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The chiral SU(2)XSU(2) symmetry is studied for the mK scattering in the scheme of the linear

realization. Roskies-type relations are used for the crossing symmetry, and the relativistic version of

the effective-range approximation is imposed on for unitarity. Two alternatives of the up-down

ambiguity for the I = 2,
0' resonance are investigated, and our analysis favors the up-solution with

v{870). The cr term in the mK scattering is estimated to be about —1.1 m„.This is another measure

of the chiral SU{2)XSU(2) breaking and is consistent with other features of the symmetry breaking.

Finally the threshold effect on the K, 3 form factor is studied and compared with experiment.

I. INTRODUCTION

Recently improvement has been made in the bo-
son spectroscopy of the reactions K p- m'K n

(Ref. l) and K'p-vKn, "(Refs. 2 and 3} dominated

by the one-pion-exchange mechanism. This en-
ables one to understand the nK elastic scattering
at low energies. Since only s and p waves are con-
sidered, the resulting I =-,' s-wave phase shift has
the up-down ambiguity and thus two choices about
the mass of the z meson. The up solution gives the
g meson at 870 MeV with a width of 30 MeV while
for the down solution we have g(-1150) with a
broad width of about 400 MeV.

Various attempts have been made to understand
these phenomena from different points of view.
Pagnamenta and Renner' construct a current-alge-
bra model for the nK~ vertices with the nX inter-
mediate states. The Veneziano model is also used'
in the study of the wK scattering with an application
to the K,3 form factors. Carrotte unitarizes a
simple parametrization determined by the current-
algebra constraints by making use of the relativ-
istic version of the effective-range approximation.
Pond' applied the hard-pion technique to the mK

problems.
The purpose of this paper is to construct the mK

scattering amplitudes at low energies which are

consistent with unitarity and crossing. We assume
that 0, m, K, and g mesons belong to the simplest
representation of the chiral SU(2)xSU(2) symmetry
and formulate the most general phenomenological
action containing at most two derivatives. The dif-
ference between the nonlinear phenomenological
Lagrangian method discussed previously' and ours
is that in the former, one assumes a certain term
characterizing the SU(2)xSU(2) breaking (the so-
called o term} to be negligible. This assumption
has been challenged in the case of mN scattering,
and in our work we shall not make this assump-
tion. This necessitates our treatment of the o and
& fields as independent degrees of freedom.

Unitarity is imposed on by the method of the
relativistic effective-range approximation, which
has been successful in the mn problem, ' and cross-
ing symmetry is restored by demanding three
Roskies-type relations" for the s and p waves.
Our final solution favors the up solution for the
I=-,' s wave. The magnitude of the o term in the
nK scattering is evaluated to be about -1.12m „'
and the chiral SU(2)xSU(2) breaking is measured
to be small (-10%), which is consistent with other
features of the chiral symmetry breaking. We also
applied our phase shifts to the Kt3 decays. The
threshold effect on the scalar form factor f(t) is
studied and compared with experiments.
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The paper is organized as follows: In Sec. II we

review the phenomenological action and formulate

it for the mK system in the framework of the chiral
SU(2)xSU(2). Here the Feynman rules for the ir-
reducible vertices are derived. In Sec. ID the

scattering amplitudes are calculated as well as
the partial waves. Unitarity and crossing rela-
tions are discussed in Sec. IV and the numerical
calculation is presented in Sec. V to fix our pa-
rameters. We also study the X» decays in Sec.
VI and comparison with the experimental data is
made. Finally we conclude in Sec. VII that our
construction is a good approximation up to the in-
elastic threshold.

II. CHIRAL SU(2) X SU(2) SYMMETRY
FOR THE mK SYSTEM

A. Review of the Phenomenological Action

Let us briefly review what is meant by the ef-
fective action or the phenomenological Lagran-
gian. "

Let P(x) ={P,(x), f =1, 2, . . .}be the renormal-
ized fields corresponding to the particles of a sys-
tem. When we introduce the c-number classical
currents ))(x) ={)),(x), i = 1, 2, . . .}for these fields
we have the Schwinger functional":

S[q]=-'In(0 T(exq fd'*Q (*0)'(*0) 0)., ,

(2.1}

()x[e]
e((x) = 0;

(2.5)

[ ] [A~( )]-1 (2 5)
5@«x}5@~(y}e(.)=.. ;e (.)=.

5"X[O]
5e, (x} "5C,. (x„),(,& „.

= Z'(n)
, , . . . , „(x„... , x„) for n-3,

where

v, =&Oly, (x)lo),

fn„(x, y) =&OIT{p;(x)4 (y))lo)

(2.V)

Therefore we get all irreducible vertices by ex-
panding d4[C] around the vacuum expectation values
of the renormalized fields, 40, (x}=v, and the v, 's
are determined by Eq. (2.5).

We define yet another functional A[C; y]:

0[e;y]-=f d *0(*)

= -)),(x), i = I, 2, ~ ~ ~ .5A[C]

g
X

The new functional A[40] is the generating function-

al for the one-particle-irreducible vertices (the

amputated Green functions which remain connected
when any one internal line is removed):

which generates the connected Green functions in
the presence of the additional interaction Z(x)
-Z(x)+ P, y, y, (x):

5"S[))]
5)), (x,)" 5)), (x„) „(„& „

= " '&Ol T{y;,(,)" y; ( „))I
o)'

=d[e]+r, y, fd'*e, (*) .

Then Eqs. (2.5)-(2.7) become

5A[C; y]
54((x) @ (,) —„

(2.3)

(2.9)

Defining the new c fields 4, (x) by

, (,} »[nl
()q,.(x) '

(2 2)

(2.3)

()'A[&; y]
(

—[A,~(x, y)] ', (2.10)

5"A[4; y]
(&C,,(x,)" 54, (x„),,(,&=„,

dfe]=0[q]- fd' r„q,(*)e, ( ), (2 4)

with

()S[n] („)
5)),(x)

which may be called the phenomenological fields,
and changing variables from ))(x) to C(x) by the
Legendre transformation we obtain a new function-
al, the Jona-Lasinio functional":

= I'(" ( (xi . . . x„) for n 3

(2.11)

A(x) is called the phenomenological action when it
is expanded in power series of momenta in the mo-
mentum space. This is equivalent to expanding
A(x) in terms of derivatives of fields in the coor-
dinate space.

The S-matrix elements have the tree structures
when they are expressed in terms of the irreduc-
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ible vertices. Therefore we have only to calculate
the one-particle-irreducible vertices and inverse
propagators from A(x) by Eq. (2.10) and Eq. (2.11),
respectively. Then the scattering amplitudes can
be obtained from the product of the irreducible
vertices and the propagators.

If A(x) is constructed to contain up to two de-
rivatives, so are the irreducible vertices and the
inverse propagators. As long as the internal par-
ticles for the tree structure are massive, the
propagators are also correct in the second order
of momenta. Therefore it is sufficient to construct
A(x) up to two derivatives in order to construct the
S-matrix elements to the second order in momenta
involved.

B. Construction of the Chiral SU(2) X SU(2) Phenomenological
Action for the mE System

Now we construct the most general form of A(x}
containing up to two derivatives. Since we are in-
terested in nK scattering, terms contributing only
to the KK-KK reaction will not be considered.

The cr and m, and K and g mesons are regarded
as the chiral SU(2)xSU(2) multiplets and are as-
sumed to belong to some irreducible representa-
tions. The o field is responsible for breaking the
chiral SU(2)xSU(2) symmetry in the Lagrangian.
The validity of PCAC (partially conserved axial-
vector current) demands that w =B„A"/f,m, ' and g
belong to the same multiplet. Since the o field

y' =(»+K), ,

}I'=(»-K), ,

(2.12)

where a, a are the tensor indices of SU(2), and
SU(2) of the chiral SU(2), xSU(2), respectively.

We assume that the chiral SU(2) xSU(2) is abetter
symmetry than SU(3). The SU(2)xSU(2) is spon-
taneously broken and in its symmetric limit the
pions alone (and not kaons) become Goldstone bo-
sons. " Thus we expand A[4] in the momentum
space about p, ' = 0, p&' =p, ' =no&', because to pre-
serve the SU(2)xSU(2) invariant structure of A it
is necessary to maintain the symmetry between
P& and p, . The mass of the ~ meson is identified
approximately with the zero of the corresponding
inverse propagators, i.e., A„(m„'} '=0.

It is now a straightforward matter to formulate
A(x) for the wK system containing up to two de-
rivatives:

must be isoscalar, it follows that o, 7 must belong
to the [N/2, N/2] representation. Furthermore
the fact that K has I=-,' requires K and g belong to
an [I./2, M/2] representation with ~L-M~=1. We
shall assume that a, 7, K, and ~ belong to the sim-
plest representations compatible with the above ob-
servations, i.e. , g and w belong to the [-,', —,'] repre-
sentation and K, » to [0, —,'j+ [-,', 0] . Chiral invari-
ants are formed from the representation tensors'

M';=(o+iw 7)„,

A(x) = f(o'+ w')+ [(ag)'+ (aw )']g(g'+ w')+yg

+(»»+K"K){A,(g +w )+[(Bg)'+(Bw)']A,(g +w')+(gag+w aw) A, (g'+w')I +( a»r+a»KBBK)B(g'+w )

+(» g» —i» w rK+iK w T» KKg)-{C( g+w')+[( B)o'+( aw)'] C(
'g+w') +( gag+w aw)'C, (g'+w')}

+(B» ga» —ia» w' 'raK+iaK Tw' Ta» BK gaK)D(g -+ w )

+(8» Bg» ia» Bw. TK-+iaK Bw 7K BK~ agK-+» aoa» —bc aw TBK+iK aw Ta» —K agaK)E(g" +w')

+ {» [gag+ w ~ Bw + i(wxaw ) ~ v]a»+H. c.+K [gag+ w aw +i(wxaw ) r] aK+8c.
+» [ igaw 7+iagw -r]BK+H c.+K [ igaw .r+iag-w ~ T]a»+H c ]F(g'+w') . .. (2.13}

Here space-time dependence of the phenomeno-
logical fields o, m, K, and z is understood.

The vacuum expectation values of the fields are
determined by minimizing A[4] with respect to
these fields as shown in Eq. (2.9). Thus the de-
rivative-independent parts of A[4] are chosen such
that only the 0 field has nonvanishing vacuum ex-
pectation value. There are 12 functions of g'(x)
+F(x) in A(x). They are f, g, A„A„A„B, C„
C2, C„D, E, and E, and are assumed to be ex-
pandable as a power series around the vacuum ex-

Agq') ' ~ q'-m, ', i=g w K»
Q ys i

(2.14)

where m,. is the physical mass of the correspond-
ing particle, we obtain"

pectation values of the fields. By means of Eqs.
(2.10) and (2.11) we can relate the above functions
to the irreducible vertices.

From Eqs. (2.9) and (2.10) and the normalization
conditions for the propagators



CHIRAL SU(2)x SU(2) SYMMETRY IN THE sK SCATTERING 2639

2)=f m

g=af
/— 1 2

PPl

f"= -(m,' -m, ')/4 f,',
B=1,
D=O,

A,= --,'( m„'+ms2),

C, =-(m„' —m ')/2f„.

(2.15)

Here f„ is the pion-decay constant (about 94 MeV).
The one-particle-irreducible vertices can be

calculated from Eq. (2.11) and are given in Fig. 1,
where

g.«(q'} = c, 2f-. (A,
'- f.c')

cF
i&q

seb+ (m~-mcr+q q )

Sobpcd
&

(m~-m~-q. q -q -q )

+ 8oee permut4tions

(pi .p mK)

—2f, ms'(a'- f,D')

+ q'[f.(8'-f.D)+ El (2.16)

[QuK~(q )+(Ps-mu) fs F]

(p,'-m„')

g, s„(q') = (m„'-ms')(I+2f, 'Z)- q'E.

From the Feynman rules shown in Fig. 1 we real-
ize that there are five parameters to fully describe
the sK elastic scattering, i.e., C„A,'- f,Cf,B'-f„D', E, and F." Furthermore the vertex
functions are quadratic in momenta because A(x)
contains up to two derivatives of the fields.

III. SCATTERING AMPLITUDES

Owing to the isospin conservation there are two
invariant amplitudes in the wK scattering:

T(s, t, u)=() ' T(+) (s, t, u)

+[vs, T ] T( )(s, t, u),

where s, t are the square of the total energy in the

28 [(AI f~CI)+(B f~D )P ' P

+(A2-f~C)q q
kgb T4I

~ P+ P ) &q,+q~) F

FIG. 1. Feynman rules for the one-particle-irreducible
vertices relevant for the ~K scattering.

c.m. frame and the momentum transfer squared in
the mK- mK channel, and a, b are the isospin
indices of the initial and the final pions, respec-
tively.

As shown in Fig. 2, the scattering amplitudes
have the tree structures. With the help of the
Feynman rules for the irreducible vertices (Fig. 1),
we can construct the off-the-mass-shell amplitudes:

/

q .~b
2p/ 7F 7r

FIG. 2. Tree structure of the 7IIC scattering amplitudes.



2640 J. S. KANG

T" (s, (, )=-g„.(S')g (S') ( ~, ~ '"*
K K 1r 4

—2f„F[g,ff „(q,')+g„s„(q,')] —f,' F' (s+ u —2m„'}+2(A[ —f, C', )

+2q& q. (A f.C-)+[2m.*
(qm -q&)-'] (S' f.D-'),

T' '(s, (,s)=-g. „(g,')g.,„(S,')(,—,—(g+f, 'g')(s-s) .

It can be readily checked that Adler's self-consistency condition" is satisfied:

lim T(') (s, t, u)=0,
ag, 0

(3 2)

(3.3)

and the boo soft-pion theorem is also satisfied:

T(, ) ( t } g,sr(0) m„' osff(0)
(3 4)

where o«(q') is called the e term and defined as

6... (q')= «V. ) I[0.', [0,',&(0)]]IK(t,))

(3.5)
2'. f.g. ,(q'),

where q'=(t), -P,)'. In the chiral symmetric limit, o«vanishes and thus it is a measure of the chiral
SU(2) X SU(2) breaking in the sK scattering.

In the nonlinear realization of the chiral symmetry the e and z fields are considered as the dependent
fields on m and K. This is attained from the linear realization by letting m, ' and m„' go to infinity. " In the
limit m, ', m„'-~ the scattering amplitudes (3.2) become

Ti'l (s, t, u) =, (s+u —2ms')+nq, q, ,
%g ~'O 1I'

(3 6)

I!K2

where a=A, f,C, +2(B' -f,—D')+E/f„+F. Thus it is consistent with the result of Bardeen and I ee' on the
mE scattering amplitudes in the nonlinear realization.

On the mass-shell the total amplitudes can be rewritten as

Tt'i (s, t, u)=-g,',+, +, +16w(g+rtt),S -REK Q-SlK —g

T' '(s, s, s)= —g,',—,) ~ 16s((s — ),s-m„' u-m„'
where

(3.7)

316' = g «(m, ') (m, '-ag m„'),

16s)= — f s(m„-ms }— g~s(m, —agm, )+2m„(A2 f, C2) —4ggf-„F —2f, F*(m +sm„~-m„'),

16» = —sE —g (&'-fTD') —(As-f. Ca)+f' F',
16sf = —F f„Fg, -

(3.6)

g. =g.&.(m.') .
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We shall take g„, 0, F„g, and f as independent parameters in our work.
We notice immediately that 0 is a measure of the magnitude of the 0 term:

32v f„'m, 'a
zz( a) 3 2'[m 2 am 2] (3.9)

Partial-wave expansion is convenient at low energies near the threshold because only a few angular mo-
mentum states contribute to the total amplitudes and the unitarity condition is particularly of simple form.
We expand T')(s, t, u} as

T "(s, t, u) = 16s Q (2l + 1) a(f) (s) P, (z, ),
Js-. 0

+1
a(,') (s) = — dz, T(') (s, t, u) P, (z, ),16m 2

(3.10)

where z, =l+t/2q, ' and q,
' is the three-momentum squared in the c.m. frame of the s channel. Then the

elastic unitarity condition is of the form

1 2q, -=- t)(s),a, (s) vs s & (ms+ m„)'. (3.11)

On projecting the total amplitudes of Eqs. (3.V) into the partial waves by means of Eqs. (3.10), we find
that

2 1 1 Z-s-m 2 c 2

16m s-m„2q,
2

a( ) (s)
16m

2
a'+) (s) = -)f"

z l6m

2
a(-) (s) + gr

16~

5 —s-m '1+, " +(2s-Z —2q, ') g,s -mt( 2qs 2qs

1 Z -s-m„g2
mQ 2 2

2

2Q, 1+ 2 +2 2Q, 1+ 2 +3
2qs 2qs 2qs 2qs

1 Z —s-m„ 2

+sq. &,2qs 2qs

(3.12}

or, in the channel with definite isospins,

a' '(s) =-
16~

2
as/2 (s) gw

16&

2
x/2 (s) gm

16m

2
aS/2 (s)

16m

(3.13)

I (I)0 1+ ~
" +, Qo 1+ ~z +g —2qz)}+2(2s-Z-2q l}g,Ls-m„2 2q, 2

Z —s-m ' 2

Qo 1+ 2
' + I@0 1+ 'z +E —2q, )}—(2s-Z-2q, )g,2qs2 2qs 2qs 2qs

z-s- 2 o 2

2qs 2qs 2qs 2qs

2 Z -s-m„a'2 2

, (I), 1+ 2, " +2, (I), 1+, + &q, ())-&),2qs 2qs 2qs 2qs

where Z =2(mz + m~'), and Q, (z) is the Legendre polynomial of the second kind.

IV. UNITARITY AND CROSSING

A. Unitarity

The phenomenological s,ction A(x} defined in Sec.
II is expected to have full unitarity when it is ex-
panded as an infinite series of derivatives in the
phenomenological fields. Since we truncated the
series at two derivatives, the irreducible vertices

calculated from Eq. (2.13) are not unitary. At low
energies near threshold elastic unitarity is valid
and this is most simply expressed in the partial
waves as given in Eq. (3.11).

Brown and Goble ' unitarized the current-algebra
amplitudes of mm scattering derived by Weinberg. '
They applied the relativistic version of the effec-
tive-range approximation and succeeded in explain-
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ing the correct width of the p meson. In the nK
scattering Carrotte ' used the same method and
determined the I =-,' s wave from the mass of the ~
meson and the current-algebra constraints, i.e.,
the scattering length given by current algebra and
Adler 's self-consistency condition. '8

In our work we shall use the same effective-
range approximation adopted by Brown and Goble '
for both s and P waves. Denoting f,'(s) as the uni-
tarized partial waves of a,'(s) given in Eq. (3.13),
we have

1 1
f/(s) //1(s) 1 ( (4.1)

with

= C,'+h(s),

h(s) =- ——[(s, —s)(s2-s)]'"

where H', (s) is the elastic unitarity function for the
unequal masses and has elastic unitary cut from
threshold to infinity. It can be readily obtained
from the dispersion integral with at least one sub-
traction. Therefore,

oc

H'(s) = C'+ ' ds'», (s'- s) (s' —s, )

accordingly the crossing relations have to be ex-
pressed in terms of them. For the mm scattering
there are two main types of crossing relations.
One is an inequality for partial waves in the un-
physical region. " The other is an integral equal-
ity in the same region. " Those methods have been
extended to the unequal-mass case."'" The cross-
ing relations of the inequality type in the mK scat-
tering" relate partial waves in the s channel to
those in the t channel.

Since we unitarize only in the s channel, we
shall not use these as constraints. Instead we
shall impose the Roskies-type crossing relations"
on the partial-wave amplitudes f//(s) unitarized
through Eq. (4.1). These relations are obtained
by integrating any isospin-odd combination of the
total amplitudes over the region bounded by z, =+1
inside the Mandelstam triangle. They are:

f
Sp

d s q.' [f.'"(s) -f"'(s)] = o,
Sp

t
Sp

dsq, '[f"'(s) -f"'(s)]
Sp

dsq 4[f1/2(s) f 3/2(s)]

(S S)1/2 + (S —S)1/2
xln

Sp

dsq '(s -q, '-m»' —1)[f'"(s)+2f',"(s)]
Sp

(4.3)

+ ———(s s ) inurn
1 I X/2

s s E
0

(4.2)

Sp

ds q 4 [f1 /2 (s ) + 2f3/2 (s )]
Sp

where s2 = (m» + m,)' and s2 = (m» —m2)'.
Since p(s) is independent of l and I, so is h(s).

Subtraction is made at s = s, because according to
PCAC the phenomenological action A[4] expanded
around the soft-pion limit is assumed to be
smoothly extrapolated to threshold and we can
choose C,' to be zero for the s waves. The s-wave
scattering lengths will not be changed thereby by
unitarization. But for the p waves, owing to the
kinematical behavior at threshold, C, 's affect
their effective ranges which is fourth order in
momenta. The phenomenological section A[4] we
constructed is of the second order and thus does
not constrain C,"s for P waves. These shall be
determined in Sec. V by the dynamical con-
straints on the p waves.

B. Crossing

As a result of the unitarization, crossing sym-
metry is broken and we have to restore it, Cross-
ing has a simple form for the tota1 amplitudes.
But we are dealing with a few partial waves and

Sp
dsq ' f' '(s) =0,

Sp

Sp
ds q, ' [(s —3q, ' -m»' —1)f',"(s)

Sp

+2(s -m»' —1)f,'"(s)]

~Sp

dsq, '[(s -m»' —1)f',"(s)

Sp
ds q 4f1/2(s)

Sp

(4 4)

+ (2s -3q, ' —2m»' —2)f',"(s)]
Sp

= -3 ds q,4f '/'(s) .
Sp

where s„sp are the threshold and the pseudo-
threshold of the nK scattering, respectively. For
the purpose of numerical calculation in Sec. V we
can rewrite these relations as follows:
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V. NUMERICAL CALCULATIONS

A. Determination of Parameters

There are 7 parameters altogether to describe the
mK scattering: g„cr, E, q, &, and C'z~', and C', '.
These shall be determined by imposing dynamical con-
straints of the s and p waves, and three Roskies-
type crossing relations, Eq. (4.3) or (4.4).

Recent improvements in boson spectroscopy
provide us with information about the I =-,' s-wave
~K phase shift. Since only the s and p waves are
taken into account in analyzing experimental data,
there is an up-down ambiguity for the I=-,' s-wave
phase shift and thus an ambiguity about the mass
of the ~ meson. One solution gives m„=870 MeV
with the width about 30 MeV and the other solution
has resonance at considerably higher energy
(about 1150-1350MeV) (Ref. 2). We shall investi-
gate which alternative,

Case 1: m„= 870 MeV, I'„=30 MeV,
Case 2: m„=1150 MeV, F„=400 MeV,

is favored by our assumptions on the chiral as-
signment of the ~ meson.

The p waves are better understood experimental-
ly than the s waves. The I=-,' p wave has the K*
meson as resonance and the I=-,' p wave, being
exotic, has a small phase shift. These constraints
on the p waves can be expressed as

+Reh(s)+C', "=0 at s =mr~', (5.1)

1
+ Reh(s) + C,'~' = -Imh(s)

at s = (mug —~I' ~)', (5.2)

5'z" =0 at, say, 2 GeV. (5 3)

We can now determine the 7 parameters one by
one. First g„ is fixed by the decay-width formula
of K «KlT

y

3I'„= ', gm„'-(mr+ m,)'][m„' —( z-mm, P]P~'
K

(5.4)
We have

2

Case 1: g' = 1.42m, ',
16m

2

Case 2: ' = 19.7m 2 .16n'

After this step the first of the crossing relations
(4.4) contains only one parameter t' We solve.
this nonlinear equation in g numerically. Since E
is real, Eq. (3.8) gives us the bound t' & 1.10x10 '.
A solution for the two cases is

Case 1: & = -0.220X 10-',
Case 2: g =-0.662X10 '.
The p waves contain e, q, C,' ', and C,'. g,'

and ( are already fixed. We determine v, g, and
C',"by making use of Eqs. (5.1)-(5.3}. C',"shall
be fixed later. When v is given, g is fixed by Eq.
(5.3). On eliminating C,"' in Eq. (5.2) by means of
Eq. (5.1) we have one equation as a function of a.
Assuming that the I =-,' p-wave scattering length
is positive we find

Case 1: o& 3m,',
Case 2: o& 8m,'.

Solving for 0 with this limitation we have, within
the range 0&a&250m,"(Ref. 22),

Case 1: Sol. A 0'=15.94m, g = -0.401~ 10
Sol. B o=43.86m' g=-0.762X10 ';

Case 2: No solution.
Therefore one finds that the up solution (m„=8'l0)
is favorable unless 0'« is abnormally large.

Now the I =-,' p wave is completely specified. If
we plot the phase shift it reaches 90 at the energy
of the K* mass and decreases thereafter in the
case of solution A, while in the case of the solu-
tion B the phase shift keeps increasing beyond the
resonance region. Thus we shall discard solution
A.

The second of the crossing relations (4.4) con-
tains $ only by now. Assuming that the I =-,' s-
wave scattering length is positive it has a bound

$ & -1.89m„'.

A numerical solution for this nonlinear equation is

$ = -1.76m„'.

Finally we fix C',"by means of the third equa-
tion in the crossing relations [Eq. (4.4)]. For the
positive value of C',"we find many solutions:

Cz:20 97 23 9 28 8 46 0)

In general 5'z ' becomes smaller as C', ' increases.
Therefore it is sufficient to look into Cz 20 97
to check if the final I = —,p wave is consistent with
the ansatz we made at the beginning of this section.

The s-wave phase shifts are compared with the
experimental data in Fig. 3. The I =& phase shift
gives a rather good approximation up to the in-
elastic threshold and the I = —,

' phase shift is small
as expected. " Besides, 5',"is small fess than
1.5'}up to 1 GeV in the case of the smallest solu-
tion, C',"=20.97, and it becomes even smaller in
the case of other solutions.

The s-wave scattering lengths, defined by

(a') ' = lim q, cot5', (s),
S «Sp

are a"' =0.055m ' a"' = 0.049m
Our analysis, however, does not entirely ex-
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FIG. 3. The 8-wave phase shifts. The experimental
data are taken from Ref. 3.

elude the possibility of finding a down solution.
In solving a system of nonlinear equations nu-
merically, we put constraints on the parameter
space by the physical considerations. But this
gives us only the upper and the lower bound for g,
$, respectively. Numerical calculations have
been carried out within a reasonable range under
these constraints and we do not find any down
solution. Therefore we can say our analysis
favors the up solution with z (870).

B. o Term

As mentioned in Sec. II B, we have the chiral
SU(2) x SU(2) as an approximate symmetry of
strong interactions where the pions become mass-
less Goldstone bosons in the symmetric limit.
The degree of the symmetry breaking can be mea-
sured in various ways. For example, if the chiral
SU(2) X SU(2) is exact, then we expect zero-mass
pions, vanishing a' terms, and no correction to
the Goldberger-Treiman relation. We have, how-
ever,

m 2

=0.075,
mg

or

~'«~ =OO8
mg

(5.6)

=0 (5.7)

For a long time the extreme smallness of a' '
+ 2a"' in the mN scattering has been attributed to
the smallness of O'NN. But a recent estimation by
Cheng and Dashen' shows that oNN is about 110
MeP, although it could be smaller by a factor of
two or three. " This will change the isospin-even
scattering length to be as big as a"'(nN}, which
is inconsistent with the experimental data. They
argue that the Born term of the axial-vector scat-
tering amplitude which vanishes in the soft-pion
limit compensates the v-term contribution on the
mass shell. But this is not the case for the mK

scattering. The Born term of the axial-vector
scattering with the kaons is identically zero by
parity conservation and the 0 term has a non-
compensating contribution to a' +2a' '. In our
parametrization

—,'(a'"+2a"') =0.05m (5.8)

This is also as big as a'" and a'" of the pK scat-
tering. At the present stage no data is available
for the isospin-even nK scattering length and a di-
rect measurement of this quantity is desirable.

This is another measure of the chiral SU(2) XSU(2)
breaking and it is consistent with the results of
Eq. (5.5). There is, however, a, discrepancy be-
tween the scattering lengths we predict and the
current-algebra results. In the latter, one re-
tains only leading terms in the soft-pion limit and
discards the o term which contains the matrix ele-
ments of the commutator of the axial charge with
the divergence of the axial-vector currents. This
is based on the observation that the 0 term is of
first order in the symmetry breaking and can be
neglected compared with other terms in the first
approximation. As a result current algebra pre-
dicts that the isospin-even s-wave scattering
length vanishes, ""i.e.,

s'" = -'(a'"+2a"')

""=0.04-0.12 (see Refs. 24 and 25), (5.5)m jf

1 — " = 0.08 + 0.02 .
r grNN

Therefore the chiral SU(2) x SU(2) breaking is
about 10%.

The magnitude of the o term in the nK scattering
can be readily evaluated from Eq. (3.5):

o«(m ')=-1.12m ' (see Ref. 26)

VI. APPLICATION TO THE K)3 DECAYS

We can also apply our results to the study of the
K» decays. " The K„ form factors are defined as

( (qn) j
V" -(0})K'(&))=-'[f, ( )(&tq)'+f+(t)A -q}"],

t = (k -q)'. (6.1)

Instead of f,(t) we shall consider their combina-
tion, the scalar form factor f(t), in the following:
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f(t =f,(f)+, f (I). (6.2)

f (0) =1+0(A.'1nA. ) . (6.3)

The Callan-Treiman relation" can be written as

f,(m»')+ f (m»') = ~, (6.4)

As emphasized by many authors, the form factor
f (f}' which is proportional to the divergence of
the matrix element (6.1), is the quantity which
arises naturally in the current-algebra analysis.
It is also the quantity that is directly measured
by the Dalitz-plot density in K„,decay experiments.

Theorems on those form factors are based on
the chiral SU(3) x SU(3) as an approximate sym-
metry of the strong interactions, where its sym-
metric limit is realized as having a massless
pseudoscalar octet of Goldstone bosons. Accord-
ing to the Ademollo-Gatto theorem, "f (0) is not
renormalized in the first order of the symmetry
breaking,

P(0}=f (0) =1+0(A.'ink. ). (6.8)

Since P(t) is regular at the threshold the term X
must come entirely from the Omnbs exponential
integral. Near the threshold 5',"(t) behaves like
p(t) f'J'(t) and the exponent in Eq. (6.7) is
O(A. in/. -t)). Therefore we can take the first two
terms in the exponential expansion to the order
O(A. ink). Furthermore, P'(m'»+m, ') is fixed by
the model-independent term of f'(f) in Eq. (6.6).
As a result we can write

to t. Diagrammatically we can express the scalar
form actor f (f} as shown in Fig. 4.

In the approximation of retaining only the mK

intermediate state, the scalar form factor f (t)
has the structure"

Im 51/2($ t)
f(t) =P(t)exp -J dt'~, &, , (6.7)

(ns~+m )

where P(f) is an arbitrary polynomial in t except
that it is normalized at t =0 with

which becomes in terms of f (t)

f(m '-m')=~ —f'(0)m'. (6.5) Z~~2(t 3'" ln ' +O(f' ~' A.'hk). (6.9)r t y

0
Here f~ is the leptonic decay constant of the kaons.

Theslopeof f(t) is givenbyDashen, Li, Pagels,
and %einstein" from the chiral perturbation the-
ory. Their theorem states that

d f f

+X+0(X, Ink. , t). (6.6)

The first term on the right-hand side of Eq. (6.6}
comes from the pole terms of the local current
commutators and the axial-vector currents. It is
of order" ink and model-independent. The second
term, X, is due to the mK intermediate state and
is of the order of one. This term arises from
differentiating terms of order ln(~ —t}with respect

The scalar form factor, Eq. (6.9), is shown in
Fig. 5 with the experimental value of f»/f,
= 1.28+ 0.06. It is also compared with the recent
SLAC experimental data. " The Callan- Treiman
relation is satisfied and it is consistent with the
data at high t in the physical region. For small t,
however, it does not seem to be consistent with
the experiment. But in this region there is an un-
certainty among the experimental data. ' 4 There-
fore the behavior of f (I) is not clear at the mo-
ment for small t in the physical region.

VII. CONCLUSION

In conclusion we have constructed the chiral
SU(2) &&SU(2) symmetric scattering amplitudes for

//
r/ 0

/ /

k)

~N'

K

:a4
o(X, ) ln Xt)

FIG. 4. Terms contributing to the scalar form factor of the X» decay to O(A. , A, ink, , t ).
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FIG. 5. The behavior of the scalar form factor, f(t). The experimental data are taken from Ref. 34.

the mK reactions which are consistent with uni-
tarity and crossing. As for the up-down ambiguity
in the experimental data, our analysis favors the
solution with the smaller mass of the ~ meson
(870 MeV). The magnitude of the o term is esti-
mated and the chiral symmetry breaking is mea-
sured as about 8%, which is consistent with other
results. Finally the I =& s-wave phase shift has
been applied to the K) 3 decays.

The amplitudes so constructed seem to be a good
approximation up to the inelastic threshold.
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We discuss the phenomenology of multiplicity distributions in high-energy hadronic collisions in terms
of the short-range correlation picture, modified to include diffractive processes leading to
low-multiplicity final states. %'e formulate two models, both of which give reasonable fits to present
data on high-energy partial cross sections. Model-independent methods for separating diffractive and
multiperipheral production are discussed.

I. INTRODUCTION

One of the most interesting open questions con-
cerning multiparticle hadronic reactions is the
behavior of the partial cross sections c„'(s) for
producing n particles of a given type i (plus any
number of other particles), as a function of both n
and the square of the c.m. energy, s. Current ef-
forts to organize and understand data on multipar-
ticle reactions are dominated by two competing
points of view, the diffractive picture and the
short-range correlation (multiperipheral) picture
The diffractive Picture assumes that for large s
the partial cross sections approach nonzero con-
stant values, o„(s)-c„. In order to reproduce the
apparent linear increase of the average multiplicity
(n) with lns, proponents of the diffractive picture
usually assume that c„-c/n' for sufficiently large
n. Specific diffractive models' have been con-
structed which, at the cost of additional assump-

tions, exhibit concrete predictions to compare with
data.

The short-range -correlation picture assumes
that all correlations vanish between particles
whose rapidities y are separated by a distance
large compared to a correlation length I.. This
picture implies, without further ad hoc assump-
tions, that the average multiplicity rises linearly
with lns. Since it reproduces general features of
multiperipheral models, this picture is also caQed
the multiPeriPkeral Picture. Again, specific sim-
ple multiperipheral models' have been constructed
and their predictions are testable experimentally.

The diffractive and short-range-correlation
pictures represent, in some sense, extreme points
of view. It is not hard to imagine that the real
world contains both diffractive and short-range-
correlation elements. Recent high-energy data
from the National Accelerator Laboratory (NAL)
and CERN Intersecting Storage Rings (ISR) are,


