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We discuss the phenomenology of multiplicity distributions in high-energy hadronic collisions in terms
of the short-range correlation picture, modified to include diffractive processes leading to
low-multiplicity final states. We formulate two models. both of which give reasonable fits to present
data on high-energy partial cross sections. Model-independent methods for separating diffractive and

multiperipheral production are discussed.

I. INTRODUCTION

One of the most interesting open questions con-
cerning multiparticle hadronic reactions is the
behavior of the partial cross sections o} (s) for
producing » particles of a given type i (plus any
number of other particles), as a function of both #»
and the square of the c.m. energy, s. Current ef-
forts to organize and understand data on multipar-
ticle reactions are dominated by two competing
points of view, the diffractive picture and the
short-range correlation (multiperipheral) picture.
The diffractive picture assumes that for large s
the partial cross sections approach nonzero con-
stant values, 0,(s)~0,. Inorder to reproduce the
apparent linear increase of the average multiplicity
(n) with Ins, proponents of the diffractive picture
usually assume that o, ~ ¢/ for sufficiently large
n. Specific diffractive models’ have been con-
structed which, at the cost of additional assump-

tions, exhibit concrete predictions to compare with
data.

The short-range-covrelation picture assumes
that all correlations vanish between particles
whose rapidities y are separated by a distance
large compared to a correlation length L. This
picture implies, without further ad hoc assump-
tions, that the average multiplicity rises linearly
with Ins. Since it reproduces general features of
multiperipheral models, this picture is also called
the multiperipheral picture. Again, specific sim-
ple multiperipheral models? have been constructed
and their predictions are testable experimentally.

The diffractive and short-range-correlation
pictures represent, in some sense, extreme points
of view. It is not hard to imagine that the real
world contains both diffractive and short-range-
correlation elements. Recent high-energy data
from the National Accelerator Laboratory (NAL)
and CERN Intersecting Storage Rings (ISR) are,
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as we shall show, consistent with the predictions
of the short-range-correlation picture for inelas-
tic multiparticle production. On the other hand,
we know that diffractive processes are present —
certainly in elastic scattering, and in some frac-
tion of the inelastic production. This fraction is
quite uncertain at present, and we shall use two
models in the phenomenological analyses of Sec.
IV — one which assumes that inelastic events all
fit the short-range-correlation picture, and one
which (under cetain assumptions) determines the
fraction of diffractive processes from the data.

In order to study the behavior of the partial
cross sections 0,(s) from a general point of view
which does not tie us to an extreme multiperiph-
eral or extreme diffractive picture, we start in
Sec. II with a general discussion of the implica-
tions of Mueller-Regge analysis.® In Sec. III we
construct specific models for partial cross sec-
tions by using Mueller-Regge analysis plus a mod-
el for correlation functions. The remainder of the
paper is devoted to comparison of these models
with the data, and to some further theoretical re-
marks.

II. MUELLER-REGGE ANALYSIS OF
PARTIAL CROSS SECTIONS

A. General Considerations

It is convenient to define a generating function
I'(z, Y) for the partial cross sections*:

I'e, Y)=i}o pipIE", (1)
where
irn _IY)
P,,(Y)— U(Y)
and

Y=In(s/s,) ,

where s, is usually chosen to be s,=m,m,, so that
Y is the rapidity separation between the incoming
particles g and 5. The normalization is some-
times chosen to be 0 =0y, sometimes o =0,,,.
This point is discussed in detail in Sec. I C.

This generating function can be expressed in
terms of integrals, f{, over the n-particle inclu-
sive correlation functions, Ci:

I(z,Y) =exp[i %‘;‘(z - 1)"} , (2)

where
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f{= fydylcl(yl)
=(n%),

Y ,r (3)
f§=j; j;dyldyzcz(yuyz)

=(ni(n’ - 1)) = (n*)?,
etc.

See, for example, Ref. 4 for a detailed definition
of the C,. These formulas are valid independently
of the theoretical picture and provide the link be-
tween the partial cross sections o, and the inclu-
sive average correlation functions f,.

The behavior with energy of the f,’s can be in-
ferred from Mueller-Regge analysis of inclusive
reactions. One finds® that

f.(¥)<o(y™ . (4)

This bound follows from the fact that 7,(Y) is an
n-dimensional integral over a region of volume
Y" of a nonsingular limiting distribution.

B. Short-Range-Correlation (SRC) Picture

In the short-range-correlation picture all corre-
lation functions C,(y,, v,, . - - , ¥,) vanish whenever
the rapidity separation |y; - y;| of any pair of par-
ticles becomes large compared to a correlation
length L. The effective region of integration in
the n-dimensional integral which defines f,(Y) is
then reduced from Y" to YL""!, and the bound in
Eq. (4) is strengthened to

f(Y)<o(y)
or (5)
f,,(Y) =a,Y+b, .

Such behavior is obtained from Mueller-Regge
analysis only with an additional assumption: that
the leading J-plane singularity is factorizable.
From Eq. (5) one infers a generating function
I(z, y) for the short-range-correlation (or multi-
peripheral) picture (we now drop the superscript

denoting particle type, except where necessary for
clarity):

Iz, Y) =exp[YZ% (z - 1)"+Z% (z- 1)"}

=exp[ YA(z) + B(z)] . (6)
The partial probabilities p,(y) are given by
1 8"
po(Y) =5 Lulz, Y) - (7

It follows from the above that in this picture®
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FIG. 1. Behavior of the low-multiplicity inelastic: partial cross sections as a function of energy. Curves are fits us-

ing models described in Sec. IV,

pY)=e* O (v) (8)

where 4,(Y) is an nth-order polynomial in Y.

The crucial feature of Eq. (8) is that for suffici-
ently large Y all p,(y) must fall with the same
power of the energy. Clearly, however, the poly-
nomial factor #,(y) may overcome the exponential
damping factor at smaller values of Y. In JFig. 1
we display the experimental inelastic partial cross
sections o5, o7, and o;, respectively, for jproduc-
ing 0, 1, and 2 negative particles in proton-proton
collisions, as a function of energy. The data
come from the recent Serpukhov’ and NAL experi-
ments.?~!° Although it is hard to draw any defini-
tive conclusions from Fig. 1, it is clear that as
far as these inelastic cross sections go, the short-
range-correlation prediction is in reasonzible ac-
cord with the data with A(0) ~—3. We should note,
however, that in this energy range the ela.stic
cross section is approximately constant, within
errors.

Thus we are forced to face the dilemma that a
phenomenology based on a short-range correlation
model must exclude at least the elastic cross sec-
tion, plus any diffractive production whizh may be
preseent in the inelastic cross section. We are not,
of course, the first to recognize this dilemma. It
has been discussed recently in the Mueller-Regge
context by Le Bellac.!' It is present in all simple
multiperipheral models; for example, the Chew-
Pignotti model,? which yields an elastic cross sec-
tion falling with the same power as the inelastic
partial cross sections. It is also present in a
somewhat different form in the original work of

Amati, Fubini, and Stanghellini,'? which suggested
the necessity of a branch point in the J plane in
the elastic cross section. Presumably our present
difficulties also arise from our neglect of branch
points (in inclusive Mueller amplitudes), which is
necessary to derive the short-range-correlation
picture from Mueller-Regge analysis. The pres-
ent controversial state of the theory of J-plane
branch points prevents us from dealing with our
dilemma from a fundamental theoretical approach;
we concentrate instead on the development of a
consistent phenomenology.

We speculate that if the elastic contribution
(which is clearly diffractive) and all inelastic dif-
fractive processes are excluded, then the remain-
der of the partial cross sections can be generated
from a short-range-correlation picture. Such a
separation of events into diffractive and multi-
peripheral has been advocated by Wilson.®

C. Modified Short-Range-Correlation Picture:
Inclusion of Diffraction

Before outlining a method for adding diffractive
processes in a Mueller-Regge analysis, we must
distinguish between two types of diffractive pic-
tures, which we shall call high- and low-multi-
plicity diffractive processes. By high-multiplicity
diffractive processes we signify mechanisms like
the o, ~1/x” tail of the multiplicity distribution
hypothesized by Hwa, Jacob, and Slansky, and by
Quigg, Wang, and Yang,® to account for growth of
average multiplicities like Ins. Such a high-mul-
tiplicity tail implies moments f,(s) which grow
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FIG. 2. Average multiplicity of negative particles as a function of energy. Data are from Refs. 7-10, 14, 15. The
fit is of the form proposed by Tow in Ref. 16, Addition of a term in (Ins) A's, required by theory (Cahn, Ref. 17), does

not improve the fit, which has x> =6 for 10 degrees of freedom.

like (V's)"™!, violating the bound in Eq. (4) which
follows from the basic assumptions of Mueller-
Regge analysis. There is no need for this tail in
models which include a short-range-correlation
component, since this component naturally pro-
duces the Ins growth of multiplicities. Moreover,
existing data are compatible with the bound given
by Eq. (4), and even with the more severe bound
in Eq. (5) as can be seen from Figs. 2771°:14-17 gpq4
3.771% For these reasons, we shall not consider
high-multiplicity diffraction further, although it
does offer an alternative mechanism which is not
ruled out by existing data.

Low -multiplicity diffractive processes contribute
significantly to low-multiplicity cross sections
only, and therefore give contributions to the aver-
age multiplicity (and to all other moments of the
multiplicity distribution) which are asymptotically
constant as a function of energy. We now discuss
the addition of such processes to the formalism
developed in previous sections.

Let us denote by o2 and by o¥ the partial cross
sections produced by diffractive and short-range-
correlation mechanisms, respectively. Then

o=)3(02+c¥)
=0p+0y . 9)

We define a generating function 7,(z, Y) by

| | ]
50 70 100 200 300

p_ in GeV/c

FIG. 3. Correlation parameters as a function of ener-
gy. Linear fits, required by the short-range correlation
picture, are shown. Fits have y*=2.0, 1.6, 0.94, and
0.22 for f,, 3, f7, andf 7, respectively. Data are
from Refs. 7, 8, 9, and 10.
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>~ O =Ju
Iz, ¥)=Y. glzn ) (10) x= (17)
M

This generating function can, of course, be ex-
pressed in terms of the “short-range” correlation
parameters £ :

=, cuy "
I"(z,Y)=exp[§ Ji;(!—)(z-l) ] X (11)

These “short-range’” correlation parameters are
defined with respect to the SRC component of the
cross sections. That is,
M
. no
£ =(ngy = Znoy
Ou
) . 2 (12)
7=t Bt ot (2w
Oy ("]

etc.

By assumption, these correlation parameters
grow at most like Y,

fi(y)=a,Y +b, . (13)

In order to relate these short-range-correlation
parameters to the usual f,’s defined in Eq. (3), we
first seek a relation between the generating func-
tions. We define a generating function for diffrac-
tive production in analogy to Eq. (10) for SRC pro-
duction,

> 4D
o
ID(z,Y)=§ g%z"
n=0

b D

=exp[2 In (z - l)"} , (14)

“ nl
n=1
where these sums cut off at some low value of #,
according to our assumption of low-multiplicity
diffraction. Recall the definition of the full gener-
ating function,

I(z,Y)=E goiz"
n=0

s
=exp 3 La(e- 1y (15)

the normalization to o =0y, is now conventional,
but normalization to o =0y is advocated in many
theoretical papers. We shall return to the ques-
tion of normalization at the end of this section.
These generating functions are related by

Iz, Y)Y=aly(z, ¥) + (1= Iz, ¥) , (16)

where

The ratio A(Y) is independent of Y if ¢, and o, are
strictly constant, but may have weak energy de-
pendence (logarithmic or perhaps a very small
power) in some models.

One can now use Eq. (16) to calculate the rela-
tions among the f’s, the first two of which read

fraafi+ (=077, (18a)
Fo= (A=A e f¥ - 201 -0 fY P
+(1=2) 2 +x(1=-2)(fP)%. (18b)

These of course reduce to f,= f4 for the case
r=1. Note, however, that for A # 1 the first term
in Eq. (18b) behaves like Y2 (by assumption, all
f2 are constant). In general, f, goes like Y", as
is to be expected when the SRC hypothesis is vio-
lated.'® Expressions for the higher £ ’s are quite
complicated, but it may be useful to write down
the term which behaves like Y":

Fi=Afy, (19a)
f2~ 1=, (19b)
Fs~a1 =201 =20(7Y), (19¢)
Fa~a(1=2)(1=6x+622)( F)*, (19d)

Fo~A(1=2)(1=- 141+ 3602 = 2473 (F¥)° . (19e)

Note that the leading term for every f, is specified
in terms of only two parameters, f and A. Thus
very accurate high-energy multiplicity data will
provide the opportunity to test for the presence of
aterm f,~Y", and, by determining its magnitude,
to measure the fraction of the cross section com-
ing from SRC and from diffractive processes.

We conclude this section with a discussion of the
question of normalization: What cross section ¢
should be used in Eq. (15); total, inelastic, or yet
another choice? Although theorists have usually
normalized to o =0,,, experimenters and phenom-
enologists have found the dissimilar behavior of
elastic and inelastic reactions suggestive that
elastic events be excluded and hence that distribu-
tions be normalized to ¢ =0, ,. Interms of the
foregoing formalism, they are recognizing that o
belongs to o,. It still remains possible that o,
=0ie s that is, inelastic production comes entirely
from SRC processes. In that case, A=1 with o
=0, and all the above formulas simplify; for ex-
ample, Eqgs. (18) and (19) become just £, =f¥. It
also remains possible, however, that a significant
fraction of o, is of the diffractive type; in that
case, the normalization o =0y, will not provide
great simplicity and we shall face the task of sep-
arating o, and oy. We shall discuss methods of
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FIG. 4. Correlation functions in central region, from preliminary data of Pisa-Stony Brook group at the ISR (Ref. 14).

separation in Secs. IV and VC.

Consistent normalization is necessary if one is
to achieve consistently simpler results. That is,
if normalization to o0, seems required to obtain
f.'s which satisfy the SRC bound, Eq. (5), then
normalization to o, will also be necessary in
two-particle correlation functions if one is to see
SRC behavior C,~exp[- |y, — ¥/ /L]. It is interest-
ing that the preliminary data of the Pisa-Stony
Brook group'® shown in Fig. 4, which do exhibit
SRC behavior, are indeed normalized to oy, .

There remains the theoretical question of the
consistency of any normalization other than o,,.
In the Mueller-Regge formalism one naturally nor-
malizes to o, in order to divide out the factoriz-
able Pomeranchukon couplings. If, however, our
speculations at the end of the last section are cor-
rect, diffractive production o, may be associated
with branch-point contributions. To obtain a fac-
torizable amplitude, which is necessary to derive
the SRC picture, one should normalize to the
Pomeranchukon pole contribution, which is per-
haps just 0,. We realize that this is not a tight
argument, but we believe it merits further study,
both experimental and theoretical.

III. MUELLER-REGGE MODEL FOR THE
CORRELATION FUNCTIONS

We have remarked earlier that asymptotic short-
range-correlation functions C, are obtainable in a
Mueller-Regge model when the leading singularity

is factorizable. It is instructive to consider a sim-
ple model, along these lines, for the f,’s. We con-
sider a world with two trajectories,? a leading
trajectory with intercept ap(0)=1 and a secondary
trajectory with a,(0)~3. Assuming factorizable
singularities, we find that the Mueller diagrams
that contribute to the asymptotic limit of f, are
those shown in Fig. 5. If we now assume super-
duality and use the asymptotic form over the en-
tire range of integration,?! we find the results f"”

=a,Y +b,, where a, =g,

anezznlL"_l(éﬁ)z(gz)n-z ’ (20)

where gpp=go, &pu =81 Suu =8z and L™'=ap(0)

plp
(a)
Ipp
Plm P|
(b) M~ |
9om Ipm
PM M|P
o -
Iom Ium GymIem

FIG. 5. Mueller diagrams contributing to asymptotic
form of (a) single-particle spectrum, (b) two-particle
correlation function, and (c) many-particle correlation
functions.
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—ay(0)= . The b, coefficients get contributions
from diagrams besides those of Fig. 5, and hence
cannot easily be calculated, even approximately,
in closed form. Henceforth we shall make the
asymptotic approximation of neglecting the 5,. We
should remark that in the above we have not dis-
tinguished among particle types, for simplicity,
but we shall shortly return to this point.

Using the above results one finds the generating
function

I,(z, Y)—exp{Y[go(Z -1+ 1-Lg,(z-1) ]}

| (21)

The partial cross sections can be determined
from the generating function of the model. For
this purpose it is convenient to rewrite Eq. (21) as

0z
1(z,Y)=exp<—-rY+>\z+1y_pz>, (22)

where

(23)

I /o S
YT Lg 1+ Lg,)

LL

p= 1+g,L

Expanding the generating function in this form one
finds for the partial cross sections

n

M
oY) _ _ Z N
"UM et 7! p" J[Ln-j(—Y)_Ln-.i-l(—Y)]’

i=0

(24)

where L; are Laguerre polynomials. This is a
three-parameter formula for the partial cross
sections for all » and for sufficiently large Y. If
the Regge-Regge coupling constant g, vanishes,
then the resulting generating function is just the
one considered by Mueller,* and the partial cross
sections are expressible in terms of Hermite poly-
nomials of imaginary argument.

Before we discuss the phenomenological content
of this simple model we would like to comment on
the quantum-number generalization of our results.
Up to now we have considered partial cross sec-
tions for producing » particles of a given type,
plus anything else. The generalization to several
particle types is straightforward, and we shall
just write down the result for three types as an
example. Let Pa gy be the probability of production

of o particles of the first type, B8 of the second,
and y of the third. Then define the generating
function

I(xyy’z, Y)= E Paﬂ-y(Y)xayBZy . (25)
« By=0
One finds that

I(x, Yy %, Y)

o«

(26)
where

F000=0, f100={®), fo10=(B); Sfoor=(M),
fn00=f:zx9 fuo:(aﬁ)—(a)(@, etc.

It is of more immediate interest to consider in de-
tail a particular type of particle in a given process.
An interesting example is provided by 7~ ’s pro-
duced in proton-proton collisions. The asymptotic
behavior of the relevant correlation functions,
f27¥, £, etc., is given by the diagrams of Fig.
6. We recall that, since we are dealing with cor-
relation functions, the leading (Pomeranchuk) sin-
gularity is specifically excluded from the internal
blob in Fig. 6. This suggests that perhaps one
may be able to apply the concept of exchange de-
generacy for these diagrams. In particular one
can speculate that, since the processes only in-
volve 7~ ’s and hence are exotic, it may well be
that f,”", f,7", etc. all vanish; that is,

fosa ¥=0. (28)

Such a behavior would imply that the short-range
correlation generating function for 7~’s would be
Poissonian.

27

IV. PHENOMENOLOGICAL IMPLICATIONS

In this section we compare with experiment vari-
ous of the models discussed. We consider only
negative-particle production in pp collisions, since

p p
DP:PD

FIG. 6. Mueller diagrams contributing to asymptotic
correlation functions among negative particles.
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high-energy data exist only for these processes.
Charged-particle production is of course trivially
related to these processes by charge conservation,
and we exhibit the relationship in detail in Sec.

V B. Before we can begin we must decide how
much of the inelastic events is diffractive, for our
SRC models only apply to the nondiffractive part.
We shall consider two different alternatives:

(a) All inelastic events arise from a short-range-
correlation mechanism.

(b) Some of the low-n 0, cross sections contain
some diffraction.

In case (a), since it is well known that a pure
Poisson distribution does not give a good fit to the
data, we cannot impose our exchange-degeneracy
condition. We shall, however, make use of this
condition in case (b), since here it is not ruled out
by the data. As a possible model for case (a) we
can take the one given by the generating function
of Eq. (21). However, we have found that a rea-
sonable fit to the existing data is also obtainable
by entirely neglecting the Regge-Regge coupling
&,. For this simplified model, which as we have
mentioned is the one discussed by Mueller,* one
has

I7(z,Y)=exp[(n )z - 1) +3f;(z - 1)°], (29)

which yields a simple recursion formula for o,
-1 - eyo- - -
On =, [(m)™ = £2)0mo1* f5 0nzls (30)

and

N_, number of negative particles produced

FIG. 7. Fit of short-range correlation model, model
(a) of Sec, IV, to 200-GeV data, showing extrapolation
of model to 400 and 1500 GeV,

PINSKY, AND TAN 7

inel » A:=<n->"%f2-
o7 =(n?) = f3)og -

We have determined the parameters (»~) and f,
from the fits displayed in Figs. 2 and 3. The re-
sultant partial cross section distributions are
shown for various energies in Figs. 1, 7, and 8.
The total x* for the fits at 50, 70, 100, 200, and
300 GeV is x2=66 for 50 degrees of freedom. The
worst fits are at 70 and 300 GeV. The 300-GeV
fit, shown in Fig. 8, has x®*=20 for 13 degrees of
freedom.

For case (b) the model is even simpler. Since
existing data do not permit an unambiguous separa-
tion of diffractive from SRC production, we adopt
the further assumption that the SRC production
obeys exchange degeneracy (see Sec. III); that is,
all correlations among negative particles vanish,
fn=0for n>1. This implies that the SRC part fol-
lows a Poisson distribution, and we have

(n )"
n!

os=e o
(31)

o;=02+ay exp(- (n)y) ,

where (32)

Y u=cyY +dy.

The parameters of the Poisson distribution are
determined by fitting to the higher-multiplicity
events at each energy. We have done this by fitting
In(z lo,) to a straight line for »_>2. The diffrac-
tive contributions of, o?, and o2 are then deter-
mined by subtraction. The fit at 200 GeV is shown
in Fig. 9. A good fit is also obtained at 100 GeV,
and a fair fit at 300 GeV. The model breaks down
at lower energies; at 50 GeV one finds 0, <0. We
have therefore attempted such fits only at £, > 100
GeV. The parameters we obtain by averaging data

T T T T 7

/\
w
el
o
+
o
-
Bl
el
>
(]
—
o
=

1

b

Oy in m

4 6 8 10 12 14

FIG. 8. Fits of models described in Sec. IV to 300-
GeV data,
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FIG. 9. Method of separation of multiperipheral and
diffractive production, with assumption of exchange de-
generacy (Poisson distribution) at 200 GeV. Straight-
line fit for » - =3 is good (x> =5.3 for 6 d.f.). Deviation
at low multiplicity is ascribed to diffractive production.

at 100, 200, and 300 GeV are ¢2=2.0 mb, ¢?=2.7
mb, 07=1.7T mb, (n”),=-4.56+1.331ns, 0, =26.8
mb, 0,=6.4 mb, and A =0.81.%22 Again the fits at
100 and 200 GeV are good; the fit at 300 GeV is
still poor (x*=18 for 13 points), although slightly
better than in the pure SRC model (see Fig. 8).
Although both models give fairly good represen-
tations of present data, their extrapolations to
higher energies are significantly different. The
dotted curves in Fig. 1 show the characteristic
diffractive behavior of o, and o,: leveling off to
constant asymptotic values. Figure 10 compares
the extrapolated multiplicity distributions at the
highest ISR energy. The two-peak structure con-
jectured by Wilson'® begins to appear. The cor-
relation parameters f,, if normalized to 0, be-
have like Y" in the presence of diffraction, as

6———T 71T T T 71T 7 T

SRC MODEL

b

opin m

FIG. 10. Comparison of pure SRC model and model
with SRC plus diffraction, when extrapolated to 1500
GeV.

4 T T T T T T T LA B B B B |

3k SRC + DIFFRACTION " —
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1/——
O f===="~ -
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pin Gev/c

FIG. 11. Comparison of extrapolation of f, in SRC
and SRC+diffractive production models. The SRC+dif-
fraction curve was not determined by fitting these data
directly (see Sec. IV); better fits could be obtained by
tuning the parameters a bit,

discussed in Sec. IC. The behavior of f; in our
two models is compared in Fig. 11. It seems that
accurate experiments at ISR energies will tell us
whether there is a significant diffractive compo-
nent in oy,,.

V. REMARKS

A. Charge-Conservation Constraints

Throughout this paper we have consistently con-
sidered multiplicity distributions and related pa-
rameters as a function of »~, the number of nega-
tive particles produced. We find this variable
more convenient for the following two reasons.

(1) Distributions as a function of this variable are
free from constraints resulting from charge con-
servation. A trivial example is the fact that distri-
butions in the other popular variable, n,, must
vanish when n,, is odd. Hence, a multiplicity dis-
tribution in 2, can never be a Poisson distribution.
We shall demonstrate a less obvious manifestation
of such correlations in the f,’s below. (2) The
hypothesis of exchange degeneracy takes a simple
form in terms of »n~.

Since the multiplicity distribution in terms of »~
contains the same information as the distribution
as a function of »n.,, it is obvious that one can de-
velop rules for translating from one language to
the other. Such work has been carried out by sev-
eral authors.?® We review here the formalism de-
veloped by Webber, in order to derive a formula
which translates the correlation parameters f,
from one language to another.

Webber finds the following relation for genera-
ting function in terms of ny,:
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I, (n)=e f) Fipt/n .l)

=(1+h)°exp[é f;(2h+h2)"/n!] , (33)

where @ is the charge of the initial state; @=2 in
pp collisions. After a little algebra one can deduce
from this the following explicit relation:

. fch n
Loy ¥ 57

k=[n/2]

22k-n
(n-k)12k-n)!"’
(34)

where [n/2] denotes the smallest integer greater
than or equal to »/2. Explicit formulas for the
first few f’s are

(n™) =Q+2(n"), (35a)
Sh=_Q+2f7+4f;, (35Db)
fh=2Q+12f7+8f], (35c)
fh=6Q+12f; +48f; +161; , (35d)
Fh=24Q+1207;+160f7+32f; . (35e)

Note that even in the absence of any correlations
among the negative particles, the f& are nonzero
as a result of charge conservation alone.

B. Compound-Poisson-Distribution Interpretation

The short-range-correlation generating function
defined in Eq. (10) is amenable to an appealingly
simple interpretation: It can be viewed as the gen-
erating function of a compound Poisson distribu-
tion.

For notational simplicity let us consider the case
where the type i means any particle and let us
drop both the superscripts ; and M. Now if one
supposes that particle production occurs in clus-
ters of particles with each cluster produced inde-
pendently, then the probability p,(Y) of producing
n particles is given by

Pn(Y>=§p§(Y>A,,.. , (36)

where pj(Y) is the probability of producing j clus-
ters, and where A, , is the probability that these j
clusters decay into a total of » particles. Since by
assumption the clusters are produced independent-
ly, the probability p;(Y) follows a Poisson distri-
bution

p;-(Y)=e-nc(Y)L7£L§_!L)E , (37)

where n,(Y) is the average number of clusters
produced.

Let w, be the probability that a given cluster de-
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cays into exactly k particles. Then construct the
generating function

g(z)=§ wye® . (38)

It is not hard to show that the probabilities i, ,
are generated by**

[6@)]7=3 A, 02" - (39)

Thus one can write the generating function J (z, Y)
in the form

I(z,Y)= i Pn2"
n=0

=i Z"Z": A’!,npj(Y)
n=0  j=0
- Z p5 ) (40)
On using (37), this yields
Iz, Y)=exp{n°(Y)[glz)- 1]}, (41)

which is the generating function of a compound
Poisson distribution.?* It is clear that the short-
range-correlation generating function has this
form provided that we neglect the nonasymptotic
terms involving the b,’s. Thus we have the iden-
tification

=1+ L3 %y, (42)
Mo yoy E!
where a, is defined in Eq. (5), f,=a,Y +b,. The
average number of clusters »,(Y) can be deter-
mined by requiring that g(0) =), =0; that is, that
the probability of a cluster decaying into zero par-
ticles vanishes. This yields the result

nc=—Y§,‘:—;(—1)‘ : (43)
Note that . (Y ) < Y, and therefore g(z) is indepen-
dent of Y. The probabilities w, for a cluster to
decay into k particles are therefore energy-inde-
pendent. These features resemble those found in
multiperipheral models.

The asymptotic correlation coefficients g, have
a particularly simple interpretation in the picture
we have described. Differentiation of Eq. (42) with
evaluation of the derivatives at z =1 yields

24
gN(="= (44)

Comparison with Eq. (38) shows that these deriva-
tives yield moments of the cluster decay distribu-
tion w;,

@, Y =ne(k(k=1)++(k=r+1)) . (45)
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For r =1, this reads
ne(k)=a,Y ~(n); (46)

that is, the asymptotic average multiplicity is the
product of the average number of clusters produced
times the average number (%) of decay particles
per cluster. Then, for » =2,

L2.m _(k(E-1)
fi a (k) ’ “7

The quantity k(2 - 1)) is just twice the average
number of pairs of particles in a cluster decay.

In general, f, is proportional to r ! times the aver-
age number of r-tuples produced in a cluster de-
cay.

For this interpretation to be consistent it is nec-
essary that the coefficients w, calculated by ex-
panding Eq. (23) be positive.® Since, however,
this is a sufficient but not necessary condition for
the o, to be positive, the positivity of the w, is not
guaranteed in general and must be examined ex-
perimentally.

The compound Poisson interpretation we have
formulated is useful for developing some intuition
about the magnitude of the parameters f,. To in-
terpret Eq. (47) most readily, consider a simple
model in which clusters decay into a definite num-
ber of particles k. Then Eq. (47) reduces to f,/f,
~k-1. Hence one expects f, ~f, if clusters decay
into pairs of particles. The value one finds from
the parametrizations in Figs. 2 and 3 is f;/ff
~0.6, corresponding to 1.6 negative particles per
cluster.

C. Model-Independent Separation of Multiperipheral
and Diffractive Production

In Sec. IV, model (b), we were able to separate
SRC (multiperipheral) and diffractive contributions
to o, only by making the assumption of exchange
degeneracy in the SRC portion. In this section we
list model-independent separation methods; all of
them have been discussed previously, either in
this paper or elsewhere. (See especially Ref. 13.)
Even though none of them provide clear results
with present data, they should be useful as the data
are refined, especially at ISR energies.

The definitions of SRC and diffractive production
have been given in Secs. IB and IC. We remind
the reader, however, that we consider only low-
multiplicity diffractive processes (see Sec. IIC)
in which the growth of average multiplicity arises
only from SRC production. With this assumption,
the following separation methods follow without
further assumptions:

(1) Measure the correlation parameters f,(Y),

excluding as usual elastic events, as a function of
energy. If they are well fitted by a,Y +b,, there
is no evidence for any diffractive part. This is the
case with present data, but we need greater ac-
curacy and a greater energy range. If not, try to
fit with a polynomial of nth order in Y, and identify
the coefficient of Y. These coefficients deter-
mine o, and o, according to Eq. (19).°

(2) Measure the energy dependence of the partial
cross sections o,. If an asymptotically constant
part is seen, this is o?. Figure 1 shows that there
is no constant part evident at present energies,
but indicates on the basis of model (b) in Sec. III
that we might see such flattening at ISR energies

if there is indeed a significant diffractive part of
Tinet -

(3) Look at the multiplicity distribution at the
highest possible energy, in hope of seeing a clear
separation between low-multiplicity diffractive
processes and higher-multiplicity SRC processes,
as indicated in Fig. 10 from our model.

(4) Measure the correlation function

d’¢ _1ldo do
dy,dy, o dy; dy,

Co(y1,32) = (48)
in the central region of the rapidity plot, where
presumably SRC events dominate. Vary o until a
value is found for which C,(y,, y,) vanishes expo-
nentially for |y, -y,| large, C,~exp(~|y,-y,|/L).
This value is 0 =0,. The preliminary Pisa-Stony
Brook data appear to have this property for o
=0inet » Which would indicate that there is no signif-
icant diffractive component in o,

inel *

VI. CONCLUSION

We have discussed the phenomenology of multi-
plicity distributions in high-energy hadronic col-
lisions in terms of the short-range-correlation
picture, modified to include diffractive processes
leading to low-multiplicity final states. We have
formulated two models: one in which diffractive
processes are present in elastic scattering only,
and one in which diffractive processes contribute
also to low-multiplicity inelastic reactions. Both
give reasonable agreement with the present data
on partial cross sections. As more accurate data
become available and are extended to higher ener-
gies, these models will be tested more severely
and it will become possible to discriminate be-
tween them. Even more interesting is the pros-
pect of separating diffractive and short-range-cor-
relation processes without resorting to specific
models.

Finally, we hope that our work, if it has accom-
plished nothing else, has emphasized that a Pois-
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son distribution is by no means the unique “predic-
tion” of the multiperipheral or short-range-corre-
lation picture. The models we have constructed,
although still oversimplified models and zot defini-
tive predictions of the multiperipheral picture,
should be much more realistic and useful for phe-
nomenology.
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