which makes the calculation of the phase-
space integral much simpler, Vfith these q~ fac-
tors we define the kinematic-singularity-free
transition amplitudes by

T'='(L -L') = (q,q, ,)-'T~'(L-L') = T„,(e),
(4)

which we will work with hereafter.
As was noticed in I and II, the p exchange in the

u channel gives rise to an attractive force to the
1' state. It was also concluded there and in other
previous works' that the 1' s-wave B exchange
produces a repulsive force to the 1 state from
the threshold behavior of the force thereby unable
to reciprocally bootstrap p and 1' B. However, we
find that although the 1' s-wave exchange does
give a weak repulsive force to the 1 state near
threshold, it is effectively attractive around the
p-meson pole position. Furthermore, the inclu-
sion of the d-wave interaction gives an even
stronger attractive force to the 1 state, if the
admixture of d wave is comparable to s wave.

For these reasons, we proceed to reexamine the
possibility of a reciprocal bootstrap mechanism be-
tween the 1 p and 1' B mesons by keeping both s-
and d-wave interactions. Since there is no simple
method of estimating the t-channel contribution,
and since we want to limit the number of arbitrary
parameters, we neglect the t-channel exchanges in
the present calculation, as in all of the previous
works. "

The reduced amplitudes defined in (4) satisfy the
dispersion relation

T~~.(s) B~~.(s)—
g T~„(s')p„(s')T„l.(s')

lT s —s

where B~~ (s) is the corresponding Born term,
and p(s) is given for the J~ =1' state by

a( )=8„~(() ,)
and for Jp = 1 by

k
p(s) = 6,~q,'.

(6a)

(6b)

FIG. 1. The p- and B-meson exchanges in the x in-
teractions.

We solve (5) by the N/D method but within the ap-
proximation scheme suggested by Pagels' in order
to avoid numerical integration.
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The scheme consists essentially of approximating
the phase-space integrals at energies below thresh-
old by some poles. The phase-space integrals take
the form mg

{m.=1)
I'~ I'~

[Eq. {15)l t.Ea. (16)j

TABLE I. Inputs used are m„=1.00 (139.6 Me V), m&
=5.48 (765 MeV), and m~ =5.61 (784 MeV).

s t p.(x)
+„(s)=- — ' —,"——.dx=f„(s)G(s) +g„(s) „

my sx'(x —s)

I]x —(M+ m)'] jx —(M —m)'])'" „x'(x- s)

»d f„(s}and g„(s) are some polynomials in s due to

q~ (I- =0, 1, 2) being polynomials in s. We approxi-
mate G(s) for s& so by some pole terms which are
adjusted to reproduce G(s) as closely as possible.
We find that the one-pole approximation, i.e.
(using pion mass units), G(s) = c/(s —a) = -3.024/
(s —124.5), is rather good (see Fig. 2) in repro-
ducing the exact G(s) within 10% accuracy over a
large range.

In terms of the N and D matrices, the solution of
(5) is given by

8.24

8.95

9.31

9.25 2.55 -5.50
9.25 2 „70 —6.00
9.30 2.55 -5.50
9.30 2.70 -6.00

9.25 2.40 -5,50
9.25 2.65 -6.50
9.30 2.50 -6.00
9.30 2.65 -6.50

9.25 2.50 —6.50
9.25 2.60 —7.00
9.30 2.60 -7.00
9.30 2.70 -7.50

9.25 2.55 -7.50
9.25 2.65 -8.00
9.30 2.55 -7.50
9.30 2.65 -8.00

—2.16
2 y22

-2.16
—2,22

0.969
0.953
0.966
0.951

—2.29 1.11
—2.45 1.08
-2.40 1.09
-2.45 1.07

-2.60
-2.69
—2.69
-2 78

1.21
1.19
1.19
1.17

-2.94 1.29
—3.02 1.27
—2.94 1.26
-3.02 1.26

0.969
1.08
0.969
1.08

0.950
1.15
1.02
1.15

1.10
1.18
1.18
1.27

1.20
1.29
1.20
1.29

T~~.(s) = [N(s)D(s) "]~~.,

D„~ (s) =5~~ —sf~(s) G(s) — N~~ (s)

fg(s)&„ (~),

&~~ (&) =&~~ (s)

-+—— -t.»..(s}-~&„,( )]f.( )&, ( ).

This solution has the correct discontinuity on the
right-hand cut, ImT '(s) = -p(s), and on the left-
hand cut, ImT(s) =1mB(s). Hence we may expect
tha, t many of the features of the exact solution are
preserved by this approximated solution.

The solution of the N/D equation usually needs a
cutoff for the driving forces coming from the vec-
tor exchanges. However, in Pagels's approximation
with the assumption of the nearby-singularity dom-
inance, the matrix N/D equation is reduced to al-
gebra w'ithout an explicit cutoff parameter in the
result, although it is still implied by the nature of
approximation in that the logarithmic factor in G(s)
is effectively replaced by a constant. The cutoff in-
troduced in g„(s) does not add a new parameter to
the problem, since g„(s) has no effect on the final
resu)t so long as it is a polynomial in s, which is
the case in the present calcula, tion. The approxi-
mation scheme depends on the kinematic factor of
the particular partial wave, whereas the Born
term, w'hich governs essentially the low-energy dy-
namics, remains unchanged, in contrast to other
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FIG. 2. The exact G(s) and the pole approximation
-3.024/(s -124.5), with s and so in units of pion mass
squared. The parameters are determined by the least-
squares fit of the exact G{s) up to s= 8080 after match-
Ulg at 8 = 8()~

schemes that involve the approximation of the driv-
ing forces. The self-consistency in the present ap-
proximation thus implies certain restrictions for
the acceptable Born terms to allow the bootstrap
particles. Other advantages a,s well as justifica-
tion of this approximation scheme can be found in

the original work' of Pagels.
Let us suppose that the driving forces coming

from the p and B exchanges in the u channel are
attractive enough to produce a bound state with
0&m~'& (M+m)' in the 1 amplitude and a reso-
nant state with ms'& (M+m)' in the 1' amplitude.
The condition that T' (s) have a simple pole at s
=m~' implies D»(m~'}=0, which gives



TABLE II. Comparison of our predictions with other theoretical and experimental results.

Ref. No.
W(O) -a sin~0 + b cos~O

a b

3

7
9

Present
results

1233+10 100 ~ 20
13,3

2.60 —2.56

0.03-3
0.04-0,36

0.04

0.033

0.45 ~ 0.04
0.48 + 0.05

0.39

0.10 ~ 0.08
0.06. 0.10

0.22

0.24

P

The condition that T (s) have a simple pole at
s =-m~' must be determined from the determinant

Bet(D~~. (s)) = Ss(s) +ih. , (s) (I,, i.' = 0, 2)

by demanding that

~ (m, '}=0,
I; = -~, (m, ')/m, ~,'(m, '),

(14)

(15)

where I~ is the decay width of the B meson calcu-
lated directly from the effective interaction (1),

where (E„Q) is the energy momentum of the ~
particle in the rest frame of the B meson.

With the experimental masses of m „mz, and
m, ,„as input we calculate g ~, g, , g„, m~, and
I"s directly from (12)-(15). A computer search
for these parameters is made over a wide range
of values by taking ng z

= 5.48 and ~n = 5.61 in the
m. , = 1 unit. In particular we tried to satisfy (12)-
(14) to within 1% while both I's from (15) and (16)
have values less than 200 MeV.

For the case of g~/g, & 0, we find that there is no
good solution even for a wide range of values Of

«f, (a)
'1 —— - [B„(a)—(m p' —a)B,', (a) j = 0.

P

Since this bound state must be consistent with the

p particle that is exchanged in the crossed channel,
we have the condition I/g„~' = -D,', (m ~')/N„(m ~'),
which can be rewritten as

W(6) - sin'0+ Q'ga '—+—,— cos'8.
'P'Pl g PEg g~

A positive ratio of g~/g, can, even if it is very
small, give a rather large cos'8 or E, contribution
to the angular distribution. However, for the case
of g, /g, & 0, we find that there exists a set of pa-
rameters satisfying (12)-(15)which are very rea-
sonable and stable, i.e., the solutions appear in
the region of 9.2 &g, z

&9.3, 1.15 &e~ =1.3 QeV
for an approximately constant ratio of g~/g, around
-2.5. The results are summarized in Table I.

In general, our results are in good agreement
with experiments"~ as well as with other theoret-
ically predicted results, '8 as we see from Table II.
In Table II, the number

~
D/S

~

' is the ratio of d-
wave and s-wave contributions. W(0) is the angu-
lar distribution for the B decay with a normaliza-
tion 2a+b =1. The data in the last row are the
averaged values taken from Table I.

In conclusion, it is possible to explain the axial-
vector zx resonance with mass around 1.2 GeV
from the N/D dynamics. The ratio of the coupling
constants g~/g, = -2.56 implies a substantial d-
wave contribution. This is in agreement with the
recent experiments in which only a small amount
of ~ helieity-zero amplitude appeared in the angu-
lar distribution of the .8 decay.

the parameters, i.e., 5 &g„z & 20, 0 & g, &30,
0 &g„&60, and 0.9 & m~ & 2 GeV. Thus we con-
clude that the reciprocal bootstrap between 1 and
1' B is not possible if g~/g, & 0. This conclusion
is in agreement with experiments' in that the zero-
helicity amplitude E, is small, as one ean easily
see from the angular distribution
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It is shown from the Deser-Gilbert-Sudarshan representation that the Pomeranchukon
residue of the 8'2 function for the axial-vector current is independent of Q . This justifies
the relation 0 t",~~(~) =

~anf „E2 '(~) previously derived from generalized scaling.

In the formal framework of the Deser-Gilbert-
Sudarshan (DGS) representation, ' we study the Q'

dependence of the Regge residues of the function
W',"'(v, Q') for the axial-vector current. "We find
that besides the scaling of vW',"'(v, Q')/m„' and the
Regge behavior in e of F(,"'(&o), the Pomeranchuh
on residue is independent of Q all the u(ay from
Q =0 to ~. The high-energy limit of the wN total
cross section is thus related unambiguously to
F(,"'(~), which provides us with a test of the free-
quark-algebra result F(,"'((c)=F(v'((c) at least as
(d(=2v/Q')-~. Generalized scaling" is made
plausible for secondary Hegge trajectories.

The axial-vector structure function W',""(v, Q')
is defined as

Q f 4, ~'"(((I(&„'(~),&:(o)1(l(»
spin

1
2 P„P„W',"'*(v, Q') + other terms,

gions in Q'. It is written as
oc a

W',""(v,Q') = f d)( [ dbms'(p. , b)
Jp

x 6(-Q + 2bv —p)E(v +,bm~ ) ~

The support of a'(p, , b) is determined by the mass
spectral conditions. ' For positive Q' and v, we
obtain, by integrating Eq. (3) over b,

dJLLO' p, ,
tel g ~PE@ p

As was pointed out by many people, the right-hand
side of Eq. (4) becomes independent of Q' in the
Bjorken scaling limit (Q'- ~ with (d =2v/Q' fixed)
if 0" (V, , b) decreases fast enough in p to permit
interchange of the order of Q'- ~ and Jdp. . If
cr'()(, , b) is truncated effectively at V. = p, „„„,scal-
ing sets in for Q'» p, „, „.

In the Regge limit (v- ~ with Q' fixed)

&(,( (v) = 2', 'vW,'""(v,O)/m— „', (2)

where p =p —q(p ~ q)/q'. Through PCAC (partially
conserved axial-vector current) W',""(v, 0) is re-
lated to mN scattering by'

.W'""( Q')/ ' -Z)3'(Q')" -'.
Regge i

This asymptotic behavior is realized if o (p, b)
behaves near 5=0 as

~'(), b) —Zy;() )b' "' . (6)
where o,"„~(v) is the w'p total cross section for a
massless external pion at laboratory energy v/m„,
and W2f, =0.96 m, is the pion decay constant.

We now write a DGS representation' for
W',""(v, Q'); this representation incorporates
causality and the mass spectral conditions, and
it is useful for relating different kinematical re-

Combining (4), (5), and (6), we obtain a relation
c.i —a

Pl(Q') =2- —.. d) r&() ) Q-. ,„SPl g p

which leads to the well-known Q' dependence of
the Regge residues P',. (Q') -(Q')' ( as Q'- ~.'


