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Necessary conditions to be satisfied by any elastic differential cross section are derived
directly from the unitarity condition and compared with the Martin-Newton condition. Pos-
sible practical uses of these conditions are briefly indicated.

It has been pointed out, first by Sakmar' for a special case which will be further discussed below, and by
Goldberg' for a number of elastic n'-p angular distributions, that the Martin-Newton condition for the ex-
istence of a solution of the elastic'unitarity nonlinear integral equation may not be satisfied in cases of
physical interest.

In terms of the absolute magnitude of the elastic amplitude, which is related to the elastic differential
cross section through G(x) =k(do/dQ)"' (x= cosg, k = relative momentum), the nonlinear integral equation
for the phase g(x) reads

G(x) sing(x) = . . . )„,cos[p(y) —p(z)]dydz,
G(y)G(z)

where the domain of integration is the region in the yz plane where the radicand is non-negative, and a so-
lution p(x) is sought such that 0 ~ p(x) & m/2. The Martin-Newton condition which guarantees the existence
(and quite possibly also the uniqueness) of a solution of (1) is

1 " G(y) G(z )dydz
G(x) ~ „2w(1 —x' —y' -z'+ 2xyz)'i'

It should be stressed that

(2)

q(1) & 1

is a. necessary condition, but max Q(x) & 1 can only be a sufficient condition of existence of a solution since
it is not satisfied' by a number of experimental elastic angular distributions. The purpose of this short
note is to indicate that necessary conditions on G(x), which appear to be quite close to being optimum, can
be easily derived and practically used.

Namely, if one multiplies Eq. (1) by the Legendre polynomial P„(x) and integrates over x, after
changing the order of integration on the right-hand side so as to integrate first with respect to ~ and after
using the addition formula for Legendre polynomials, one easily obtains

~1 -1
Im —,

' G(x)P„(x)exp[i'(x)]dx = -1
" -1

or
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G(x)P„(x)exp[i'(x)]d x = sin5„exp(i5„), (6)

vrhich is, of course, equivalent to the usual par-
tial-wave expansion and where the real numbers 5„
aretheordinaryphase shifts. If one rewrites (5) as

1

G(x)P„(x)[cosp(x) + sing(x)]d x

Since 0 ~ p(x) ~ n'/2, and therefore

1 ~cosp(x)+sing(x) ~&2,

we obviously m.ust have

1+&2
G(x)dx =—--- =1.207

2

= sin5„(cos5„+sin5„), and hence, for n ~ 1 also

one sees immediately that

G(x)P„(x)[cosP(x) + sing(x)]d x1-v2
& -1

1+F2
2

(6)

Cn =2
1

1

G(x)P„(x)dx —,
' G(x)ax

-1

(8)

before proceeding further, let us note that from the Martin-Newton condition (2), it follows in a. quite
straightforward manner that

0 ~ —,
'

' G(x)dx ~1, (9)

which is to be compared with condition (7). It should be emphasized though that while (9) is part of a. suffi-
cient condition, (7) expresses a necessary bound.

A lower bound for the numbers c„(n ~ 1) can also be found by writing

—c„=-', ' G(x)P„(x)[cosy(x)+sing(x)]dx ——,
'

l G(x)P„(x)[cosy(x)+sing(x) —(1+v2)/2]dx.
1+F2

a ]

From (6) and the fact that

max ~cosp(x) + sing(x) —(1+u 2 )/2
~

= (v2 —1)/2,

5 —3&2
c„&— — ——= -0.379 (n = 1, 2, . . . ) .

At first sight, conditions (8) and (10) seem impractical because their number is infinite, but it is easy to
see that in practice one has to check only a finite (and, probably, small) number of such inequalities. This
is simply because of Schwarz's inequality:

G(x)P (x)dx 2(2n+1) „
0G'(x)dx=

2(2 1)
.

Hence, the conditions (8) and (10) are satisfied if
the interval (-[o/2(2n +1)]"',[o /2(2n +1)]'")is en-
tirely contained in ((5 —8&2)/2, (1+~2)/2), but it is
obvious that beginning with a, value N of n large
enough this will be the case for all other n &¹

I~et us now indicate briefly two circumstances un-
der which the bounds derived in this paper could
be useful. Suppose that G(x) is given as a function
which interpolates experimental data for some
elastic process. In such a case a solution of (1)
should naturally exist and, indeed, conditions (7),

(8), and (10) are fulfilled for a number of experi-
mental angular distributions we checked. If, how-
ever, one deals with a function like

G(x) = ~(a+I x+ cx')"'

which for A,
.=2.018, g =. 0.227, 5 =0.152, c=0.621

represents' the angular distribution of w'p elastic
scattering at 220 MeV, one finds, e.g. , that c,
= 1.295. Qf course, the experimental errors which
affect the determination of the numbers A. , g, b„
and c in this case are sufficiently large (of the or-
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der of 10%) to account for this discrepancy. But
this only shows that the experimental errors can-
not concur in producing a violation of the condition
(7), which therefore imposes bounds on the magni-
tude and relative sign of such errors.

As an example of another possible use of cond¹
tions (7), consider the distribution indicated in
Ref. 1:

G(x) = Z(1+3x')'",

whose analytic form has been determined on the
basis of a model to represent m'p elastic scatter-
ing at 1236 MeV. In this case, only the coefficient
A, must be determined from experimental data. As
one can easily check, c, = 1.38013., which makes the
value A, = 0.988 indicated in Ref. 1 unacceptable.

On the other hand, for a lower value like A, = ~3/2,
which is still compatible with experimental data,
c, =. 1.195, but this is hardly s~rprjLsing since for
this value of A. , Eq. (1) is known' to have an exact
solution. Note also that c„=0 for odd n, while c„
&0 for n even. Since (v/2(2n+1)]"" =1/v2 for A.

=@3/2 and n = 1, it follows that out of all conditions
only the one for n = 0 provides an effective bound.

From a theoretical viewpoint, one might ex-
press the hope that the bounds (7), (8), and (10)
could provide an indication as to the direction and

range of an extension of the Martin-Newton condi-
tion covering all cases of physical interest.

I am deeply indebted to Professor A. Martin for
suggesting the proof which l.eads to the lower
bound (10), and for correcting a number of errors
in an earlier version of the manuscript.
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The possibility of binding an axial-vector meson in the vr~ system is considered. A sub-
stantial admixture of s and d waves is required to bootstrap this particle, and the decay
angular distribution calculated is in good agreement with the recent experimental information.

In this note, we would like to report on a simple
8-matrix dynamical calculation which gives a reso-
nant state in the J~ =1' state of the w~ channel. In
this state, the n~ system can take two angular mo-
mentum values l =0 and 2, and the calculation is
carried out by taking into account these two angu-
lar momentum channels.

Alj. previous attempts ' based on the self-con-
sistency idea have preferred a bound state in the
2 state. They are usually carried out either in
the static approximations or in the relativistic dis-

persion methods. But none of them have seriously
considered the possible admixture of the two angu-
lar momentum channels in the unnatural-spin-
parity state. In fact, the recent experiments'~ not
only favor 1' over 2 for this @co resonance but
also give the angular distributions in detail, indi-
cating the presence of both s and d waves.

We can explain these experiments from a tzvo-
channei N/D calculation, which assumes the driv-
ing forces coming from the u-channel exchanges
only. The matrix N/D equations are solved alge-


