$(-k^2)^{-\alpha}[\ln(-k^2)]^{\beta}$ can be obtained with a weight function $\rho(m^2)$ with asymptotic behavior $(m^2)^{-\alpha}(\ln m^2)^{\beta}$. Furthermore, in the example we are dealing with, ρ is positive, and thus if case (14b) occurs, N can be only equal to unity. More general situations are treated later (see Fig. 3).

⁷S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. <u>115</u>, 731 (1959); M. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151 (1960); N. Nakanishi, Progr. Theoret. Phys. (Kyoto) Suppl. 18, 1 (1961).

⁸See, e.g., M. Ciafaloni and P. Menotti, Phys. Rev. <u>173</u>, 1575 (1968). If one relaxes this simple light-cone structure, it is not always true that the behavior of the modulus of the vertex function is the same in the two limits ($\pm \infty$). E.g., the modulus of $\exp[-b\ln^2(-q^2/\mu^2)]$ has the same behavior in the two limits but with different coefficients.

PHYSICAL REVIEW D

VOLUME 7, NUMBER 8

15 APRIL 1973

7

Erratum

Relation Between Nonlinear and Linear Realizations of SU(3)×SU(3): Theory and Applications, A. McDonald and S. P. Rosen [Phys. Rev. D 6, 654 (1972)]. (i) All factors $\omega \cdot C$ on the right-hand side of Eq. (2.63) and all factors $\frac{1}{2}\omega \cdot \lambda$ on the right-hand sides of Eqs. (2.64) and (2.65) should be replaced by $\omega \cdot F$. Thus the various trigonometric series in these equations will read

either $\frac{\cos\omega \cdot F - I}{\omega \cdot F}$ or $\frac{\sin\omega \cdot F}{\omega \cdot F}$.

No other changes are needed in these equations or in the related text.

(ii) The commutator bracket in the first line of Eq. (3.18) should read $\left[-2T_{8}^{-}, M_{n}\right]$. The second and third lines are given correctly.