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We present the underlying theoretical motivation for the recently introduced kinematic variable» .

Scattering amplitudes are considered as functions of s and n, and asymptotic formulas for s ~ at

fixed n are derived. It is shown empirically that many diffractive reactions appear to scale, i.e. , they

show little or no energy dependence when considered as functions of n'. The shrinkage of the forward
diffraction peak in dg/dt, seen in many reactions at present energies, is predicted to die out with increas-

ing energy. It is shown that pp ~ pp scattering should exhibit antishrinkage. Several reactions are
studied: pp ~ pp, K'p ~ K'p, m ~p ~ n ~p, yp ~ pp, yp ~ (I5p, pp ~ pN*. Speculative predictions are

made for a kind of "superscaling" in inclusive reactions and in deep-inelastic electron scattering.

I. INTRODUCTION AND MAIN RESULTS

In a recent letter ' we introduced a new kinematic
variable n (whose origin lies in certain group-
theoretical considerations) in terms of which high-
energy scattering data show remarkable regulari-
ties. In the above-mentioned letter we were con-
tent to discuss some of the phenomenological con-
sequences, mainly in connection with the energy
dependence of the slope in diffraction scattering,
and to point out the connection in pp scattering be-
tween n' and the variable P'P~' introduced long ago
by Krisch, ' on totally different grounds.

The aims of this present paper are
(i) to describe in detail the basic theoretical

reasons for suggesting that n' is a more suitable
and natural variable than t for the description of
scattering at high energies, and

(ii) to make a more detailed, though still some-
what qualitative, comparison between theory and
experiment for several high-energy reactions. It
will be shown as an empirical fact that diffractive
processes exhibit a type of scaling, i.e., they are
essentially energy-independent when considered
at fixed n'. The empirical results go far beyond
the predictions of the theory and suggest that n' is
not only a preferred variable from the point of
view of kinematics, but also perhaps is singled
out for some underlying dynamical reason.

Unfortunately, the starting point for the deriva-
tion of the variable n' is a rather technical one,
based on considerations of the theory of conspira-
cies and ToOer poles. Nevertheless we believe
that the principles involved and the results obtained
are of great interest. We shall therefore attempt,
in this introduction, to give a qualitative and non-
technical discussion of the main principles in-
volved, and also to summarize the essential re-

suits of our analysis. A discussion of phenome-
nological applications is to be found in Sec. III.
Our conclusions, as well as some speculative pre-
dictions about the behavior of inclusive reactions,
about deep-inelastic electron scattering, and about
nondiffractive 2-2 scattering, are located in Sec.
IV. All technical details are contained in Sec. II
and can be skipped by the reader who is primarily
interested in the phenomenological implications
of our results.

The scattering amplitude f for any 2-2 process
is basically a function of two independent con-
tinuous variables —say k and 6) or s and t -and very
often one expands f in terms of weO-defined func-
tions of one of the variables with coefficients
which depend on the other variable, for example,
the usual partial-wave expansion,

f (k, 8) =g (2l+1)f, (k)P, (cos8) .
1=0

The question we wish to discuss is "What deter-
mines sehich expansion we chooseP Why use the
Legendre expansion and not a Fourier integral or
any other type of expansion?" The answer is always
that simPlicity is a vital criterion. It makes
sense, for example, to use the Legendre expan-
sion, Eq. (1.1), for mp - vp scattering at 200 MeV
because we know, from other considerations, that
only a feru terms in the series are necessary to
obtain an excellent approximation to f (k, 8) in this
energy region. It does not make sense to use Eq.
(1.1) at CERN Intersecting Storage Rings (ISR) en-
ergies. ' 8'e shall thus take as an axiom that an
exPansi on is only useful or zeortfnehile if there i s
at least a chance that the function under study can
be reasonably approximated by one or a very
small number of terms in the series.

Now it sometimes happens that we can tell, on
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general grounds, that there is no hope at all of
approximating a function by one or just a few
terms of a certain expansion. Suppose, just for
the purposes of illustration, that f (k, 8) possesses
a peculiar symmetry such that

f (k, 8) = f (k, 8 + q), (1.2)

f {k, 8) = Q a„(k)d„(8},

where each d„(8}has the symmetry property

In this way it is clear that there is no inconsis-
tency in approximating f {k, 8) by just one term in
the expansion.

It is precisely this type of difficulty that ap-
pears in Regge theory. One considers a process

A+B- C+D (1.3)

and uses as variables t and 8, the energy squared
and the scattering angle, respectively, in the
center-of-mass system of the t channel AC -BD ~

One then performs a Legendre expansion based
on the t-channel scattering angle and obtains, with
g~ =cosO, ,

f (k, 8) = F(t
& 8,)

(1 4)

It is very well known how one replaces the sum
over I by the SommerfeId-Watson integral, etc.,
and eventually obtains the Regge asymptotic be-
havior

where p is some given angle, say 23'. Then it is
clear that the expansion, Eq. (1.1), is not a useful
one since to satisfy Eq. (1.2) we would have to cal-
culate P(cos(8+ g}) in terms of P, (cos8), involving
a range of values of I', and the condition (1.2)
would then impose a host of linear relations
among the f, (k).

In general terms, if f (k, 8) possesses some
exact symmetry under 8-g(8), say

f(k, g(8)) = &f (k, 8),

then, if simplicity is our aim, we should use ex-
pansion functions that themselves possess this
symmetry, i.e., we should write

selves. Thus one obtains complicated equations
among the f, (t} for different l values. To avoid
this one should not use the Legendre expansion at
these special t values, but rather an expansion
based on representation functions which them-
selves possess the necessary symmetry property.

The most important special t value, from the
point of view of describing physical scattering
processes, is t =0. For example, in elastic scat-
tering, it can be shown ~'~ that F(f =0, 8,) has an
extra symmetry as compared with F(t t 0, 8,).
This necessitates, according to our criterion of
simplicity, that we restrict our use of the P, (8),
i.e., representation functions of the rotation
group O(3), to t w0 and that for t =0 we use the
representation functions of the homogeneous Lo-
rentz group, O(3, 1).

We ask now, "What happens at t =0 in inelastic
scattering?" Again it can be shown" that
F{&= 0, 8,) has a special symmetry, but —and this
is the crux of our entire investigation -the special
symmetry is not the same as in the elastic case
at t =0, and to satisfy our criterion of simplicity
we should now employ representation functions of
the group of rotations and translations in a
plane, i.e., of T, &&O(2).

Now this is a very peculiar state of affairs.
The representation functions of O(3, 1) and T,
XO(2) are quite different in character, yet on
physical grounds it is almost impossible to be-
lieve that a reaction in which the masses of the
final particles equal those of the initial particles
and a very slightly inelastic reaction are totally
different from each other as s- ~. For example,
if we compare the case of reaction (1.3) in which

A mc B D with a reaction in which mA c
but m~ = mD+bm we would expect the reactions to
look more and more alike as b.m - 0, and we
would expect some kind of smooth transition from
one case to the other. However, the mathematical
structure changes discontinuously -no matter how
small Am is one must use T, XO(2) and not O(3, 1).
We have a situation, therefore, in which a small
continuous change in the physics is being de-
scribed by a major discontinuous change in the
mathematical structure. It is not difficult to
show ' that the cause of this peculiar behavior lies
in a bad choice of kinematic variables, namely
in the use of t, or more precisely in the use of
the momentum-transfer vector

For almost all values of t, the above procedure is
perfectly all right. The trouble arises at certain
special values of t where F(t, 8,) suddenly develops
additional symmetry properties, syrnrnetry prop-
erties which are not possessed by the P, (z, ) them-

(1.6}

as a fundamental variable in the description of the
scattering amplitude. We have therefore looked
for a vector to replace K, in terms of which the
mathematical structure would be insensitive to
whether the reaction was elastic or inelastic. In
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N, =0, N=2s"'P, P&( Osin&, 0), (1.8)

where p,. = ~p, ~
and p&

=
~pz ~

are the magnitudes of
the initial and final c.m. momenta.

As is discussed in detail in Sec. Il it is the in-
variance properties of N„ that determine the sym-
metry group ' and thus the expansion functions.
It is cLear that for ec0 or m, N„ is unchanged by
the pure Lorentz transformations in the x or z di-
rections and by rotations about the y axis, and
this will lead to the use of representation functions
of the group O(2, 1}made up of these three op-
erations. On the other hand, for 6 = 0 or m, N „
becomes a null vector and is unchanged by any Lo-
rentz transformation; so we will be led to use the
representations of O(3, 1) for forward or back-
ward scattering. The most important point is that
these statements hold regardless of the values of
the external masses and therefore apply uniformly
to all 2-2 reactions. However, it will turn out
that we have to pay a price for the use of n' —it
will be necessary to make some continuation off
the mass shell, and to assume that in small ex-
cursions from it no serious mass dependence is
introduced.

We therefore consider the scattering amplitudes
as a function of the vector N„ together with

p = p~ +pD and q =p~+pc,

x.e.,

other words, if the scattering amplitude has a
certain symmetry at some fixed value of the new

vector, then we require this symmetry to remain
unchanged as we vary the external masses of the
reaction. In this way the unnatural distinction be-
tween processes with different external masses
is eliminated and it becomes possible to use the
same expansion functions in all types of reactions.
For example, if we wish to compare the diffrac-
tive production pp-pN* with pp-pp then in terms
of the new vector the mathematical structure of the
two reactions is similar and any differences would

presumably reflect genuine dynamical effects.
The only vector we have been able to find with

the above properties is the 4-dimensional normal
to the scattering plane:

N„-2&„.;..PApapc-

Because of momentum conservation it is essen-
tially irrelevant which three of the vectors p„,p~,
pc, pD we choose for the definition of N„.

In the c.m. system of the reaction (1.3}, with
the y axis taken perpendicular to the scattering
plane as usual, one has

usual, allows f to depend only on two independent
scalars, which in this case are N' and p q; p q
is essentially s and

cv' = -Q (s, t, u ), (1.10}

where Q is the Kibble function, ' whose vanishing
defines the boundaries of the physical regions in
the Mandelstam plane for all of the related chan-
nels

AB- CD, &1.C -BD, AI7 —CJ3.

While specifying s and t defines a unique kine-
matic point in the Mandelstam plane, it should be
noted that specifying s (&0) and N' (~0) defines
two points in the s channel, related by having
scattering angles 8 and w-8, respectively. This
implies that a function of the variables (s, t) is
actually a function of (s, N', o), where o
= sgn(2m —8). The introduction of such a sign is a
common feature of coordinate transformations.
This + sign will be taken as implicitly present in
all that follows even when not explicitly written.
Of course, f (s,¹,+) and f (s, N', -) will, in gen-
eral, be completely different. However, in spe-
cial. cases like pp scattering

f =f (s, N', +) = f (s, N', -) = f (s, N'} .

In general, for any scattering amplitude, one can
write

f (s, 8) = fz(s, N') «cos8 f„(s,N'),

from which it follows that only the symmetrized
and antisyrnmetr ized scattering amplitudes

f~ (s, N') ==
I f (s, 8) ~ f (s, n —8)],

f (s, N") =
2 [f(s, 8) -f (s, v —8)]

I
(1.12)

n
N

A(s, t, m. '} ' (1.13)

where R(s, t, m,.') is a Lorentz scalar with mass-
squared dimensions. This vector n„ then has
exactly the same group properties as N„. We then
consider the symmetrized and antisymmetrized
scattering amplitudes of Eq. (1.12) as functions of
s and n'. A Regge-type analysis leads to the as-
ymptotic behavior

can be analytic functions of s and N'.
For the purposes of making the little-group ex-

pansion, to be discussed in Sec. II, we define
from N„a vector, n„, which has the dimensions
of a 4-momentum. This little vector is defined by

f =f(N; P, q). f (s, n'}
s ~; n2 fmed

Q $2)SII~II )

The general property of Lorentz covariance, as where a(n') is the position of a pole in an angular-
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Pf2 s2g

and for small n' we ha,ve

a(n') =a(0)+a'(0)n',

Eq. (1.14) gives

(1 .15)

(1.16)

2k 2
Rie(o)+ 's t/B -I]

dt (1.17)

However, for small t and asymptotic energies we
expect

/g4s s(a(o)+~' t- i]-g' (1.18)

We see that Eq. (1.17) is in complete contradiction
with this expected behavior if R =constant. Indeed
with R = constant and a'w 0 the amplitude given by
Eq. (1.14) is not polynomially bounded for 0 & t
& 4m,'. Thus we are forced to choose the function
R such that

momentum-like ph, ne conjugate to the momentum
vector n„. Since N' is completely crossing-sym-
metric between all three channels, it might seem
aesthetically appealing to choose R =constant
(GeV)' so that s' still has the same crossing prop-
erties as N'- for the purposes of this analysis the
normalization R couM be any scalar. However, a
difficulty arises when we study the high-energy
behavior of f (s, n'} at fixed n' if 8 =constant.
Since as s -~

R-s
as s - for small t. We shall find that the most
convenient choice is just 8 =s so we define

2
"p

(p -+p )a pvpo&~PJPc

1=-N .s (1.19)

A more detailed discussion of this problem, given
in Sec. III, shows that it is not advisable to at-
tempt to make R a crossing-symmetric function.

We shall therefore describe the scattering am-
plitude as a function of s and n', not forgetting
e =sgn[f, (s -s,)],where

t, = t -a + (m„' -me')(mc' —mv') js (1.20)

4p, Pis (1.21)

and that n'- -p~' as s -~. However, as will be
discussed in Sec. III, one cannot neglect the s de-
pendence of the factor p, '/s even at Serpukhov en-
ergies.

From Eqs. (1.10) and (1.19) one has, in general,

and the line t =to intersects the curve n' =constant
at s =s, , s, with s, &s„which means a=sgnge -8)
in the s channel. We note that

2 2n'=-4P' P' sin'8
S

n =t 1 — + —(m„-mc )(me -mv )s s

1
+ —[t(m„-me )(mc -mv )+ (m„mv me mc-}(m„'-me -mc'+ mv )], (1.22)

Z -=s+t+u
= m~ + m~ + mg + mg)

2 8 2 2

In most 2-2 reactions either m„= m~ or
m~=m~. In these cases

n2=t 1 — +0 —, (1.23) t=v

=V,
n =v, cr=+

While by definition, Eq. (1.19), n' tat fixed-t
as s-~, s' is very different from f for nonasymp-
totic energies and for large scattering angles.
This is illustrated in Fig. 1 where a typical curve
of n' =constant is shown in the Mandelstam plane.

The main results of our theoretical analysis us-
ing the variables s and n' are as follows:

(i) Scattering amplitudes considered as functions
of s and n' possess a mathematical structure that
is independent of the values of the external

FIG. 1, A typical curve of e2 = v (&0) plotted in the
Mandel, stam plane —for simplicity we have chosen the
masses of all the external particles to be equal. This
hyperboh, is asymptotic to the lines t =v and u =v which
are shown. The branches of the curves with their signs,
0', defined by Eq. (1.20), are also given.
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masses.
(ii) Comparison of experimental data as a func-

tion of s and n' for similar reactions but with dif-
fering external masses should give a direct indi-
cation of dynamical effects.

(iii} A "Toiler-like" treatment shows that for
fonuard scattering in any reaction

s++(0&-1- JAf- I x.~- xgl)

(1.24)

for a pole with Lorentz quantum number M and
trajectory intercept a, (0) ats'=0. We see that
the dominant pole for a given helicity amplitude
has M =+(A.„—Xc). It should also be noted that
this result is identical to ToQer 's result for elas-
tic scattering, ' but that Eq. (1.24) now holds for
all processes.

(iv) For baclneard scattenng we obtain

facy~, x„xs (s, e =s)
sa (0)-~ la- j xg-x~j)

X~-X~,X~-X~

d0' d&——=—(s n')=G(n') only.dt dt (1.2V)

(1.25)

where a (0) is now the intercept of a pole which
dominates in the backward region.

(v) For the region inside the physical bounda-
ries one has

a (n2)

(1.26)

where the + (-) sign refers to poles which domi-
nate scattering in the region 8 & s/2 (»v/2).
These formulas are expected to hold only for
[n'/ «s.

As emphasized earlier the only point in using
such expansions of the scattering amplitude is if
they simplify the description of the physics. We
have therefore studied several reactions, plotting
the data as a function of n' to see what emerges.
The results of this phenomenological study are
quite dramatic. We find:

(vi) Differential cross sections for reactions
that are mainly diffractive, such as pp-pp,
K+p -K'p, yp - (Ie)p, yp - pop, and pp pX*, show
a remarkable s independence, or scaling, as a
function of n'. Data from a very large range of
energies and angles all fall close to a universal
curve which is a function of n2 only, i.e., one has
phenomenologically Rat

This means, Eq. (1.26), that the leading pole in
diffractive scattering has

a(n')= 1 (1.28)

d do'
b(s, m '}=——ln-

dt dI,

=po 1 —— (1.29}

where Z =g, m,.' and P, is a reaction-dependent
constant.

For reactions reached from these by s-u cross-
ing, one predicts that ultimately their slope pa-
rameters will be given by

Z
b(s, m, 2}= p, 1+— (1.30)

where P, is the same constant as in the crossed
reaction. In particular since pp -pp forward scat-
tering obeys Eq. (1.29) we find that pp-pp scat-
tering should obey Eq. (1.30) and so exhibit anti-
shrinkage (at least at energies where secondary
trajectories cease to be important).

(viii) For reactions that are not purely diffrac-
tive, e.g., m'p-7j'p, we find that the data cluster on
an n' plot and seem to oscillate around a universal
n' function as the energy is varied. There is some
indication that the magnitude of the oscillations is
dying out as the energy increases and we are
tempted to conjecture that the data will ultimately

in the physical scattering region and all the shrink-
age in t for these reactions comes not from a
moving pole but merely from the s-dependent rela-
tion between n' and t.

It will be shown in Sec. III that each pole in our
angular-momentum-like plane, which produces
the asymptotic behavior given by Eq. (1.26), in-
duces an infinite set of poles in the usual Regge j
plane. Thus our leading trajectory, Eq. (1.28),
corresponds to a model for the Pomeranchukon
which would look like an infinite sequence of
"fixed" poles at j = 1, 0, -1, -2, . . . , in the Regge j
plane. There is an important lesson to be learned
from this result. Normally one associates shrink-
age of the forward diffraction peak with the non-
zero slope of a Regge trajectory, and one always
neglects very low-lying trajectories, say those
with o. & 0, or equivalently terms of order 1/s
compared to the leading ones. Yet in the above a
sequence of essentially flat poles, corresponding
to terms of order 1/s, 1/s', . . ., etc., compared
to the leading one, add up to give a differential
cross section in which the forward diffraction peak
shrinks, even at Serpukhov energies.

(vii) For those diffractive reactions which are
exotic in the s channel, the slope parameter
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collapse onto the universal n' curve. A more de-
tailed analysis of the s dependence of the data at
fixed n' is under current investigation.

II. PARTIAL-WAVE ANALYSIS; THE NEW

LITTLE - GROUP EXPANSION

A. General Discussion

We have seen that the little group of n„within
the physical region is O(2, 1) and on the physical
region boundary is O(3, 1) regardless of the mass-
es of the external particles. It is therefore our
aim, in this section, to expand the scattering am-

plitude for arbitrary masses and spins in terms
of unitary irreducible representations of the ap-
propriate little group of the normal vector n„. In
order ta achieve this we must express the helicity
amplitudes as a function of the Lorentz trans-
formation leaving n„ invariant. We do this in the
spirit of Toiler 's approach' but using essentially
the formalism of Delbourgo, Salam, and Strath-
dee 8

We begin by defining a type of M function from
the s -channel helicity amplitude

&Pc d c' PcSd clT I Pedi' PsSs s&

which describes the process A +I3- C +D:

Mcd, b(pc pp pA ps) (pcScc pjSDdITI p,Sda; psSs&&

—ZDbxc(fbc)Ddsc(fbi)(pcSc~c i pcSc~nlTI pdSd~d i pibSs~Jb&Dbdd (Lbd )Dbsb (I'bs

The states lp„S„a) and (pcSccl transform accord-
ing to the finite-dimensional representations of
the Lorentz group as follows:

Std ~ d (n'p q)=(pram IT( )nlqJ &m

= Q C (Ssb; 4'm', Sad)
cdab

(2.6)

I p„S„a)=Q I pSdkd& Db„", (Lb '),
A

(2.2)

(2.3)(PcSccl = Q D, b c(PSckcl ~

Using these equations we see that the M function
satisfies the covariance condition

x C (Scc; Jm, S„a)

x Mdd db(n; p, q) . (2.7)

This new matrix element, Sgd ~ d (n; p, q), satis-
fies the following covariance condition:

3gd, d (n; p, q) = Q D d'bb (A ')
aa'

Mbd, d b (p c s p D 1 PA I PB )

c'd'a'b'
Ds- (A ')D g (A ')

x 3gd, b db(An; Ap, Aq)

x Dbdo(A) . (2.8)

x D.",,'(A)D,',s'(A) (2.4)

xM, .d, b. (Ab, Ab, Ab, Ab )' Recalling Eq. (2.6) it can be seen that we can for-
mally write this covariance requirement as

Mbd, ob(n p q) ™d,b(pc pc pA ps) (2.5)

We rewrite M,d „as a function of the three four-
vectors n, p, and q defined in Eqs. (1.9) and
(1.19):

v (A) Iqzm& = g IAqzh&Db'„(A),

(pz'm'Iv '(A} = gD."„-.(A-')(ApJ'h'I,

U(A)T (n)U z(A) T (hn-

(2.9)

(2.10)

(2.11)

Just as in conventional Regge theory we will find
separate asymptotic formulas for the forward and
backward regions. In the following analysis we
shall assume that we are in the forward hemi-
sphere. The results for the backward hemisphere
then follow by analogy.

We next couple spins SA, S~ to give J and S~, S~
to give' J' and define formally

Having described some of the formalism we now
go on to discuss our partial-wave expansion for
the forward scattering amplitude.

B. Expansions on the Physical Region Boundary

In any reaction, for either forward or backward
scattering we have n = (0, 0, 0, 0) so that for any
A& O(3, 1)
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T(An) = T(n) =T(0) . (2.12) FJ, g (AR) =(p(o)J'm')TU(A)U(R))q(o)Jm)

Now in the s channel both the vectors P and q are
timelike so that we can define the standard vec-
tors p o', q «~ such that A„A, are real transforma-
tions:

and similarly

= Q E~ ~„(A}D~ (R) (2.19)
m''

p =A,p"'=A, ip[(1, 0, 0, 0),

q =A, q+' =A, ) q[ (1, 0, 0, 0) .
(2.13)

(2.14)

We can now rewrite the covariance condition, Eq.
(2.8), with A =A~ ' and obtain

3g~, , ~ (0; p, q) =Q D~'~o. (A~)
aa'

FI ~ (RA) =QD~. „(R}Fq, „~ (A). (2.20)
ml

™
We are now ready to consider the expansion of

the function F~ ~ (A}. Any function which is
square-integrable over the noncompact group
manifold may be expanded in terms of the repre-
sentations of the principal series. We parametrize
AE O(3, 1) in the following way '.

x D/0(A -I)

We lastly define the function

With A =A~ 'A, we see that

(2.15)

(2.16)

A (i ~, 8, , v~, g, 82, vm) =Rz 0"a ) 8z ~ va)

xa, (g)R, (0, 8„v,),

where

0- p, , &4w, 0-8, -~, o-v, 2g,

0 ~(&, 0~8, ~m, O~v, &2w.

(2.21)

(2.22)

Eg . I.(A) = Z ED.':a (Ap '}3gz» za(0' p q}
~tt ~l

x D~~'„(A~)D~o, (A~-'A, )

= QD~,'. (h~ ')(pJ'k')T (qJk}Dfo(A, )

R g R2 are rotations and a, a z -direction boost .
We can then expand a square-integrable function
E(A), in the following way'.

jon

)"(A) =Q J dk(M' —X')

= (p"'J'm' )U '(A~)TU(A, ) )q~'Jm}

=( p"' Jm'~ TU(A-'A, )~q"'Jm),

ENk DsI( (A)
Sp;i'p'

where the parameters M, A. are such that

(2.23)

p(0) Rp(0) p(0) ~

P

h, q' ' =Rq' ' =q' ' (2.13)

These invariances give rise to the right and left
covariance conditions, as follows:

1.e.y

F~, , ~„(A}=(p"'J'm'~TU(A))q")Jm}, (2.17)

where we have used the fact that with n = 0, T (n)
= T (An) We hav. e at last succeeded in defining a
function E which depends only on the little-group
transformation of the vector n„, and this is the
function we shall coqmnd. However, before dis-
cussing the actual expansion we must first con-
sider not just the transformations A =A~ 'A, but
also A =(A~h~) '(A, h, ), where A~k~, A„k, belong
to the so~alled left and right covariance groups.
These are the intersections of the groups of trans-
formations which leave both e and p"' and both n
and q' ', respectively, invariant. As p~', q' ' are
timelike, the transformations h~ and h, can be
any rotations:

Rek, =0, -~ &Imh. & ,
~M ( =0, —,', 1, —,', . . . ,

~,~'= IMI, [Mi+ 1, . . . .
Then

(2.24)

p jp dADQ I
gp g A (2.25)

and the integration is over the ranges given in Eq.
(2.22). We refer to the work of Toiler ' for the
properties of the representations of the homo-
geneous Lorentz group, D~„"~,„,(A).

It should be stressed that in order to carry out
the integration in E(l. (2.25), one has to know F(A)
for all A& O(3, 1). However, the definition of
E(A} in Eq. (2.17) is only physical for a restricted
range of A. We thus require a continuation of Eq.

where the invariant measure on the group dA is
given by

dA = d&xd"idv, sin8, d8i sm82d8, sinh'gd

(2.25)
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hf X=5),J,5„, ,5,.JG„EJ.J
{2.27)

which defines the generalized partial-wave ampli-
tudes E",~J. Now using the inverse of this last
equation, i.e., Eq. (2.23), we obtain

+i~
F~. ~ ~ (A) =Q dk(M' —]].')

j )0O

x FAIR (n2 0)D e) (A)

(2.28)

This integral corresponds to the generalization
of the background integral in the usual complex
angular momentum plane.

In order to pick up the contributions of poles in
the complex A. plane, we must move the contour
in Eq. (2.28) to the left, which requires replacing
the representation functions D by representation
functions of the second kind, A. . These are analo-
gous to the [0],(z)'s and like them have more suit-
able asymptotic behavior than the functions of the
first kind. The A",„~,,„,(A) are defined by

where

(2.29)

(2.17) off the mass shell at fixed n'. We assume
that for small excursions off the mass shell at
fixed n', it is permissible to ignore the mass de-
pendence. The same remark will also apply to
the O(2, 1) analysis in Sec. IID.

Before applying the expansion formula, Eo.
(2.23), to F~, , ~ (A), which we shall assume to
be square-integrable over the O(3, 1) group mani-
fold, ' we use the covariance conditions to elimin-
ate some of the indices. We note from Eq. (2.21)
that any A~ O(3, 1) can be written as

A =-R,a, g)R„
where A„R, are rotations and a, is a z-direction
boost Ap. plying Eq. (2.25) to the function F(A)
=— F~,„z (A) and using the right and left covari-
ance conditions, Eqs. (2.19), (2.20), together with
the properties of the representation functions '
D"~ we obtain

.s —X

S=lu] S+4 (2.30)

and the D's have the property that

D-0) X(A-) (trek)-1 DNX
i p, i'p' i i p, f'p' i ' (2.31)

x]1+0(e -')], (2.32)

with 3I» p. . Now from the properties of the D's,
Eq. (2.31), and the definition of Fe~~~ of Eq. (2.27)
we have that

f, N x (Ue x )- 1F- hl- ))IIV' (2.33)

This property can be used in Eq. {2.28) to restrict
the sum over M to positive values; however, in-
stead we shall substitute Eq. (2.29) into Eq. (2.28)
and using the property Eq. (2.33) obtain

OO + j0)O

F~, , ~ (A) =2 Q dA{M' —X'-)
0)O j 0)O

x FN- RAN- k (A)

(2.34)

The purpose of replacing the D functions by the
A. 's is exactly the same as that of replacing P, 's
by the Q,.'s in the spinless Regge expansion; i.e.,
they have suitable behavior at infinity in the com-
plex ~ plane enabling us to neglect the contribu-
tions from infinity when we move the contour into
the left half-plane. This we do now, assuming the
EJ' J have po les in the left half in the complex A.

plane at 4 =aj {0), whose positions are independent
of J, 4'. We define the residues of these poles—
called Lorentz poles —in the following way:

)' —.[x —,[0)]P",.,'[0)}=0,'". ', [0), (2.30)
1

X ~ a+(0)

where we have introduced a plus sign to remind
us that the poles and residues are those which
dominate scattering in the forward hemisphere.
Then assuming E"~ is meromorphic in a strip
iReh.

i
&'A. ' we move the contour in Eq. (2.34) to

some ]].„ iReki =A, &X', to give

With A =a, (g) the functions of the second kind have
large & behavior given by

Ai~~, „,(a, ) ~ 6„„exp]g(-]].—1-M+ p. )]

gp+ j )00

F~, , ~ (A) = Q d]].(M~ -A')E ~z, zi (0)Au~, ~
~ (A) .+ Q (M' -a„.')g,'. ~', ~(0)A~ „'[ ~„(A) +fixed poles.

jj j,N

(2.36)
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The fixed poles occur because the functions A"~(A)

can have poles at integral values of A. -M. How-

ever, it can be shown' that their contributions
either actually cancel out or at least are asymp-
totically negligible.

Because of Eq. (2.33) we see that if F" ~ has a
pole at A. = a(0), then there is also a pole in the
right half of the complex A. plane at A. = -a(0); this
is called a mirror pole. These mirror poles, as
we shall see [Eq. (2.43)], have the same asymp-
totic behavior as their corresponding Lorentz
poles.

Before we can consider the asymptotic behavior
of the amplitude Fz. ~ ~ (A~ 'A, ), Eq. (2.17), and
hence of the s-channel helicity amplitudes, we
must define some kinematics. We choose to work
in the s-channel center-of-mass frame. With
n„=0 we can take

p~ = (E„o,0, p, ) (r =A, a, c, D ), (2.37)

where the z components of the momenta satisfy
p =-p„and p =-p and of course E„+E =E +E
We then have, Eq. (1.9),

p~ = (E +E, 0, 0, -p„-p ),
q" = (E~ +Ec, 0, 0,p„+pc)

(2.38)

which we can rewrite as

p"= Ipl(cosh(g —g ), 0, 0, -»nh(g -g, )),
q~= lql(cosh&„0, 0, sinhg ), (2.39)

where

I p I' = 2 (ms'+ m~') —t,
lql' =2(m„'+ m ') - t,

and

I pl sinh(g -g, ) = Iql sinhg, .

Since

p q =s -I =
I pl Iql cosh',

we have therefore

U(A ) =e"~ ~0'~o~,

U(A )=e '~o 03
a

and so

(2.41)

s —Q

[2 (m„'+ mc') —t]'"[2(ms'+ mD') —t]'"
(2.40)

which is only large for s -~ and n' fixed if we are
considering scattering in the forward hemisphere.
We then have

U(A -'A ) =e-'~'».
a (2.42)

Putting A = A~ 'A, = a, (g) in the expansion formula,
Eq. (2.36), and letting &-~ we obtain the high-
energy behavior of the forward scattering ampli-
tude. Then the rightmost Lorentz pole at A. = a, (0)
will dominate, giving

F~.„, z (n =0, g)-5 ~ (M' —a,')g~Y~QO)

g(a+-1- IN-lm l I)e + (2.43)

Recalling Eqs. (2.1) and (2.7) and noting that

U (f, ) = e '~ i2 e ' s~ e'@J'u e-'«o3

D '(L, )=e ' ~d (g)e'"~+'~'
Pl/ P pp

we have that as s-~

(pC C C i pD D DITI pA~A Ai pB B B)l 2=a, e=o

sa+&o~-x- IN-l&A- ~c II
X~- Q, X~ - X.D

(2.44)

The Kronecker 6 ensures angular momentum con-
servation in the forward direction and we see that
the dominant Lorentz pole has M = x(X„—Ac) .

It should be stressed that this behavior of the
forward scattering amplitude, Eq. (2.44), holds
regardless of the external mass configuration.
To leading order in s, Eq. (2.44) is in complete
agreement with both analyticity and other group-
theoretic results. Of course, Eq. (2.44) is ab-
solutely identical to the result of Toiler '" in the
EE mass configuration [we denote a process of
the type (equal-mass pair)- (equal-mass pair) in
the t channel as an EE process] at t =0 to all ord-
ers in s, since in this case t =0 corresponds to
n' =0. However, in other mass configurations our
result has been derived without the need for as-
suming either analyticity in the external masses"
or that expansions should be made with respect to
the classification group of Regge trajectories rath-
er than the appropriate little group. " Indeed previ-
ous impositions of O(3, 1) symmetry at t =0 may be
regarded as a first approximation to the exact Lo-
rentz symmetry when n'=0, since, asymptotically
in s, t =0 means forward scattering and so coin-
cides with n' =0 there.

Up to now we have considered p = p~ + p~,
q = p„+pc and accordingly coupled spins S~, SD
and S~ S~. This corresponds to the usual t-chan-
nel analysis. As we have seen, (p. q/lpl Iql)-~,
as s -~, at fixed n', only in the forward hemi-
sphere. We could equally well have chosen
p = p~ + p~, q = p„+p~ and have coupled spins S„,SD
to give J and S~, S~ to give J'. Then
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p ~ q M (min(S„+Sc, Ss+Sn} (2.48}

s —t

[2 (ms2 + mc2) -u]i/2[2 (m~2 + mD2) -u]'/2

(2.45)

and s- ~ gives & -~ at fixed n' for scattering in
the backward hemisphere. Thus in analogy with
the forward case, we now obtain at n' =0 for back-
ward scattering at asymptotic energies:

(2.46)

Here X =a (0) refers to the Lorentz pole which
dominates scattering in the backward hemisphere.
In a similar way we could choose p = p~ -p»
q = p„-ps, but with n' fixed p q/i pi iqi is never
asymptotic in the s-channel physical region.

C. Relationship to the Theory of Cosenza,
Sciarrino, and Toiler

We have already mentioned in Sec. I that the
O(3, 1) analysis of Toiler only applies at t = 0 to
elastic reactions of the type A + B-A +B. In a,n

attempt to extend their analysis to processes of
the type A+B-A+C, referred to as UE reactions
[(unequal-mass pair)- (equal-mass pair) in the t
channel], ' and processes like /1 +B-C+D (UU
type), Cosenza, Sciarrino, and Toiler" studied
expansion based on the complex Lorentz group
and predicted the asymptotic behavior

Sg(o}-I- )N- IA, g- hall-k
Xg- Q, Xg - A.D

(2.47)

where k is a non-nega, tive integer which can only
be nonzero in UE-type reactions. The value of k
is specified in terms of the internal quantum num-
bers (I, G, B, Y) of the exchanged pole. On the
contrary, in our n' analysis, the result with k =-0

holds for all reactions.
Another difference between this n' approach and

the complex Lorentz group result is in the allowed
range of M in F~, ~ ~ [see (2.24)]. In our anal-
ysis we always have

whereas in Ref. 11 M may take any non-negative
value in UE- and UU-type reactions. This differ-
ence arises because we exploit the exact O(3, 1)
symmetry at ]9 = 0 in all reactions and not just in
EE scattering.

D. Expansions Inside the Physical Region

We now consider the case of scattering in the
physical region when n'(0 and derive high-energy
expansions at fixed negative n'. We shall see that
the dominance of a single term in our expansion
gives results very different from the usual Regge
case. As before we have different asymptotic ex-
pansions in the forward and backward hemi-
spheres ~ The analysis presented refers to scat-
tering in the forward hemisphere and the back-
ward case then follows trivially.

We return to Eq. (2.17) and define

Fz, /„(n, A) =(p' JO'm'iT(A «'n)U(A)iq~«'Jm},

(2.49)

where A =A~ 'A, . The four-vector, n„, is always
spacelike inside the physical scattering region,
so we can choose n„=(0, 0, 0, (-n')'"). Clearly if
A«, A, a O(2, 1) then An = n. Now the left and right
covariance groups are the intersections of the
groups of transformations which leave both n, p "'
andn, q"', respectively, invariant. Both co-
variance groups are O(2, 1) AO(3), i.e., O(2), the
group of rotations about the z axis. The co-
variance conditions are

E/, , / (n; AR, ) = Q E~» ~«(n; A)D~ (R,),
k

(2.50}

F~, , ~ (n; R,A) = Q F/, «, ~ (n; A)D~ «, (R,),
k'

(2.51)
where D~ (R, (p)}=5 ~ e ' @.

If F~ „~ (n, A) is square-integrable over the
O(2, 1) group manifold, we can perform an O(2, 1)
expansion as follows. " We note that any A~O(2, 1)
can be written as

(2.52)

We use this fact together with the covariance con-
ditions, Eqs. (2.50) and (2.51), to simplify the in-
dices and obtain '4

2l+1
g 2 g

ao
Ez,„ / (n, A)= ~ dl, f~"' / I'n2)D", (A)+ Q (2k —1)f~«/', / (n2)D«, ' (A}.e= 0, 1 /2 —2/2-i ~ k=1- &

(2.53)
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A~ 'A, =a„(g), (2.54)

where
i pi sinh(g t„-) = iq i sinhg, gives us the s

channel center-of-mass frame. cosh/ is given by
Eq. (2.40) just as before. This is because with n„
in the z direction p, =q, = 0 and so the Lorentz
scalar p q = poqo-pxqi -p2q, —the O(2, 1) product.

In order to move the integral contour of Eq.
(2.53}to the left and to pick up contributions to
F~, ~ ~ (n', A} from poles in the complex l plane
we replace the continuous class of representations
by representation functions of the second kind, A,
which are defined by

D'; (A) =A', (A. )+O'„,A„', '(A)(U' ) ', (2.55)

where

O' =F(1+m + I)/I" (m —l)

The first term on the right-hand side of this equa-
tion involves the principal series representations
for which mm'=e, e +1,c +2, . . ., and the second
term involves the discrete series for which m, m'

= +k, ~ (k + 1), . . . . With n „=( 0, 0, 0, (-n')'") we
can choose

A, =a„(r., -C), A, =a.(r.o)

so that

-io+'" 2l + 12Q dl
)

f~i' P ~ (n')A t '(A)
IE 0

tan@ i-&

2aq+1

(2.60)

From Eq. (2.57) we see that a pole in f ' ' at
l =a(n') implies the existence of a mirror pole at
l =-a(n') —1, both having the same asymptotic be-
havior.

Recalling that A =a, (g), Eq. (2.54), we shall
consider the behavior of F~, , ~ (s, n') as s-~.
We note that

A', (a (g)) ~ e "'"~ 1 — e ~+0(e '~)2m'm-
t+1

(2.61)

and that the contribution of the discrete class de-
creases faster than e ~ and so is neglected. If we
are considering scattering in the forward hemi-
sphere cosh& is given by Eq. (2.40) and in the back-
ward hemisphere by Eq. (2.45). The leading high-
energy behavior is given by the rightmost pole in
the complex l plane"

and (2.56) 2a, (n') + 1

X gk e a~(n2iJ''ss', J'm (2.62)

fi)e (Oi )-tf-i-l, t Oi (2.57)

We use this relation together with Eq. (2.55) to
write the integral of Eq. (2.53) as

From this last property of the D's we have that
where we have again introduced the a signs to re-
fer to the poles which dominate forward or back-
ward hemisphere scattering, respectively.

We note that when we take the limit n'-0 of a
single pole contribution

(2.58)

Fz, i (s, n2=0)- 2a+1
)tanm a-e

. ~ (0)A„;„'(A), (2.63)

If we assume that the function f' is meromorphic
for iRe(l+-, )i (L we can move the contour from
Rel=-', to Rel=-L, (L) L,}. The functions A are
such that the contributions to the integral a't in-
finity are negligible. We assume that the partial
wave f ' ' have a pole at l = a(n') with residue
defined by

where ADO(2, 1}, we find that the covariance con-
ditions for A&O(3, 1}which apply when n =0 can-
not be satisfied by such l-plane contributions in-
dividually. However, of course, a single Lorentz
pole does satisfy such covariance conditions and
as shown by Sciarrino and ToQer" such a pole at
X =X(0) corresponds to an infinite family of l -plane
poles at l„(0) =X(0) —v —1, v =0, 1, 2, . . . . We see
therefore that as n'-0 an infinity of single l-plane
pole contributions, Eq. (2.63), must conspire to
produce a single Lorentz pole term so that the
scattering amplitude may satisfy the correct co-
variance conditions, Eqs. (2.19) and (2.20), at
n =0.

(2.59)

We can then rewrite the expression, Eq. (2.58),
as

1' —.[1 — ) ')] f ) )" l ')) b l')='1

g ~si(n~)
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E. Connection Between the Complex I„2 and I q Planes

f, (&)=f &*,(),(*,)+((,*,),
Cp

where l here is short for l, . We now feed in for
E the asymptotic form induced by a pole in the l„2
plane at I„,=o(s'), i.e.,

sE-b(n')—
Sp

(2.64)

(2.65)

If the residue b(n') is a polynomial in n' we can
rewrite it in the following form:

b(.*)=I:(.(~)(;), (2.66)
m=p

and we write Q, (z, ) as

s l-2P-1
Q, (z,}=Q qr(t)—

p=a

We shaD further assume that the "trajectory func-
tion, " a(n'), is linear in n' so that

(2.67)

a(n') =a(0)+ta'(0)+ a'(0)+, a'(0),At, Bt

where

(2.68)

A (t) = t ' —t g m, '+ (m„' -m c)(m 's- mo),

B(t) = t (m„' -ms') (mc' -mo )

+ (m„'mn' -me'mc')(m„'+ mo'-ms'-mc') .
Then using the shorthand

a(t) =a(0) +ta'(0)

and

b (t}q~(t) Aa' ' Ba' ~

I'(i +1)I'(k+1) so so

(2.69)

(2.VO)

we have on putting Eqs. (2.65)-(2.VO) into Eq.
(2.64) and integrating at fixed t that

In the previous sections we have performed a
Regge-type analysis which was based on assuming
the existence of poles in an angular-momentum-
like plane, l„2, conjugate to the vector n„. It is
not at all clear whether it is in fact meaningful to
postulate poles in this plane. However, any sin-
gularity in the complex E„2 plane gives rise to a
sequence of singularities in the more familiar
complex angular momentum plane l„and it is
therefore of interest to ask what singularity struc-
ture is induced in the L, plane by a simple pole in

the l„2 plane.
To see this, we consider the usual Froissart-

Gribov integral defining f, (t) at fixed t:

k+1}
[I—o((t) +i + 2k + m +2p]'+""

o {n2)We see from this last equation that a b(n')s"" '

asymptotics corresponds to a very complicated
family of Regge poles and multipoles. However,
the leading pole at I = o((f) is a simple Itegge pole.

In a similar way a single Lorentz pole in the ~„2
plane gives a series of Toiler multipoles at t =0,
except in the case of EE scattering, where there
is a one-to-one correspondence between our Lo-
rentz poles and those of Toiler. '

It should be noted from Eq. (2.71) that if the
leading Regge pole has a factorizable residue,
then b(n') will not in general be completely fac-
torizable. However, in the expansion of b(n') in
inverse powers of s, Eq. (2.65), the leading term
will factorize.

It has been argued that the use of the variable
n simplifies and unifies the group-theoretical
structure of the expansions used for the scatter-
ing amplitude. However, there is no guarantee
that the amplitude is dominated by a simple set of
singu1arities in the complex l~ plane. It is a dy-
namical question as to whether the singularity
structure will be simpler in the l, or Ly planes.
Thus it might be that a few l„2 poles suffice, im-
plying the need for an infinity of Regge poles, or
vice versa. In our present state of ignorance it
is impossible to answer questions of this kind by
means of dynamica1 calculations and therefore the
onIy way to test for simplicity is by means of a
phenomenological study of scattering data. It
turns out, as will be discussed in the next section,
that the data do indicate quite remarkably simple
properties in the n' description.

III. ANALYSIS OF SCATTERING DATA AS
A FUNCTION OF n2

The main result of the above analysis is em-
bodied in the suggestion that the description of
scattering amplitudes as functions of s and n,
rather than s and t, could lead to simplifications,
in the sense that all spurious kinematical effects
are absent and that the behavior of the scattering
amplitudes is a direct reflection of the underlying
dynamics.

Thus the first issue to be settled is to see
whether experimental data when plotted against s
and n' do show any simplicity. It will be seen in
what follows that diff~active processes shore a re-
markable kind of "scaling" or universality and
that their cross sections appear to be independent
of s over a very large range of energies,

The second issue relates to the specific Regge-
like model based on the existence of poles in the
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complex l„& plane. Here we have the predictions
that at fixed n', with n' «s,

dc 1 do(8) do(s —8)'
dt „2cosa dt dt (3 4)

(+2)s2[a+&n )-&]
d t forward hemisphere

(3 I)
when looking at data which cover a very large
angular range.

For small 0,

(s )s I n 1 (3.2)
backward hemisphere a~ ~

(
dc I dc'(8) do(v —8)
dt s 2, dt dt (3.3)

where s, (n') are "trajectory functions" associated
with the quantum numbers of the exchanges which
dominate forward and backward scattering respec-
tively. To test these one must perform the same
kind of analysis as is usually done to test the
Regge model, except that here one works at fixed
n' rather than fixed t.

It should be stressed that the above two issues
are quite separate. There are good theoretical
grounds for suggesting the use of the variable n'.
On the other hand, the analytic structure in the
l„2 plane is not well understood and the polelike
model may be far too simple. Even if it is, it
will still be of great interest to look at the struc-
ture of scattering amplitudes as functions of s
and n', as indicated by the data themselves.

It should also be stressed that some care must
be taken in analyzing the data as a function of n'.
As mentioned in the Introduction, one should,
strictly speaking, plot the symmetric and anti-
symmetric combinations,

do(8) Dodo(« —8)
dt dt

typically, so that near the forward or backward
regions the above construction is of little impor-
tance. It is vital, however, if the data include the
region near 8 =-,'n. The exceptions to the above
are reactions like pp-pp which are symmetric
around 8 =2s, so that (d&r/dt)„= 0, and-one need
only look at dc/dt itself. However, in general, if
one is testing for scaling over a large range of
angles and energies, it is necessary to use the
combinations given in Eqs. (3.3) and (3.4). On the
other hand, in testing the Regge-like predictions
listed in Eqs. (3.1}and (3.2), it should be borne
in mind that the formulas are only expected to be
valid for values of 8 close to 0' or 180', respec-
tively. Thus for testing Eqs. (3.1}and (3.2) it is
not necessary to form the symmetric and anti-
symmetric combinations.

We shall now consider several 2-2 reactions
and show that the s, n' behavior of the data pos-
sess quite dramatic features.

(i} pp-pp. In Fig. 2 is shown the differential
cross section for pp -pp scattering as a function
of t for various momenta between P~ = I.I and
21.3 GeV/c. &7 It is seen that the curves show a
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FIG, 2. pp elastic differential cross section for pt, from 1.7 to 21.3 Gev/c for
~ t( & 20 (Gev/c) . The graph is from

Ref. 17 and references to the data are given there.
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tially the top left-hand corner of Fig. 3 in more detail. The data are from Ref. 18.

there is any validity in our interpretation of the

pp elastic reaction, we should expect both these
reactions to show little energy dependence at fixed
n'. Figures 5 and 6 show that this is indeed the
case.~ Both reactions scale at fixed n' over a
wide range of energies and there is no visible
shrinkage of do/dt as a function of n'. That this
happens is nontriviat, since the shrinkages in t for
pp-pp, K'p-K'p, and yp- pp are all different,
and the mechanism for transforming these varied
shrinkages in t into nonshrinlmge against n~ is
completely contained in the mass dependence of
the factor dn'/dt in Eq. (8.8) [see also Eq. (1.22)].

(iii) yp- p'p. It is known that the cross section
for this reaction is fairly constant above 2 GeV
and that the natural-parity exchange dominates.
Thus it has the main characteristics of a diffrac-
tive process and we might hope to find an n' uni-
versality similar to the cases studied above. A
plot of d&/dt against n' for E~ ranging from 6 to
17.8 GeV is shown in Fig. V. It is again seen that
there is essentially no s dependence in the data~ at
fixed n

It was remarked in the Introduction that the nor-
malization used to define n„ from N„ is to some
extent arbitrary from a group-theoretical point of
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view. Any renormalization of the form
n„=N„/R(s, t, u), where

R(s tu) ~ s,
S~~; if~ed

would provide an acceptable description of scatter-
ing at very small t. However, the choice R(s, t, u)
=-s is essentially unique in providing a description
of the data in which the s dependence disappears,
i.e., in which the shrinkage on a t plot becomes
automatically accounted for as a kinematic effect.
For example, one can show that no crossing-sym-
metric polynomial in s, t, u and the external mass-
es exists which has this property. It is possible
that there is some deep underlying dynamical rea-
son for the particular choice n„singled out by the
data.

(iv) w'p-ii'p. These reactions are notpurely
diffractive. Their cross sections are varying with
energy and there is a considerable amount of
structure in the t dependence of do/dt. Neverthe-
less, as is seen in Figs. 8-11 the large s varia-
tion of da/dt at fixed t is very much reduced when
considered at fixed n . ' The n plots are not
nearly so universal as in the previous reactions,
but this is in accordance with our knowledge that
w'p- ii'p are not completely dominated (in Regge

5- (s) =l3, (f ~ ), (3.10)

where P, is the same constant that appears in Eq.
(3.9). Thus the pp diffraction peak is predicted to
exPand until it ultimately has the same s-indepen-
dent limiting slope p, as in pp scattering. Of

language) by the Pomeranchukon, and that large
contributions must be attributed to the secondary
trajectories. In the n' description the secondary
effects play a much smaller role, and we are at
present trying to study them quantitatively.

(v) N* production. There are not many detailed
data on the energy variation of do/dt for processes
like pp -N*p, but we show one example in Fig. 12
for the N*(1 609) with l=-,', J~= —,"." It is seen
that within the limited statistics the data points
are compatible with little or no energy variation
at fixed n'.

(vi) pp- pp. Since the dominant component of
the pp elastic differential cross section is just a
function of -P/s' = -tu/s, it follows from the
crossing properties that the diffractive part of the
pp elastic differential cross section must be the
same function of -P/u' = st/u In part-icular . this
implies that the slope parameter for this diffrac-
tive component of pp scattering satisfies
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course secondary effects are very important in

pp scattering at accelerator energies, so Eq.
(3.l0) cannot be expected to fit the pp sloye at
these energies, but one would exPect Eq. (3.10) to
hold at NAL energies. Nevertheless it is interest-
ing to note that the pp differential cross section
appears to show antishrinkage already at medium
energies. It is important to note, as suggested by
Odorico" and discussed in detail by Pinsky, " that
the breaks in pp elastic scattering data and the
dips in the crossed reaction pp -pp fall on the
same e'=constant curves. The relation of this ef-
fect of crossing to the shrinkage of the pp diffrac-
tion peak and the antishrinking in pp scattering
has already been discussed in Refs. 24 and 25.

IV. CONCLUSIONS

The variable n' has been introduced in order to
unify the group-theoretical kinematic structure of
elastic and inelastic reactions and thereby to pro-
vide the same high-energy expansions for these
different types of processes. A Regge-type anal-
ysis has led to predictions of the form

did
y (nQ)s 2[a inm&-1 j

e~~l fi fixed

valid for g'~«s. Plots of dc/dt against n' for
many diffractive reactions show a remarkable
lack of energy dependence at fixed n'. This "scal-
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ing" corresponds to having a(n') =1 for the doini-
nant diffractive term at high energies. Such a pole
is of course the analog of the Pomeranchukon.
The shrinkage of do/dt versus t appears here as a
purely kinematic effect and is predicted to die out
at very high energies. Thus our picture of the
"Pomeranchukon" is quite different from the tra-
ditional Regge version. Since in any case one
has never had a clear idea of the nature of the
Regge Pomeranchukon, it is perhaps not too dif-
ficult to accept our new description of what the
"Pomeranchukon" term is like.

The situation as regards nondiffractive process-
es is still not clear and awaits further study.
However, Maor, "and independently Pond, "have
plotted do/dt versus n' for the two classic Regge

reactions n p-m'n and n p-gn, which are sup-
posed to isolate p and A, exchange, respectively,
and which indeed are the main sources of our
knowledge of a~(t) and a„,(t) for t & 0. In both
cases they find that the s variation at different
fixed n' values is controlled by an n'-independent
power. Maor finds a~(n') = 0.4, a„(n') = 0.3 and
Pond finds that any allowable slope in n' would
have to be &0.2 for both a and a„,." These re-
sults are very surprising and perhaps suggest that
also in these nondiffractive reactions the shrinkage
with increasing t is a kinematic effect and will die
out at higher energies. This viewpoint would be
quite different from the usual Regge one and it is
of great importance to test it experimentally. The
most direct method would be to perform a high-
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statistics measurement of the differential cross
section for these reactions at Serpukhov energies
and see if the s dependence of the data is at all
compatible with the behavior

do'
(e-p eon) b(n2)s2[aP(n )-1]2

dt (4.2)

do
(s-p qn) c (no)soLoA 2 &»-~]2

dt (4 3)

at fixed n' values, in which ao(n') and a„(n') are
2

constants or weakly deyendent on n'.
The remarkable simylicity found in the data for

many reactions, when considered as a function of
s and n' (and a), goes] far beyond the expectations
of the original theory . The theory suggested that
describing amplitudes as f (s, n') would simplify
comparison of elastic and inelastic reactions by
eliminating spurious kinematical effects. The
empirical discovery that diffractive amplitudes

- (b (n')('s'l~~& " ']
dt (4.4)

for s -~ and n' fixed such that (n'( «s, in both
the forward and backward hemispheres, and one
should plot the symmetrized cross sections
(da/dt)s and (do/dt)A [see Eqs. (3.3) and (3.4)] as
functions of n' for the full range of n' for all

are strongly dominated by s-independent terms,
f (n') only, is a surprise, and although nicely
compatible with the theory is not really predicted
by it. Thus it may be that there is some deep
underlying dynamical significance to n' which is
not yet understood. "

In view of our ignorance of dynamics it seems
imperative to extend the empirical study of scat-
tering data as functions of s and n', so as to learn
as much as possible about the structure of the am-
plitudes f (s, n', a). To this end one should study
the predictions that
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known 2-2 reactions.
We have stressed in the Introduction that the use

of n„makes the mathematical structure of the
scattering amplitudes invariant under changes in
the external masses. Thus it would be extremely
interesting to look at a reaction in which we can
vary smoothly the mass of one of the external par-
ticles while leaving unchanged all its other prop-
erties. Just such a possibility is provided by
deep-inelastic reactions in which a final hadron is
actually monitored. For example in ep -ep p' we
are essentially studying the photoproduction reac-
tion

r(q') + p -p'+ p

in which the mass of the y can be continuously
varied (m '=q'&0). Since for q'=0, as mentioned
in Sec. III C and shown in Fig. 7,

do'

d &
(rp- p'p) = f (n') only,

one might hope that this holds for reasonably
small q'v0. If this is so, then defining b(s, q') by

do'

Z, (r(q')p ~'p) =& e~p[I—(s, q')f]

for small t, one has
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2

0(q, q')=0(q, q)(1—
N p

(4.6)

where t) (s, 0) is the logarithmic slope in true p'
photoproduction. It should be noted that accord-
ing to Eq. (4.6) the diffraction peak gets narrocoer
as (q') increases, at fixed s -the square of the

yp c.m. energy. The data are at present some-
what self-contradictory and it is not yet possible
to test Eq. (4.6) adequately. lt is also possible in
inclusive reactions that scaling may set in at
lower energies if instead of considering f (s, p~', x)
one uses f(s,s', x); i.e., one looks at the s depen-
dence at fixed n and x rather than fixed p~ and x.
The differential cross sections, d'o/dt dM' (M is
the missing mass), may also scale sooner if
plotted at fixed n' and M' rather than t and ~~."

In summary the empirical evidence suggests that
the variable n' may have some deep and funda-
mental dynamical significance. It will be of great
interest on the one hand to extend these empirical
studies and, on the other hand, to try to under-
stand the role of n' from a dynamical point of view.
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