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The experimental Dalitz plot for pn -7 '7 7 annihilations at rest is analyzed, using previously
suggested two-variable expansions of decay amplitudes, based on the representation theory of the group
O(4). A fair fit to the Dalitz plot is obtained by minimizing the X2 function, assuming that the
annihilation proceeds from a protium state of definite (but unspecified) angular momentum J (or from
several such states). Fits with 2, 4, 6, and 9 free parameters are considered, the values of the
parameters are essentially stable with respect to the “‘cutoff” of the expansion, and the solutions are
unique. The fit is purely kinematical, in that no assumptions are made about the initial and final state
or the annihilation dynamics. An analysis of the contribution of various parts of the Dalitz plot to the
over-all x* suggests that the fit would be considerably improved by including, €.g., p- and f-meson
final-state resonances explicitly. We compare the O(4) expansions with a power-series expansion in
Dalitz-Fabri variables and also with various models that have been recently applied, in particular the
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Veneziano model and its generalizations and various final-state-interaction models.

I. INTRODUCTION

In a previous paper! (hereafter referred to as I)
a general formalism was presented for analyzing
the Dalitz-plot distributions for three-body de-
cays, involving particles with arbitrary spins.
Here we apply the formalism to study the pn—~ 37
annihilations at rest, using the experimental data
of Anninos et al.?'® We also compare some fea-
tures of our treatment with those of other ap-
proaches to three-pion annihilations.

The formalism provides two-variable expansions
of the decay amplitudes for the process 1-2+3 +4
in terms of the transformation matrices of the
group O(4). It is a generalization of a method
proposed earlier for treating three-body decays
in the case when all particles involved have spin
zero. The method has already been applied to
analyze data on K - 37 and n— 37 decays.*

The entire approach, making use of two-variable
expansions of decay amplitudes in terms of func-
tions, provided by the O(4) group, is a modifica-
tion of a similar approach to relativistic scatter-
ing amplitudes.> There, relativistic invariance
is used to derive two-variable expansions in terms
of basis functions® of the homogeneous Lorentz
group O(3, 1) (for spin-zero particles), or in
terms of the transformation matrices of O(3, 1)
(for particles with arbitrary spins).”

The O(4) expansions to be applied below are ob-

T

tained in the following manner. We consider the
decay 1-2+3 +4 in a frame of reference resem-
bling the center-of-mass system for scattering,
i.e., we put p,=-p, and p, =p,. Making use of a
formalism suggested by Feldman and Matthews,?
we can keep track separately of the dependence of
the helicity amplitudes for the decay on the spin
variables and on various energies and angles.

Each amplitude depends dynamically on two vari-
ables only, e.g., the Mandelstam variables or any
suitable combinations of these. We choose these
independent variables to be the spherical coordi-
nates of one of the vectors figuring in the problem,
e.g., the momentum p,. Equivalently we can con-
sider these variables to be the parameters, figur-
ing in the Wigner boost operator® that transforms
the momentum p, from its rest frame to the center-
of-mass-like system under consideration. For a
scattering process, physically allowed values of
the momentum p, range over the entire upper
sheet of the mass shell p > =m?®. For decays,
however, the kinematic region is finite and p,

only varies over a “hyperbolic cup,” close to the
vertex (m,,0,0, 0) of the hyperboloid. As in our
previous publication I we map this cup continuously
onto a four-dimensional sphere.* The decay ampli-
tudes are then functions, defined over this entire
O(4) sphere [or over the parameters of a corre-
sponding O(4) group transformation]. This allows
us to expand these amplitudes in terms of the
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transformation matrices of O(4), or in the special
case of spinless particles in terms of basis func-
tions of irreducible representations of O(4).

The O(4) expansions are explicitly two-variable
expansions; the amplitudes are presented as in-
finite double sums of known functions, depending
on an energy-type variable a and an angle 6 (see
Sec. II). Let us note the following features of the
O(4) expansions: The total angular momentum of
two of the final-state particles is displayed ex-
plicitly and the angle 6 is contained in O(3) rota-
tion matrices, which ensures the standard be-
havior of the amplitudes on the boundary of the
physical region, where we have cos6=zx1. Each
term in the expansion has the correct behavior
at the physical threshold and pseudothreshold.
The expansion is in terms of functions that are
orthogonal over the Dalitz plot, so that it can be
trivially inverted. The orthogonality also de-
creases the correlation among the experimental
errors in the expansion coefficients, which in
turn contributes to the stability of the expansions
with respect to truncations.

The entire dynamics of the reaction are repre-
sented by the expansion coefficients, which we
call Lorentz amplitudes. In this article we make
no attempt at any dynamical approach at all. In-
stead, we take the experimental data on pn—37
annihilations® 2 and use them to determine the Lo-
rentz amplitudes by a best-fit procedure, For
comparison we also make a fit to the same data
using a power-series expansion of the amplitudes
in terms of the Dalitz-Fabri variables.®

Generally speaking, our expansions of three-
body decay amplitudes are not suitable for de-
scribing processes involving five particles, like

the annihilation p»n—~37, where the amplitudes de-
pend on five independent kinematical variables.
However, if one considers annihilations for a
fixed initial energy, and only detects the energies
of the final particles (and not, say, the angles
under which they are emitted), then the kinematics
of the process will be the same as in the case of

a three-body decay of one particle.

The data®?® that we are considering refer to the
reaction pn— " 77" initiated by antiprotons
brought to rest in a deuterium bubble chamber and
interpreted as annihilations on free neutrons (a
slow outgoing spectator proton was observed in
each case). This allows us to treat the annihila-
tion as the decay of one “particle,” namely pro-
tium and to apply the O(4) expansions directly.
The total energy and angular momentum of the
protium then corresponds to the mass and spin
of “particle” 1 in the reaction 1-2+3 +4. Itis
commonly assumed that the annihilation proceeds
from an S state.*!!' Recent investigations,® 2
however, contradict this assumption and it now
seems that P and higher states play an important
role. In this paper we make no attempt to distin-
guish between the different possible initial states
and in particular we do not assume that an initial
S state dominates.

In Sec. I we present the basic expansion formu-
las and give expressions for the relevant experi-
mental quantities. The data and the fitting proce-
dure are discussed in Sec. III and the numerical
results are presented in tables and summarized
in Sec. IV. Section V is devoted to conclusions,
comparison with other treatments, and future
outlook.

II. EXPANSIONS OF DECAY AMPLITUDES AND EXPRESSIONS FOR EXPERIMENTAL QUANTITIES

Consider the decay

1)

2)

) 4)

1-2+3+4
in the center-of-mass frame of particles 3 and 4 (p, =p,, p;=-p,), and introduce the O(4) variables used
inIas

_q Loy +mp)? = s][m) = m,)? - 5]
cosa=1- om 2R ,
2s(t=m® =m?) + (s +m,% = m,?)(s+ m,% — m,2)
cosf= 1 3 1 2 3 4
{=s+ 0+ m,Pll=s+(m, = m,)?][s = (my +m )2 lls = (my — m, P IP72 * @)

where

r = Lon +my) — (mg+m P, = my)? = (s m )22

2m,(my +m,)

and

Ss= (P3 +p4)2 3 t= (pz +p4)2, u= (pz +P3)2
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are the Mandelstam variables (see Fig. 1).
The O(4) expansion of the helicity amplitudes, obtained in I, can be written as

J+ 82 P min(sy, L)

Fagaargrgles 0)= i Z 2 E Z (2J+1)

J=max(IN1, D) L=17=syl n=max(s;, L) v=-mn(s;, L) Xpmpngng

4
_ i I sJ\( L s J
YT Folasr =20 m (-1 -)\1+)\2+)\3—)\4< 2 )( L s )
2 ol =R me )= =M 2 A \=Rpmp 2

XAi"(szhqmﬁzﬁzT_h)d?s’:xl(_a)dl)\tj(—e) , (6)

where m;, s;, A;, m;coshg;, and nj; are the mass, spin, helicity, energy, and intrinsic parity of the ith
particle, respectively. The label J is the total angular momentum of the pair 3 and 4, L can be inter-
preted as the total angular momentum of the final state in a frame in which particle 2 is at rest, and | v|
and » are the lower and upper limits on L for J fixed [and they label representations of O(4)]. The quanti-
ties in brackets are the usual O(3) 3j symbols, d3",(a) and d’w(e) are O(4) and O(3) transformation ma-
trices, A=x; =2, pL=N;=2A, and

fola, x, n) =3(e** +n7e=")

is an O(3, 1) finite transformation matrix. The expansion coefficients A7" are the “Lorentz amplitudes.”
They carry the dynamics and in a phenomenological approach are to be determined from a best fit to ex-
perimental data.

In the special case of spinless particles (s; =), =0), expansion (6) reduces to the one considered previ-
ously,* i.e.,

n

e, 0= 3 Andula, 6), %)

n=0 1=0
with

1+1/2 _ 12
2 /Zi(l-f-l) <(2l+ 1)%’%—;—5{—”) / (sina)lczl:; (COSC!)P,(COSG) ) (8)

¢"l(a’ 9) ='€'i”r/2
[C;li(cosa) and P,(cosf) are Gegenbauer and Legendre polynomials.]

It is now a simple matter to express experimental quantities like decay rates, angular distributions,
polarizations, etc. in terms of the Lorentz amplitudes A}". The general formulas are quite cumbersome,
so we shall only consider the differential decay rate in the case when at least one of the final particles,
which we shall identify with particle 2, has spin s,=0.

For s,=0 expansion (6) simplifies to

4
Friles =35 25 T folag, =i, 0 71;) AT (A ATl Ta) Df"xy-xg s11,(0, 6,0, @, 00), (9)

Inv 7,7, i=3

where D"y ;,u,(®, 6, ¥, @, 1, X) is a general O(4) finite transformation matrix (see I).
The decay probability for an unpolarized initial particle of spin s, is

W(a, 6) =_2—31+_1 M%M ’ fxloxsx,l(a, 0)|. (10)

We substitute expansion (9) into expression (10), make use of the symmetries of the D functions and use
the O(4) Clebsch-Gordan coefficients®* to expand the product of two O(4) D functions. We have

VN
JO
VN

0 )Pl (an

- " g R vn v'n’
Dg")xg—unh( g)Db’r;La*- >\4s1>\1(g) =(=1Pr Tt A= temh Z <J7\ ER R ARED WD
VNis 3 4 37 T4

vn Tan?
% v'n
SiA S =

The O(4) Clebsch-Gordan coefficients are
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<vln1 Volty
M, T,M,
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%(n1+Vl) é’(nx_ V) J, {
X< 2y +v,) 3, —vy) J,

in+v)  3(n-v) JS

[the curly brackets are O(3) 95 symbols®3].
over A, using

_1ysi-apf St S1 S\ _ 12
3 (-1 ’<x1 o 0) (25,+ )25,

A1
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) (=1)"1 'J2+”[(2J1+1)(2J2+1)(2J+1)(n+y+1)(n—v+1)]“2<

| =3

J, J, J )
M, M, -M

We substitute (9) and (11) into (10) and perform the summation

Thus, only $=0 remains in the sum, which in turn forces V=0 in (11). The special type of D function that
now figures in the expression for the decay probability reduces to a basis function (8), i.e.,

Ver

D?:OO(¢’ _9!—¢’ (1,0, 0) 14:,”(0:,- ).

The decay probability for s,=0, s,, s;, and s, arbitrary can finally be written as

w N 4
Ww(a, 6) = Z E Z Z_) NL(A >\4773773774’14)¢NL a, 6) I_I fo(ai’ =AMy T_’i)f:(ai) —>~.-,n.-17,‘) . (12)

A3 Aq TizTizTigMy N=0 L=0

It should be noted that the decay probability in
this case (s, =0, initial particle unpolarized) is
expressed in terms of the same O(4) functions ¢,
as it would be, if all particles involved had zero
spin. The only difference is the presence of the
O(3, 1) transformation matrices fy(a, =X, n7).

In the pn annihilation under consideration, par-
ticles 3 and 4 also have spin zero and hence we
may finally write the decay probability as

o N
W(a, 6)= 33 35 By, dx.(a, 0), (13)
N=0 L=0
which coincides with the formula for spinless par-
ticles. In our analysis we make use of expansion
(13), which is completely insensitive to the angu-
lar momentum of the initial state. Thus, if sev-
eral different momenta were present in the initial
protium state (S, P, and higher waves), then we
would have to take an incoherent sum of the contri-
butions from all levels, which simply amounts to
redefining the coefficients B, .

The angular momentum s, of the initial state
does of course figure in expansion (9) of the am-
plitudes themselves and only vanishes from (13)
because of the averaging over initial spins. Gen-
eral D functions would figure in the decay rates
for polarized initial states and the expansions
would then yield information on the initial angular
momentum.

In our case particles 3 and 4 are identical, hence
the helicity amplitudes must satisfy

f)\i(ay 8’ ¢) =f)i(a) ™= 9) ¢+7T) .

—

This implies that only even values of L will fig-
ure in (13). Note also that for even L all coeffi-
cients By, are real.

For comparison we shall also make an analysis
of the same pn data using a two-variable power-
series expansion in terms of the Dalitz-Fabri®”
variables x and y. If T,, T,, and T, are the kinet-
ic energies of the final particles, then

T,-T, 3T,-Q
x=V3 22— ==X 14)
Q Q (
where @ =T, +Ty+T,=m,~m,—m,-m,.
The expansion to be used is
wi(x, y)= Z} ZRk,,,x"y"'. (15)
=0 k=0

Since particles 3 and 4 are identical, we have k&
=even. Further aspects of the O(4) and Dalitz-
Fabri expansions, in particular the relation be-
tween them, were discussed earlier.*

III. DISCUSSION OF THE DATA AND
THE FITTING PROCEDURE

The Dalitz plot used for the analysis® contained
4509 events distributed in 538 bins, each of the
size 0.15x0.0625 GeV2. This Dalitz plot (soon to
be published®) has essentially the same structure
as the one presented earlier? (on the basis of a
smaller sample of events), that has raised a con-
siderable amount of theoretical interest.!~!" As
usual a number of events N, and a statistical er-
ror N, 2 is associated with each bin.
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The decay probability is in this case related to
the number of events in each bin by the formula

W(a;, 6;,)=N;, (16)

where W(q;, 6;) is the decay probability (10) inte-
grated over the area of the ith bin. For our pur-
poses it was sufficient to replace this integral for
W(a;, 6;) by the function W(a, ), evaluated at the
geometrical center of each bin, the coordinates of
which are @; and 6;,, multiplied by the area of the
bin. The decay probability is then parametrized
using a truncated O(4) expansion (13):

No N
WNO(QH 6,)=23 2 Byrowla;, 6)) A, (17
N=0 L=0
or a truncated xy expansion (15)
_ My Mg-m
W.wo(ai’ 0)=3 2 RumXil Ay, (18)
m=0 k=0

where A; is the area of the ith bin (4, is constant
over the Dalitz plot, except at the boundary of the
physical region).

We fit the data by minimizing the y2-function

> (N, - Wl e‘))z’ (19)

N;

where K is either N, as in (17) or M, as in (18)
and where the sum is over all bins. The minimiza-
tion is performed with respect to the expansion co-
efficients in (17) or (18), but in order to decrease
the number of parameters, varied by the computer,
it is convenient to put, e.g.,

Wyola, 6;) =Bw[1 +23 by durlay, 91)] A;
NL

= BOOWNO(Q{’ 9() ’ (20)

where by, = By;/B,, and the prime on the sum in-
dicates that the term N=L=0 is excluded. One of
the conditions for a minimum of x? then expresses
B,, in terms of the other parameters by, at the
minimum, i.e.,

ax2
8 By,

=0 (21)

implies that

EWNO(QU 91)
i

By, = = .
; [ %o(a" 9()]2/N‘

(22)

The same procedure is used for expansion (18).
The best-fit values of the parameters (expansion
coefficients) are then found by minimizing x2, us-
ing the computer program MINUIT'® modified to in-
clude random starting points.* In general many
solutions are found in the multidimensional space
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of parameters, corresponding to local minima.

In each case we did, however, find a global mini-
mum, distinguished from the others by an obvious-
ly lower value of x2.

Our approach in this paper is purely nondynami-
cal, i.e., we put in no assumptions about the be-
havior of the expansion coefficients, about the na-
ture of the final or initial states, etc. In particular
the rather obvious presence of p°- and f-meson
bands in the Dalitz plot was ignored.

The purpose of our numerical study is to test
the suitability of O(4) expansions for representing
data with a complex structure. Thus, we are in-
terested in the over-all quality of the fit (the value
of x? divided by the number of degrees of freedom),
the number of parameters necessary to achieve a
reasonable fit, and the stability of the values of
the parameters with respect to the cutoff N;,. Fi-
nally we wish to establish which dynamical fea-
tures of the process are well represented and
which are distorted. Some information of this
type is obtained by studying the relative contribu-
tion of various parts of the Dalitz plot to the value
of 2.

We performed fits to two different Dalitz plots
(representing the same data). The first was sim-
ply the experimental Dalitz plot, as presented by
the experimentalists.?*® The second was obtained
from the first by partly taking into account final-
state Coulomb interactions. This we did in the
siniplest possible manner, corresponding to a
firsit-order perturbation-theory calculation in a
nonrelativistic limit. The effect of such a correc-
tion is to divide the number of events N; in each
bin by the factor!®

C=1—ﬂa(%+%+%) ) (23)
Uy Uszqg Uy
where e; is the charge of the ith particle (in units
of the electron charge), a is the finite structure
constant, and v;; is the relative velocity between
the 7th and jth particle. This way of including
Coulomb corrections corresponds to taking into
account only the longest range part of the electro-
magnetic interactions, lumping the other parts to-
gether with final-state strong interactions. It
would of course be possible to make a somewhat
more consistent calculation of the contribution of
electromagnetic interactions to the pn— 37 reac-
tion (along the lines of similar calculations for
K - 37 decays®). Although the corrections (23) do
somewhat improve the fits to the data, it does not
seem to make a great difference, and we did not
pursue the problem of electromagnetic interactions
further.

Finally let us note that expansions (13) and (15)
can readily be used to fit the spectrum of the posi-
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TABLE 1. Coefficients in the O(4) two-variable expansion obtained by a fit to the data on pn — 37 annihilations at rest. The errors correspond to an increase of x

by one unit.

534 532 529

536

NDF
Coulomb corrections

yes
1251.4

no

1287.4

yes

1323.5
2.5

no

1348.4
2.5

yes
1322.7
2,5

no

1368.2
2.6

yes
1698.0
3.2

no

1726.4
3.2

2.4

2.4

x%/NDF

A
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1264.7
—0.021+0.062

—0.139+0.052

1281.2

1297.9
—0.131+0.047

—0.123+0.047

1254.6 1269.8 1281.1 1422.1

1301.1
-0.343+0.009

0.002+0.062

-0.087+0.051 -0.189+0.048

~0.061+0.048
-0.202+0.030

—0.342+0.009

Ay/Ay
Aqy/Ay
Ap/Ay
As/Agy
Agn/Ag,
A /A
Ap/Ay
A y/Ag

—0.166+0.049

—0.086+0.046

-0,188+0.031

—-0.476+0.046
—0.202+0.047

—0.476+0.046

—0.187+0.046

-0.474+0.041
—0.029+0.016
-0.022+0.022

—0.475+0.039
—0.032+0.020

-0.406+0.028

—0.413+0.028

-0.107+0.055

—0.109+0.055

0.064+0.021

(@]

0.113+0.024
0.089+0.028
0.617+0.092

0.109+0.023
0.093+0.028
0.628+0.092
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tive pion. For the O(4) expansion, it is simply nec-
essary to integrate both sides of (13) over the an-
gle 6, obtaining

w()= [ Wia, 00t -w)

=B(s)f ﬂW(a, ) sinfd6

=B(s) 23 By $n,(cosa) (24)
N
where
- . —m)? _ 2)\1/2
ﬁ(s)=§<[ s+M+m)?[ s+s(M m)?] (s - 4m )) ‘

(25)

Similarly we can obtain an xy expansion of W(a)
by appropriately integrating formula (15) over
(t = u).

IV. NUMERICAL RESULTS

The results of the numerical fits to the pn— 37
Dalitz plot, using both the original data and the
Coulomb corrected data are shown in Tables I and
1I for the O(4) expansion (13) and the power-series
expansion (15), respectively. The errors in the
coefficients correspond to an increase of x? by
one unit.

A comparison of the two tables shows that the x?
values are comparable, but slightly better for the
xy expansion. In neither case did we reach a min-
imum of x?/NDF (NDF is the number of degrees of
freedom, defined as the number of bins less the
number of free parameters), so the fits might be
improved by adding further parameters. We did
not attempt that simply because the minimization,
with such a structured Dalitz plot and so many pa-
rameters was taking up too much computer time.
As mentioned above, a glance at the tables shows
that the inclusion of Coulomb corrections would
always tend to slightly improve the fit, without es-
sentially changing the parameters.

It should be noted that the O(4) expansions are
considerably more stable than the power series
ones with respect to truncation, i.e., with respect
to the addition of further terms. Indeed, along
each row of Table I the entries essentially coin-
cide within the errors. The same cannot be said
of the entries in Table II.

Each entry in the tables corresponds to the re-
sults of several minimizations, starting from ran-
dom initial numbers. In each case it was possible
to choose a global minimum, although local ones
did show up in the six and nine parameter fits.

It is of considerable interest to look more close-
ly at the structure of the experimental Dalitz plot.23
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TABLE II. Coefficients in the power-series expansion obtained by a fit to the data on pn — 37 annihilations at rest. The errors correspon

one unit.

d to an increase of x* by

534 532 529

536

NDF

Coulomb corrections

yes

no

yes

no

yes

no

yes

no
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@ 8 @ @ N © © o The Dalitz plot shows apparent resonance bands in
a0 15 (=1 N 15 < [5e] (=23 . e . . s
N Y 9 A v QR the ¢ and u variables [i.e., in the invariant mass-
© H O H = N » - 2( b = . 0
o~ H OH OH OH WM HH squared M3@*77)] corresponding to the p® and f
g o g. E g § § E g § § mesons. A particular strong enhancement occurs
- BRI - B at the 7~ n~ threshold, where t~u=~M, (M, is the
U mass of the f meson). On the other hand, for
t~u=~1.08 GeV? there is a very prominent “hole”
2SS 8333 38 8 8 in the center of the Dalitz plot.
<t (g [ 4 N [ g - (=] <t
S H S H oM oA - If we now look in greater detail at our O(4) fits
g ® % ;13 % % ;-; ;3 % g to the data, in order to determine which parts of
S o an e 4 %S a9 the Dalitz plot give the largest contribution to x?,
R~ - - B T- B -~ B R ) . . 4 2
~ (N we find the following. The over-all fit is reason-
ably good, in particular it reproduces the hole in
$ 2838 the Dalitz plot and the enhancement at the (7777)
2538 8 threshold. Bins giving larger and smaller con-
- S SsS S s tributions to the x? function are distributed rather
= 23 88 5 8 randomly, but a certain pattern does emerge. In
Q@ N N e x . . .
H N M N © S o e regions with a small number of events, i.e., the
: : hole in the middle and alsoregions of small { and large
- e o o u (and vice versa), the x? contributions vary great-
3 § =2 8 & ly from bin to bin (say 18 in one bin and 0 in the
« S99 9 S neighboring one). This seems to be indicating that
8‘ ; T TS the x2 method itself is not too applicable in these
N : 2 ; 2 2 z : regions (with large statistical errors) and that it
! ! might be preferable to consider some other statis-
. tical criterion instead, e.g., the “likelihood of ob-
g 3 2 servation,” as suggested by Gopal et al.’* Where
S S the density of events is higher, the contribution to
f; ® o ® x? seems to vary smoothly over larger areas. A
§ : § :"; : : consistently larger contribution to x* comes from
1 the regions of the apparent p-meson bands, some-
what less so from the f-meson ones, and both these
R I
S - O
s o o
=7} +H H +H L
s 98 23 \
9@ 2w r
- N W - N v—Il 3
o L
n -
(=3
S L
@ © ;{l 2 :
§az % i
L] (3] n o <
o S f
0w ol o
S o
o ~ -
[N H > |
: Ll bl
5 e g 3
- [3e] w (=}
0 Il
] 2 8 2 8 8 8 8 2 ° ! 2 3
2 eged€g¢eg t(Geve)
R R oo o oo o oo FIG. 1. Dalitz plot for pn — 3r decay parametrized in
terms of the Mandelstam variables (¢,x) and the O(4)
variables (o, 6). The boundary of the physical decay re-

gion is cosf==%1.
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regions are underrepresented in our fits.

We have also used the integrated O(4) expansion
(24) and the expansion in powers of y (14) to fit the
spectrum of the positive pion. Since the results
are of no particular interest, we do not reproduce
them here. Similarly, we do not give fits to the
Dalitz plot using the O(4) expansion (9) of the am-
plitudes themselves, instead of the decay proba-
bility. This essentially amounts to using a differ-
ent cutoff procedure and for the annihilation Dalitz
plot invariably gave higher values of x? (and vari-
ous ambiguities).

V. CONCLUSIONS

The essence of this paper is that we have taken
two-variable expansions of decay amplitudes,
based on the representation theory of the group
O(4) and applied them to analyze the Dalitz plot
for pn—3r annihilation at rest. The formalism is
applicable to processes of the type 1-2+3 +4,
where the masses and spins of all particles are
arbitrary. In principle the method could (and
should) be generalized to include reactions with
a larger number of particles, in particular the
five-point function under consideration. In the
case of annihilations at rest we simply assumed
that the initial state is a state of definite angular
momentum and energy, i.e., could be considered
to be a one-particle state. It was shown in Sec.

II that as long as only the spin-averaged value of
the decay rate is considered, the actual value of
the p» angular momentum is irrelevant and an
O(4) expansion of the decay rate is obtained in
terms of the same functions as for spin-zero par-
ticles (whereas the helicity amplitudes themselves
are expanded in terms of functions that do depend
on the spins).

The same O(4) expansions have been applied
previously to analyze K* —r*r*r* and n—n*n1"7°
Dalitz plots® and the obtained fits were much bet-
ter than in the present case. This is of course not
in the least surprising, since much more phase
space is available in the p» annihilation than in
the K and 7 decays. Also dynamics seem to be
much more complicated, as demonstrated by the
complex structure of the annihilation Dalitz plot,
as opposed to the smooth plots for X and 7 decays.

Let us try to put our approach into a somewhat
broader context. The most standard way of treat-
ing similar Dalitz plots is in terms of various
final-state-interaction models.?* The amplitudes
can be split into two parts, one corresponding to
a sum over intermediate-final-state two-particle
resonances, represented, e.g., by Breit-Wigner -
type terms, the other corresponding to a nonreso-
nant background (which may or may not be ignored).
An example of this approach is the rising-phase-
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shift model of Gleeson et al.,'” which gives a qual-
itatively fair description of the pn— 3w data (x2/
NDF ~2.36 with 14 parameters). Alternatively,
the Veneziano model** and its generaliza-

tions!> 1622724 haye been applied to this process
and also give a fair or good description of the data.
Most of the fits were performed to the spectra
only, however, Gopal et al.'® fit the Dalitz plot it-
self. They do not use the x? method, so it is dif-
ficult to compare their fit with ours. Other types
of final-state-interactions models exist in the
literature, both for annihilations at rest and in
flight.?%2¢ The final-state-interaction approach

to nucleon annihilations in general has been crit-
icized, e.g., from the point of view of duality.?’
The pronounced difference between annihilations
at rest and in flight suggests that important dy-
namical effects are present in the initial-state
nucleon-antinucleon state.?®2® More general treat-
ments based on five-point functions, e.g., B; have
been proposed.3% 3!

Our O(4) expansion approach is completely kine-
matical, the only input being the reasonable “ki-
nematic behavior” of the basis functions ¢,,(c, 6)
(at the threshold, pseudothreshold, boundary of
physical region, etc.). No assumptions at all
about the dynamics are made, yet the fits are
stable, unique, and reasonably good with a small
number of parameters. The distribution of con-
tributions to x* from various regions of the Dalitz
plot (see Sec. IV) suggests that a considerable
improvement can be achieved by incorporating the
p and f bands directly, e.g., by adding the appro-
priate Breit-Wigner terms.

We plan to return to the problem of pn— 37 an-
nihilations in the context of two-variable expan-
sions, using a more dynamical approach. One
possibility is to indeed split the amplitudes into
resonant and nonresonant parts, specify the reso-
nant parts and use the O(4) expansions for the non-
resonant part only. Another possibility is to in-
vestigate the behavior of Lorentz amplitudes (i.e.,
the expansion coefficients), in the presence of
resonances, using various models, and then to
incorporate this knowledge in the phenomenolog-
ical fits. Also knowledge concerning initial bound
states could, in principle, be expressed in terms
of the Lorentz amplitudes. Finally a much more
complete discussion, including the dependence on
the initial energy can be given, once the expan-
sions are generalized to the case of many-parti-
cle reactions.
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