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We discuss the anomalies present in broken-scale-invariance trace identities which result
from assuming that products of hadronic currents have a canonical singularity structure at
short distances. The analysis is performed qualitatively in configuration space and quantita-
tively in momentum space. Canonical anomalies are found in trace identities involving two
electromagnetic currents, or two axial-vector currents or their divergences. There are
related canonical anomalies in trace identities involving three or four currents. They can be
represented by the anomalous trace equation 9~

' ""'
(x) =8~~(x) + (R/32x2)E'„„P &", where

E&„=8&E,—8„E&+h;»F&F„,with the E& external fields coupled to the SU(3) &SU(3) currents,
and h;&z the structure constants of SU(3) &&SU(3). The electromagnetic current trace anomaly
is related to the high-energy cross section for e e+-y- hadrons, and via POT (partially
zero trace) to the coupling of a scalar meson to photons. These are connected by

(12 ~F )g =R-l (e e'-y hadron )
„a(e e' y p p+)

where Fc is defined by (0~8"~o) = mctEc The axial-. vector current anomalies are related
to the high-energy cross sections for e v, (p v&)- hadrons; they do not affect previous esti-
mates of the o~m coupling made using broken scale invariance and POT.

I. INTRODUCTION

The general consequences of exact and approxi-
mate symmetries of field theories can be ex-
pressed in terms of Ward identities relating dif-
ferent Green's functions. Considerable attention
has been paid to the Ward identities associated
with the SU(3) xSU(3) current algebra and, more
recently, to the trace and conformal identities as-
sociated with scale invariance. " It is however
well known that in perturbation theory Ward iden-
tities may acquire anomalies, because of singu-
larities which render naive manipulations invalid.
Adler succeeded in understanding the axial-vector-
current anomaly in the context of perturbation the-
ory, ' and Callan and Symanzik used perturbation
theory to demonstrate the existence of anomalies
in the trace identities of scale invariance. 4'

However, it is not at all clear that perturbation
theory is relevant to the physics of the hadronic
currents and the hadronic stress tensor. On the
contrary, the logarithmic corrections which are
found in perturbation theory to violate scaling in
deep-inelastic electron scattering seem either to
be absent from the data or to be small. ' So we
have the question: Which of the results of pertur-
bation theory should be believed? In particular,

do the anomalies which occur in perturbation theo-
ry actually occur in the Ward identities of hadron-
ic physics?

One framework for answering the latter question
has been provided by Wilson, ' who showed that the
axial-vector-current anomalies can be regarded
as consequences of the short-distance singularity
structure of current products. If one has a model
for such short-distance behavior, one can deduce
what anomalies exist and how they are interrelat-
ed. The deep-inelastic scattering experiments
suggest that the light-cone singularities of current
commutators resemble those of a canonically ma-
nipulated field theory with charged fermions and
uncharged boson gluons. ' It is natural to extend
this model to other short-distance singularities of
current products, including disconnected parts.
What Ward-identity anomalies occur in such a can-
onical model?

As pointed out by Wilson, ' the axial-vector-cur-
rent anomaly does occur in such a canonical mod-
el, so it might be called a "canonical anomaly" to
distinguish it from other anomalies which appear
in perturbation theory and reflect deviations from
canonical short-distance behavior. An interesting
question is whether there are also canonical anom-
alies among the Ward identities of broken scale
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invariance. The Callan-Symanzik anomalies~ are
associated with the fact that in perturbation theory
canonical singularities are modified by logarith-
mic factors; accordingly, their presence is ex-
cluded by the assumption of canonical singularity
structure. However, there are other anomalies
in trace identities: For example, there is one in
the trace identity involving Green's functions with
two electromagnetic currents. ' It will be shown
that this and certain other anomalies are to be ex-
pected on the basis of canonical singularity struc-
ture, "i.e., that they are canonical anomalies in
trace identities.

In this paper we first discuss, on the basis of
Wilson's simple power-counting arguments, ' what
trace identities are vulnerable to anomalies,
showing in particular that the trace identity for
two electromagnetic currents may be expected to
break down. We then calculate the anomalies in
this trace identity and that involving two axial-
vector currents or axial-vector-current diver-
gences using a model for short-distance singular-
ities based on fundamental fermion and boson
fields ("partons"). "

The calculations are performed in momentum
space'; since the anomalies are determined by
the short-distance singularity structure, all mod-
els with the same behavior in this region have the
same anomalies. Further, lowest-order pertur-
bation-theory graphs have the canonical singular-
ity structure. Hence the anomalies found on in-
serting lowest-order graphs into the trace iden-
tities will be the same as those which would ob-
tain in the real world if the postulated canonical
singularity structure is correct. And it is easier
to calculate some simple Feynman graphs than
to perform the configuration-space analysis. It
is emphasized that the use of perturbation theory
is just an algorithm, and in the theoretical con-
text outlined above higher-order calculations are
meaningless.

We also study the trace identities involving more
than two currents. Canonical anomalies appear in
trace identities involving three or four currents,
and are related by current algebra to the two-cur-
rent anomalies. A compact representation for all
the canonical trace anomalies is the equation

eganomahuI(&) ex(&)+ F I F gv
32r '

where F'„„=8„E'„-~„E'„+h, &I, E~~ E~, with the E'„
external fields coupled to the SU(3) xSU(3) cur-
rents, and Pi,~, the structure constants of SU(3)
xSU(3). R is related to the charges of the funda-
mental constituent fields,

cC&yy = &e g &y y(TFiIII F (1 3)

where F„„is the electromagnetic field, u = e'/4w
is the fine-structure constant, and F is the scale
analog of the pion decay constant F„, estimated to
be of order 150 MeV. The important point is that
g fy y y

is thus predicted to be rather smal 1, pro-
vided that R is of order unity or smaller. In the
model for short-distance and light-cone behavior
based on three triplets of fractionally charged
quarks, which is so far consistent' with experi-
ment, R would have the value 2. For m, = 700
MeV and I'(o-ww}-=400 MeV, for example, we
get I'(o-yy)=-0. 2R~ keV. This small oyy cou-
pling means that in the two-photon process, e'e'- e'e'+hadrons, such a scalar isoscalar dipion
resonance would make a small contribution to the
cross section, over an order of magnitude smaller
than the Born approximation cross section for yy
-ww. (Of course, by Watson's theorem, the reso-
nance would nevertheless be detectable in the s-
wave phase shift. )

Other estimates' ' of gzyy have tended to be
considerably larger; if these turn out to be exper-
imentally valid, and e'e -y-hadrons scales as
1/q' with a coefficient of order unity so that (1.1)

R= Q Q, '+-,' Q q, '.
spin $ spin 0

The phenomenological consequences of these
anomalies are then discussed. The 8„"-Jz-J,
anomaly is shown to be proportional to the coeffi-
cient of 1/q' in the high-energy total cross section
for e e'-y-hadrons, and the 8„"-A„+-A, anom-
aly is connected with the high-energy cross sec-
tions for e v, (pv„)-hadrons. These applications
just require the trace 8"„ofthe hadronic energy-
momentum tensor to be "soft, "as postulated in
theories of broken scale invariance. If it is fur-
ther assumed [PCDC" (partially conserved dila-
tion current} or POT" (partially zero trace)] that
there is a scalar meson 0 that dominates matrix
elements of 8„", then the anomalous trace identities
can be used to study its couplings to photons and to
pions.

The coupling to photons is found to be propor-
tional to the anomaly and hence to the total cross
section for e'e -y-hadrons:

R
a

where

o(e'e -y-hadrons)R=- lim + +o(e e -y-p p )

the coupling gzyy is defined by the Lagrangian
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is badly violated, this would be good evidence
against the utility of the PCDC" or POT" hypothe-
sis. This is a test of PCDC or POT analogous to
the use of Crewther's relation' for I'(so-yy) as a
test of PCAC." It is a more limited test, since
it can only be used to disprove PCDC or POT: If
g, is indeed given by (1.1) with R-O(1), then it
will probably be too small to separate from the
nonresonant background in yy-wm.

The 8„"-8~A"-8„A" trace anomaly was neglected
by previous authors" " in scale-invariance calcu-
lations of a large value for I'(o- vx). We find that
their results are unaffected by the anomaly. " d x T~ 8(x{1)0) A=id $0 (2.6)

how Ward-identity anomalies arise from a config-
uration-space point of view. It provides a neces-
sary, though not sufficient, criterion for the ex-
istence of canonical anomalies. We will see that
the integration by parts may give rise to nontrivial
surface terms in the derivation of Ward identities
involving three or more operators of sufficiently
large scale dimension. The anomalies are just
these nontrivial surface contributions.

Consider first a Ward identity which relates a
two-point function to a one-point- function, e.g.,

II. ANALYSIS IN CONFIGURATION SPACE

Naively we expect a simple Ward identity to re-
late the vertex function

Equation (2.6) is obtained by the same argument
which led to (2.5). The equal-time commutator
(2.4) arises when we integrate by parts and the
derivative e„acts on the step functions 8(t) which

appear in the definition of the time-ordered prod-
uct, "i.e.,

r {8(x)g(0)}=8(x,)8(x)y(0}+8(-x,)&ii(0)8(x).

to the vacuum-polarization tensor

ii „&P, el = ij&'*e' '& & &J&*l/ &Ol))

(2 1)

(2.2)

Since we are concerned with possible complica-
tions due to surface terms at the origin, where
the operator product is singular, we shall follow
a more careful procedure to obtain (2.6). We write
the left-hand side of (2.6) as

When 8"" is the "improved" stress energy tensor
of Callan, Coleman, and Jackiw, "its trace is

dx, d'xy 0 ex.

8„"(x)= s„D&'(x), (2.3) (2. 'I)

where D"(x) is the dilation current. Hereafter we
will often write 8„=-e. The integrated dilation
charge, D(x,) —= fd'»D'(x, x,}, defines the scale di-
mension d of a field P by the commutation relation

[D(x,), y(x, x,)J=-i(» 8+d}p(x). (2.4)

(2.5)

We will show below that relation (2.5} actually
fails in any theory possessing asymptotic scale in-
variance as proposed by Wilson. ' To understand
why the argument leading to (2.5}breaks down, we
shall extend Wilson's analysis of the axial-vector
anomaly to the case under consideration here.
Wilson s analysis offers qualitative insight into

If we use Eq. (2.3) in Eq. (2.1), integrate by parts,
and neglect any possible complications due to the
presence of surface terms, then the resulting ex-
pression may be evaluated using the equal-time
commutation relation (2.4). Assuming asymptotic
scale invariance, the scale dimension of both space
and time components of J" is three, and we obtain
the trace identity,

Following Wilson, ' we simplify the analysis by
adopting a Euclidean space-time metric, O(4), so
that the light-cone singularity collapses to the ori-
gin. Then the integrands in (2.7) are finite and un-
ambiguous as long as we keep e & 0, and we may
study in a well-defined way their behavior as e
-0+. Now when we use Eq. (2.3) and integrate by
parts, we find just the contribution of the surface
at +e and +~. In the absence of massless scalar
particles, the surfaces at +~ cannot contribute.
From the surfaces at the origin we find

lim (-D(e)P(0)+ P(0)D(-e)),
g ~0+

(2.8)

which is just the equal-time commutator (2.4), and
we obtain precisely the relation (2.6). The more
careful analysis has in this case only confirmed
the usual result. Thus Wilson's analysis shows
that canonical anomalies cannot occur in Ward
identities involving products of only two operators.

But let us now consider the three-point function
(2.1). Before we can proceed with the configura-
tion-space analysis, we must make a simple kine-
matical observation. Equations (2.1) and (2.2)
must have the gauge-invariant forms
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~„,(p, -p) = (p „p„-z„„p')~(p'),

11„„(p,-p) = (p„p, -g„„p'}11(p').
The naive Ward identity (2.5) is then

a(P') = -2P', 11(P').9
ap'

(2.9)

(2.10)

(2.11}

Now concentr"te on the case when the currents are
on the photon mass shell, P'=0. Then we can
write

Notice that because of gauge invariance, the short-
distance singularity has been softened by two pow-
ers of y. This is just the configuration-space ana-
log of the fact, well known in perturbation theory,
that one power of convergence is gained for each
gauge-invariant vertex.

We now define the integrand in (2.12) by again
adopting the O(4) metric and excluding the singu-
larities with the restrictions

~(0) z (feed'yy"yue 'y ~ y
Idol-e ly. l-6, lxo-y. l~rl. (2.13}

&& ( T*(8(x)J„(y)Z„(0)))„. (2.12)
We use Eq. (2.3) and integrate by parts, with the

result

IXI

b(0) = ' dy~ ) d ye'~'"y "y"(D(y~+q) J„(y)J„(0)-J„(y)D(y~-q) J'„(0)

+J')) (y)D(e) J'„(0) J„(y—)J„(0)D(-'e))„

+ dy, &'ye'~'"y"y" D~ J„oJ„y -J„OD-& J~ y

+J,(0)D(y. +n) J„(y)—J.(o)J„(y)D(y.—n)) o (2.14)

First consider the integrand when )y, ) is large, i.e., )y, ~
»e, 5, q. Then the terms combine in pairs to

form equal-time commutators, as in the example of the two-point function considered above. This is what

we expect from the naive manipulations which yield (2.5) and (2.12).
Next consider the region for which ) y, )

—= 6. If the first two terms are to associate unambiguously into
an equal-time commutator, the products must be evaluated in the order

(D(yo+n) Jg(y))J.(0) -(J„(y)D(yo-9))J„(0), (2.15}

so the operator must be defined by taking the limit g -0 before 6-0, i.e., we must have 6»g. In the re-
gion of integration defined by

(2.16)

the two terms in (2.15) become an equal-time commutator. Similarly the third and fourth terms combine
to form an equal-time commutator in the region

yo ——6»Q, (2.1V)

So with the choice 6»g, e all terms become equal-time commutators. Taking the limits'9 g 0 and & -0
and using Eq. (2.4), we find

p eo

a(0)= —~( ' d), fd ) e' '")&)"(6~ ) ' —)(J&())J(D))„

-6 a
+ dy, (f'y e'~ ' "y&y" 6+y —(J'„(0)J„(y))„ (2.18)

Integrating by parts once more, we find

a(0) = -2p', ll(p')
Bp

+ n, (0), (2.19)

where 6,(0) is the surface term,
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~ OO

3 a
d, (0)—= Ti~(i ( dyo d y [e'~'~y~y"y (Z~(y) J~(0)}„]

ay~

(2.20)d), d'y [e' ''y"y") (Z„(0)J„(v))

Comparmg (2.19) with the naive trace identity (2.11), we see that &,(0} is the anomalous contribution.
To see whether g, (0) may be nonzero, we use the assumption of scale invariance at short distances, a.c-
cording to which the product of two currents has a c-number singularity proportional to 5 . Since the
numerator of the integrand is proportional to 5', we see it is indeed possible that n, (0}may make a finite,
nonvanishing contribution to the trace identity.

The reader who studies Wilson's configuration-space analysis' of the V- V- A anomaly will find that the
V- V- A anomaly arises in a different way from the trace anomaly. The V- V- A anomaly comes from the
region of configuration space where the three currents are all "pinching" against each other, to give a 5 '
singularity. We have just seen that the trace anomaly is due to the 5 singularity of the two electromag-
netic currents alone.

The configuration-space analysis gives a simple necessary condition for deciding whether other scale-
invariance Ward identities have canonical anomalies. Consider a vertex consisting of 8, and n currents
J~

As in (2.12), the quantities which may have anomalous surface-term contributions are of the form

(2.21)

4n —4+v-3 n & 0.
Since r& 0, this condition reduces to n & 4. In other words, there may be canonical anomalies in trace
identities involving not more than four currents. The two-current anomalies will be discussed in Secs.
III and IV, and three- and four-current anomalies in Sec. V.

~p e ~ ~ p v ~ ~ ~ v dpi pfv T 80 Jp
k =1 j=1 g

where the factors yv correspond to momenta in the anomalies. Carrying through the analysis as before,
we exclude the regions

J y,'f & 5, and Jy', -y~o) ~
vy, ~ from the integrations in Eq. (2.21). As before, we may

take the limits g, &
-0 and pick up equal-time commutator terms. The anomalies are then proportional to

sums of quantities of forms analogous to Eq. (2.20):
n 1 g r n-1

(&.)„.. .„. . ~ II d'y, „y, II y „T" II J'„.(y )~"„(0)

These quantities may have nonzero terms coming from the surfaces ( y', j
= 5, if (counting powers of the y, )

III. MOMENTUM-SPACE ANALYSIS OF TRACE
IDENTITY FOR TWO ELECTROMAGNETIC

CURRENTS

The configuration-space analysis suggests that
the naive Ward identity may fail provided there is
scale invariance at short distances and the cur-
rents have dimension three. Any model satisfying
those conditions must be examined in detail to de-
termine whether an anomalous contribution is in-
deed present and to find its value. This is partic-
ularly simple in the class of models which assume
that the leading short-distance and light-cone sin-
gularities of products of hadronic currents are
given by simple canonical theories. These models
are popular because they seem to provide a cor-
rect zeroth-. order picture of scaling in deep-in-

and the trace of the stress tensor is

e(x) = Q m,.7(,(x)y(x) . (3.2)

Our configuration-space analysis has shown that
the possible "anomalous" contribution to the naive
Ward identity, (2.5), arises from the leading sin-
gularity when the space-time interval between the
two electromagnetic currents approaches zero.
Then all we have to do is calculate both sides of

elastic electron scattering. '
Consider a model in which the fundamental con-

stituents are a collection of spin- fields g, (x) cor-
responding to particles of charge eQ, and mass
m, . The electromagnetic current is

(3.1)
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FIG. 1. Lowest-order contributions to b» and H» in
models with fundamental constituent fields. These graphs
are denoted 4» and II~c in the text.

(2.5) at the canonical level, which means that we
calculate the lowest-order triangle and vacuum-
polarization diagrams (Fig. 1). Any difference be-
tween the left- and right-hand sides is then due to
canonical singularities, which according to our hy-
pothesis are the same as those in nature.

Let us make one thing perfectly clear: This
procedure does not imply any commitment to the
view that perturbation theory is a reliable guide
to the physics of hadronic currents. We are cer-
tainly not asserting that the hadronic Green's
functions b,"" and II"v are equal to their canonical
counterparts 4,"" and 0,"" which are given by low-
est-order perturbation theory. Rather we are as-
serting, on the basis of the hypothesis of canoni-
cal singularities and the configuration-space anal-
ysis of Sec. II, that the hadronic anomaly is equal
to the canonical anomaly, i.e., that

a~'(p -p)- 2-p —11"'(p -p)
g p

=o!"(/, 0) (2-) —,/-))(."-"(),-/)

(3.3}

n."'(p, -p) = —,.(p"p—"-g""p')

x+Q,' (m A, -1)

1 ~ 2 PV

4W
(3.4)

where the subscript c stands for "canonical" and
A; is given by

2 p'-(p4-4m, 'p')'"
(p4 4m 2 p2)1/2 p2 +(p4 4m 2p2)1/R

(3.5}

The term -(a/&) Q, m, 'g"" is discarded because
it violates gauge invariance. It cannot be compen-
sated by adding a term proportional to Q m, ' p"p"/
P', since this would introduce a spurious photon
pole. The vacuum-polarization diagram has a
superficial quadratic divergence, which is reduced
to an actual logarithmic divergence by gauge in-
variance. We have just the standard result"

So our assumptions simply require that we eval-
uate 4„, and II„, in lowest-order perturbation the-
ory, with Z„and 8 given by (3.1) and (3.2). The
lowest-order diagrams are shown in Fig. 1. The
triangle diagrams have a superficial linear diver-
gence but are in fact finite because of the two
gauge-invariant vertices. A straightforward cal-
culation gives

2 1 2

11,""(p, -p) = 12, (p"p'-g""p') g Q, ln —6 dz z(1 —z)ln 1—,z(1 —z)
1 0 1

(3.6)

where A is the cutoff energy. The quantity which appears on the right-hand side of the Ward identity
(2.5} is then found to be

I
~

~

p
~

v
t ~~ ~12

v v

~

~

I
~

2 m

p~
~I

~
~
2

~ ~

m 2

2 p —Il~" p -p =- —p~p"-g~' -~q,2+,' m, 2A, -1
1

(3.7)

The difference between (3.4) and (3.7) is the anomaly. The Ward identity with the anomalous contribution
included is then

""(,-p)= — —"'( —)- . ( ""- ""p'),
op ' 6m2

where we have defined

ft=+Q, '.
i

(3.&)

(3.9)

If we allow for the possibility that the currents have both spin-0 and spin--,' constituents, then (3.8) is still
correct with

&=ZQ+~ZQ
spin 0

(3.10)
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However, we will not discuss the case of spin-0 fields in the rest of the paper, as experimental evidence
from deep-inelastic scattering favors a model with fermions predominating. The phenomenological con-
sequences of the anomaly (8.8) are discussed in Secs. VI and VII.

IV. TRACE IDENTITIES INVOLVING TWO AXIAL-VECTOR CURRENTS

We now discuss the canonical trace anomalies involving the two-point functions (T'p(A), (x)A„(0)))„,
(Tp(A'„(x)s"A „(0)))„, and (T'p( 6 A )(x)s"A„(0)))„, where A'„ indicate positively and negatively charged
b S =0 axial-vector currents. We will use the following notation for Green's functions:

n n m m+r nt"".'"..""'"'"(p p„)—= Jt g d'x, exp t Q p, ~ x, T*~ 8(0)g J„(x,) Q A„(x,) g &"(A„(x,)
f=z i=1 f =m+1 f=m+r+y

n h n

(p )'p' zp, )('„,""„*"...(p";', "p'.)=( up & +*1 ' Ep '*&)
i=I

( m m+ 'r n

x T~ J& ~f A& xf 8 fA& xf
5 f=1 f =m+1 f=m+r+y

-tq"&'„'" (P, q) =&"' (P, q) +II' ' (P, -P)

+II "(-q -P, P+q) (4 2)

where we have introduced the field o(x) defined by

[ Q,'(t}, s "A '(X, t)] = -to (x, t) .
As noted in Sec. II, Wilson's arguments' indicate
that Ward identities relating two-point Green's
functions and vacuum expectation values of fields
are free of anomalies:

-'P II)(" (Pp P)=II) " (Pp--P}p (4.2)

q"tII„'" (q, -q) =II '
(q, -q)+(o(0)}„. (4.4)

We shall use these Ward identities (4.1)-(4.4) to
connect the canonical trace anomalies involving
the Green's functions appearing in them.

Consider first the trace identity relating b, &„"
and 0&„" . The form of the anomaly as a function

It has been pointed out by several authors" that
in lowest-order perturbation theory there are no
anomalies in current-algebra Ward identities in-
volving triple and double products of quark bilin-
ears, except for the A„V&V„and A„A&A„anom-
alies. This is because the Green's functions are
ambiguous, and polynomials can be added to make
the Ward identities be satisfied. For the same
reason, there are no canonical anomalies in these
current-algebra Ward identities, and in particular
those relating ~"„'„",~"„",a d ~"':

—P tp",„'" ( p, q) =n„'" (p, q) +11 „'" (-q, q}

(4 1)

+ (Ap'+&) g) ( +t-p), p( p (4.5)

where A, B, and C are parameters to be deter-
mined.

Similarly, the trace identity involving" (p, -p) and Il„" (p, -p) has only an anom-
aly of first order in the field momentum, which is
proportional to the integral of a first moment of
( T*(S'A i(x)A „(0))&o'.

p„'*-(p, p)=(p p. —, )D'„'*-(p, -p),pp„,

(4.6)

where D is another parameter to be determined. "
Analogously, the anomaly in the trace identity

relating the n. n'
(p, -p) and II

'
(p, -p) may

contain constant and quadratic terms:

t "' (P, -P) = 2-P —11"' (p, -P)+EP'+E.
ap

(4.7}

I

of momentum is constrained by Wilson's short-
distance power-counting arguments. Since
(TP(A~(x)A„(0))}„diverges as 5 ' when x-6-0,
only its zeroth, first, and second moments with

respect to space-time coordinates can give anom-
alous surface terms when integrated over d4x as
in (2.20). As in the V„-V„case discussed earlier,
the second moments determine terms in the anom-
aly of second-order in the field momenta; constant
terms in the anomaly are determined by the zeroth
moment. Hence the anomalous trace identity must
take the form

&"„'* (p, - )=(pp —p )))"„' (p, p-)-



CANONICAL TRACE A WOMALIES 24SV

First we note that broken scale invariance im-
plies that at short distances (large momenta) the
axial-vector current is asymptotically conserved.
Hence we deduce that in Eq. (4.5) A +C = 0. Then,
multiplying (4.5) by iP and using the Ward iden-
tities (4.1) and (4.3), we get

4'„' (p, p)= -n-p —)n, * (p-l') —,'p, n.

(4.8)

Comparing Eqs. (4.6) and (4.8) we see that D = iB;-
note also that A +C c 0 would have been inconsis-
tent with the linear form of the anomaly in Eq.
(4.6). Similarly, using Eqs. (4.2), (4.4), and

(4.6) we deduce that

(P, P)= -2 —P —11' ' (P, -P)+iDP'
BP

(4 8)

of the 8 "A
&

—O'A„Green's function we deduce

1B=-—,Qm, ', (4.11)

+
8 n(p Zxv p) pv) g Zm(2 g)(V 2

Sn 7T j

(4.12)
p

o."*(p. -p)=(p-p —)n.""
(p -p)

where the m j are the masses of the fundamental
fermion fields contributing to the axial-vector cur-
rent. Inserting expressions (4.10) and (4.11) into
the anomalous trace identities (4.5)-(4.7) using the
relations between parameters obtained above, we
obtain the final expressions:

4",:"(p, -p)=(p-p —)n",:*(p, -p)

Comparing Eqs. (4.7) and (4.9) we deduce that E
=sD, E=O."

Thus the anomalies in Eqs. (4.5)—(4. 'I) contain
just two independent parameters, A and I3, which
are to be determined from the canonical model of
short-distance behavior. By chiral and SU(3) sym-
metry at short distances the leading anomaly A is
related to the anomaly in the trace identity:

+i ~num
7T

4"' (p, -p) = 4 p —)n"-' (p, -p)

m j ~

$

(4.13)

(4.14)

RA= (4.10)

By explicit calculation of the asymptotic behavior

The phenomenological implications of these
anomalies for high-energy cross sections and (via
POT) for couplings of a scalar isoscalar meson are
discussed in Secs. VI and VII.

V. CANONICAL TRACE ANOMALIES KITH MORE THAN TKO CURRENTS

In this section we discuss canonical anomalies for Green's functions involving more than two currents.
The naive trace identity for a Green's function consisting of m currents and n-m divergences is

rt

4'„":.'. „'"'(p, p„)=(4— —Qp, n'„":.'. „'" (p, p„), (5.1)

where the notation is defined as in Sec. IV." From the discussion in Sec. II we know that canonical anom-
alies are possible for n =3 and n =4.

In the three-current case, power counting indicates that a canonical anomaly may be of zeroth or first
order in the current momenta. Since we must form a tensor with three Lorentz indices, it must in fact be
linear in the momenta:

J'JZ 2
4'„„',i"(P„p„P,)=(l —QP. n''i"(p„P. , P.) ~ 2 '„p. ,

where

(5.2)

4 — 4 4 4 4
PVT (d SPVgT QJ g)lTgV(d gP(dgVT PV T (d & (5.3)

with A', B"C', D' constants and a = 1, 2. (The dependence of A', etc. on i, j, and k has been suppressed
in the notation. )

We now consider the constraints imposed by chiral symmetry. Contract (5.3) with P,":
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-ip,"p'„"&"(p„p„p,)=-l(p —I p. p," 'n„"~'(p„p„p,) —(Z '„„, p. p,".
e=I a=1

We now insert the chiral Ward identities

-IPSE'„g"(P„P„P,) =~ ('P"(P„P„P,)+11„'('P"(-P, P„—P„P,)+its„.~'„;"(P,+P„P,)

(5.4)

+Sh (km +VT (P2p Pl PS}I (5.5)

-ipvII "P,'2 (P„P„P,) = 11 „'('P'k(P„P„P,) +is „ II'„,'2( P„P-,) +ih, „ ii„'~; (P„-P,) (5.6)

into (5.4). It has been shown" that in lowest-order perturbation theory Eq. (5.5) does not have an anomaly;
therefore, by the reasoning of Secs. II and III, Eq. (5.5) has no canonical anomaly. Equation (5.6}may also
have a canonical anomaly' quadratic in momentum, but it would not contribute to (5.4) because of the factor

-~. .;)
We have therefore suppressed this anomaly in writing (5.6). Substituting now into (5.4) we find

Av' & (kP„P„P )2i+h;y n„k(P, +P„Ps)+ih(k n„PT m(P„P, +P,)
2

DDfdgk p p p
a=1

+ 2 — p. zh„O'„,'~ -P„P, +Eh; II'„~' P„-P, -~ a'„„, P, P,".
&Pa l

(5.'I)

To get relations between the anomalies in (5.7) we must now use the trace identities

8p„n"(p„p„p,) = (I - p. n 'n"
( p„p p, ) ~„r,p..,~~a

(5 8)

(Pl P2p PS) 3 PS S P
~ ( PSP PS) 8 2 6mk(SVTPS PkvPST) ~ kg mPvT

3 8m
(5.9)

8
(P P +P) (P P I II (P P)

p
Pj (P P P I I+rf P

2
(5.10)

By power counting and Lorentz invariance, (5.8) may have a canonical anomaly yg„„where y is a con-
stant. As shown in the previous sections, (5.9) and (5.10) may also have canonical anomalies, quadratic
and constant in the momenta; the former are related to (3.8}, and the latter are denoted by k~, 2&

Substituting (5.8), (5.9), and (5.10) into (5.7), we find

2

+)PaIVPTlIVSh lik 8 2[ gvT(PS P2 ) PsvPST PSVPSTl+( Y+ P)gvr I
a=I 1r

(5.11)

where

(P
—= i(h (p 2~ + h, k 2p ) .

From (5.11) we see that

y+y =0

and that

A ' +B' = -C ' = pt =B = =SC = Il (pk RjBTP y

D =0

Analogous arguments using the Ward identities obtained by contracting on P,' allow us to conclude that
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A, ' = 2-B' = h((k R/8((

D' =0.

Thus we have the following form for the canonical anomalies in the three-current trace identity, (5.2):

ijk 6 2 ( gvvp(T + g((7 plv g(IT pl(( +g((vp27 +g((pTkv g Tvpl(() ' (5.12)

Also, the anomalies in trace identities for b, „J are determined by those for 4„. However, we pursue
these anomalies no further here.

We now discuss trace identities involving four currents, which by power counting may have canonical
anomalies of zeroth order in momentum:

(5.13)

(5.14)

3 JJJJP,'!"'"(P P. P P)=( Z .P' jpn„'.('"(P P, P„P, +n„"
a=1 Pa

where a„„,„is of the form of E(I. (5.3). Contracting with -ip," we have
3

-iP(Vn'(„'('2'm(P» P„P„P,) = 1——g P. (P,"11'", (Plj Pkj P3j P4}—ia»7 ~P," .
a= 1 a

Because of the results obtained in lowest-order perturbation theory" and the discussion of Secs. II and III,
the chiral Ward identity for P,"4 ~„~ &~ does not have a canonical anomaly. There could' be an anomaly of
first order in momenta in the chiral Ward identity for p,"II '„', ' m, but this would vanish in (5.14) because
of the factor

Therefore we may use chiral Ward identities free of anomalies to evaluate (5.14). The result is

+Eh (fn6 (pl +pkj pkj p4) +(h (kn 4 T(v v(p2P pl pkj p4) (mjl
V 7 (v (p2P pkj pl p4)

3

= 1-g P. [II„('("'(P„P„P„P,)+ih„„ll'„™(P,+P„P„P,)
a

+ih„„ll'„(,"' (P„P,+P„P,)+lh,.„ll',i,'2"(P„P„P,+P,)] i(2„„.—P,".
(5.15)

By power counting, the trace identity for 4 ' & ' ~ may have a canonical anomaly of zeroth order in mo-
mentum, but this is forbidden by the Lorentz tensor structure. The left-hand side of (5.15) may be evalu-
ated using the canonical anomalies (5.12). The result is that

R
+ vv T (v 2 (g((vgT (v(hiknh(nm h (mnh(kn}+gv(vgvT(h (nmhikn hi((nhkmn) +gv7 g(((h (((nvhkmn h (knh(nm)] . (5.16)

Thus the canonical trace anomalies for three and
four currents are directly related by current alge-
bra, independently of chiral anomalies, to the two-
current trace anomalies.

In fact it is possible to use the generating func-
tional formalism"' to obtain a compact represen-
tation of all the canonical trace anomalies which
are due to the leading singularities in the current
products. We introduce the functional

Z= T* expi d4x J'„xF," x +8 x S x
j n

where the J v(x) are SU(3) XSU(3) currents, 8(x)
the trace of the hadronic energy-momentum tensor,
E(„(x) external vector fields, and S(x) an external
scalar field. The functional derivatives of Z with
respect to the external fields, evaluated with the
external fields equal to zero, are the current
Green's functions of the theory. The connected
Green's functions are generated by a functional
W: e'"=Z. The canonical trace identities (5.1)
may be generated by the following procedure:

(1) Apply to W the operator
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8 "'(x) = 8(x)+,F'„„(x)F)'"(x), (5.18}

where F'„„(x)= S „F„'(x)—s„F'„(x)+ h;» F'„(x)F".(x),
the h, » being SU(3) &SU(3) structure constants. "
The expression (5.18}is analogous to the repre
sentations written down by previous authors' "
for the axial-vector current anomalies. Note that
it has a chiral-invariant form, as expected from
the fact that the higher anomalies are short-dis-
tance effects and are related by current algebra
to the two-current anomalies, and are not affected
by axial-vector anomalies.

VI. PHENOMENOLOGICAL APPLICATIONS OF TRACE
ANOMALIES AT HIGH ENERGIES

In this section are discussed the phenomenologi-
cal implications of the anomalous trace identities
(3.8) and (4.12)-(4.14) at high energies. One of the
basic assumptions of broken scale invariance is
that the energy-momentum tensor trace is "soft."
This means that it is composed of operators with

scale dimension less than 4 —generalized mass
terms. ' Masses are generally supposed to be neg-
ligible in certain kinematic regions of certain
processes, notably in high-energy processes in-
volving very virtual currents, and deep-inelastic
scattering experiments support this supposition.
Thus, in the present case it is expected that as

n „,(P, -P) « ll „„(P,-P}.
This expectation is borne out to all orders in per-
turbation theory, where it follows from Zimmer-
mann's extension of Weinberg's theorem to the
Minkowski region of momentum space." Thus for
large I

p'
I

(6 1)

(2) apply n operators

6
(f =1 n)

tf Xg

to eW;
(3}set the external fields S(x), F,"(x)=0;
(4) multiply the result by exp(i+ ', x, p, ) and

integrate with respect to x and x„ i = i, . . . , n-1,
setting x„=0.

The resulting expression is the usual trace iden-
tity for n SU(3) XSU(3) currents J ~~ with momenta

p, „. To obtain the canonical anomalies we replace
the hadronic trace in expression (5.17) for Z by
the anomalous trace equation

Using Eq. (6.1}we find' that as P'- ~,

(6 2)

where c is an unknown constant. From (6.2} we

find that II„, has asymptotically the absorptive
part

e"~ *(0I[Z„(x),Z,(0)]I0}d'x

(6 3)

This is the same asymptotic behavior of the ab-
sorptive part as has previously been deduced from
the parton model" and from assuming canonical
short-distance behavior for the disconnected part
of the current commutator'.

0

[J„(x},Z„(0)] ~,(g„,x' —2x„x,)
x„~0

x e(x,)5"'(x'}+~ ~ ~ . (6.4)

The absorptive part of 0 „„is related to the total
cross section for e e'- y-hadrons as follows:

o(e e' -y- hadrons)

8m 2(y3 e'~'* (0 I [J„(x))J"(0)] I 0) d 'x
p2

4m'. 2

Spm

using Eq. (6.3). This means that as P'- ~

o(e e'- y-hadrons)
o(e e'- y-) V')

Preliminary indications from Frascati and CEA
(Cambridge Electron Accelerator) for q' ~ 4 GeV'
are consistent with R -O(1), and are consistent
with a model of three triplets of fractionally
charged quarks, which gives R = 2."

The fact that using the softness of 6I"„and the
anomaly (3.8) we recover the results of canonical
manipulations of current commutators emphasizes
the canonical nature of the anomaly. " If the anom-
aly were absent, one would have

fl„„(p,-p) -(S„„p'—p„p„)c
as P'- ~, so that the absorptive part would be
o(P'), and o(e e' - y- hadrons) would fall faster
than 1/P', in contrast with canonical expectations. "

The close relationship between the trace anomaly
and the asymptotic cross section for e'e —y- hadrons is also very clear in configuration
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space. The details of the configuration-space cal-
culation are given by Crewther, ' but the major
qualitative features are evident in the analysis of
Sec. II. In Sec. II we saw that the anomaly is de-
termined by the coefficient of the sixth-order sin-
gularity of (J„(xP„(0))„as x- 0. This leading sin-
gularity determines the leading asymptotic behav-
ior in P' of the Fourier transform

Eq. (4.12) is related to the experimentally inacces-
sible cross sections for e v, -hadrons and p. v„
-hadrons at high energies. The interesting anom-
aly (4.14) is related to the structure functions cor-
responding to the nonconserved parts of the cur-
rents. These should be relatively suppressed by a
power of P', and furthermore appear experimental-
ly multiplied by lepton masses. Hence their ob-
servability is regrettably minimal.

which is in turn proportional to o(e'e - y- had-
rons) Th.e connection is familiar to students of
equal-time commutators: The e ' singularity is
just the quadratically divergent c-number Schwing-
er term, which is well known to determine the as-
ymptotic behavior of o(e'e —y- hadrons).

The situation in field-algebra" models with re-
gard to the trace anomaly deserves comment. In
a simple field-algebra model, the space compo-
nents of the electromagnetic currents have dimen-
sion 1, and the simple Wilson' arguments yield no
anomaly. The lowest-order graphs, corresponding
in momentum space to the canonical calculation,
are indicated in Fig. 2, and they transparently
yield no anomaly. This is consistent with canoni-
cal manipulations bf the current commutator. In a
simple field-algebra model this is less singular
than x ', and o(e e'- y-hadrons) falls faster than
1/s. In fact at the canonical level one has

i dxe" * ( T*(Z„(x)ZQO))}„

(gpvp pp pv) ~2 2 ' t—my +~6

(6.5)

VII. PHENOMENOLOGICAL APPLICATIONS OF TRACE
ANOMALIES AT LOW ENERGIES

In this section we consider low-energy implica-
tions of the trace anomalies (3.6) and (4.12)—
(4.14), when used in conjunction with POT, start-
ing with the electromagnetic-current case. %e
introduce two form factors W, and W, for a„„(q,p):

& „(q,p)=(-p, q„+g „q p)W, (q, p)

so that

+ (q&q, g»q')-(p'p„g'„p')W-. (q, p),

& y„(q, -q) = (qyqp -gag q')y', (q, -q) —3q'W, (q, -q)]

(V.l)
Then

8~,„(e, -s) =(2-s —, &,„(s)-s,ls,e„-z,„s'),p 6&2 X p Xp

(& 2)

where

ll»(q M) -=(qyq~-g»q )fl(q )

so that

where m~ is the mass of the vector-meson field.
Equation (6.5) has an absorptive part ~ 6(p' —m „').
In a field algebra with strong interactions there
will also be higher-order graphs like those of Fig.
3, with internal loops. It is clear that these
graphs will yield anomalies, which will however
be of the Callan-Symanzik type, being proportional
to srl„„/sg, where g is a hadronic coupling con-
stant, e.g. , Z;„, =gp„P y"P. Such graphs corre-
spond to the breakdown of canonical manipulations.

It is clear that by an argument analogous to that
of the previous section the quadratic anomaly in

(& 3)
Since ll(q') is nonsingular at q' = 0, we deduce,
comparing (7.1)-(7.3), that W, (0, 0) = -R/6w',
W, (q, -q) (q a0) and W, (q, -q) being unknown and
arbitrary. In the spirit of POT it is assumed that
W, and W, are maximally smooth apart from, poles
in r' =- (q + p) due to a scalar meson o (dilaton).
In fact the maximally smooth coupling for 0'yy im-
plies

8~
AAWWh +-—~——X hAAAA

Jv

/WWh-~ ———~WAAAA

Jv

8I

WVWh. ~— —+MAAAA

Jv
vVWW ~-~-Q~~
J„ Jv

FIG. 2. Lowest-order canonical contributions to b,»
and II&„ in a field-algebra model. Vector-meson prop-
agators are denoted by dashes.

FIG. 3. Next-to-lowest-order contributions to 4»
and II&„ in a field-algebra model with interactions.
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C
Wg(&~P) =-

2 ( p)2
'

(7.4}

and the decay constant E, is defined by

(0[6~(0))o) = m.'F. .

Thus we estimate that

W, (q, p) =0

for some constant c. From Eq. (7.4} we see that
c = m, R/6v . c is proportional to the oyy cou-
pling: c =2g, m, 'F„where g, is defined by
the interaction Lagrangian (E„„is the electromag-
netic field}

three-fractionally-charged-triplet value R = 2.
The decay constant E, can be estimated if we
identify a with the apparent scalar isoscalar di-
pion resonance e (700)." Using the broken-scale-
invariance estimate"'2 (7.6) for g~~ and esti-
mating I'(e-vv}=400 MeV we find E,=150 MeV.
This value is not inconsistent with the POT esti-
mate

Soars=~~/+, ~

whe~e , „g=g,»0'$g, or with the sketchy ex-
perimental information on g,»,. however, any
value for E, between 100 and 200 MeV is certainly
respectable. Taking E,=150 MeV we find"

R 1
g~» 12~'F (7.5)

I'(E -2y)=0.2R' keV, (7.8)

which compares with the following other theoreti-
cal estimates. ""

(see also Refs. 8 and 9). This can be compared
with the broken-scaleknvariance estimate" "

ma 2

gam= 2E
(7.6)

where g, is defined by

&.~ = g.~~ '& ~

The ratio of coupling constants is independent of
the parameter E„and so is less theoretically
un'certain:

ga~~
em'm~' (7.7)

The prediction (7.5) for the oyy coupling con-
stant deserves a certain number of comments:

(a) Essentially the same coupling was obtained
by Schwinger, "who performed a lowest-order
perturbation theory calculation analogous to that
of Steinberger, "to evaluate the rate for a scalar
meson to decay into two photons via a fermion
loop. Since the trace identities had not at that
time been formulated, the result did not strike
him as anomalous.

(b} If we set R =0 then we recover the predic-
tion g~ =0 of Kleinert, Staunton, and Weisz, "
who explicitly ignored anomalies. Kleinert,
Staunton, and Weisz also indicated ways of obtain-
ing g =0 in the absence of the anomaly, but as
they pointed out, such a result requires nonmaxi-
mal smoothness for the a„„vertex. Equation (7.5)
seems to be the legitimate prediction of broken
scale invariance and POT for g, „.

(c) Our prediction for the oyy coupling seems
considerably smaller than most other estimates
in the literature. " Two a priori unknown constants
appear in (7.5). As discussed in Sec. II, R is ex-
pected to be of order unity, and we have a prefer-
ence (not inconsistent with experiment) for the

Sarker: 6 keV

Bramon and Greco: 6 keV

Schrempp-Otto, Schrempp, and Walsh: 22 keV

Lyth" -1 keV.

The first three of these estimates use finite-ener-
gy sum rules or pole dominance of dispersion
relations. Neither our estimate nor the others
should probably be regarded as better than order-
of-magnitude values; everybody treats the scalar
meson in the narrow-resonance approximation,
which is likely to be bad for the e (700) meson
(I', -400 MeV}, quite apart from the conjectural
quality of the particle's existence.

However, if R is of the size suggested by the-
oretical prejudice, our estimate (7.8) does seem
significantly smaQer than most others. " Whether
there is a noticeable signal from the c in the yy
—mm cross section will depend on the magnitude of
the background at s -m, '. For instance, consider a
a Breit-Wigner propagator for the ~,

s -pl +im~P~

which is unrealistic but may serve as a qualitative
guide. The amplitude for yy-~ -mw at s = m, ' is
then

. 8e2 R='
Qv "' "(1 -4m 2/m ')'" '

(7.9)

where we have used (7.7} and where the e,. are
photon polarizations. For comparison, the s-
wave contribution of the Born term to yy-mm
(which come from the seagul) diagram and rep-
resents the amplitude exactly at threshold accord-
ing to the Iow-energy theorem) is
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3g~ „=28 E'~ ' E ~ .

If R&„„approximately represents the background
at s mf ', then we have

o„„(s= m, '}- os„„)1 + i (0.15)A )
2

—Crs„„[1+ (0.02)R2]

(p, 0)=-ll (p, -p)+rl (-p, p)

Z.2m. ' 3Z„2m, 2m. 2

m '-p' m '-p'
Using a naive trace identity and single-particle
dominance we obtain

and the e gives only a 1(P/0 enhancement to the
background. Since no one can claim to understand
the background to within 10%, this means that
there would be no significant c signal in the cross
section. Qn the other hand, if it turns out that the
background at s = m, ' is much smaller than SR~„„,
then there might be an observable e signal in the
cross section. However, in either case, accord-
ing to Watson's theorem {inelastic effects which

set in at v s = 4m„are still small at ~~ = m, -700
MeV) the amplitude for yy- sv will still have the
standard mm phase shift, so that the meson is still
observable, though the strength of the coupling
may not be.

There seems to be no reason why the ~yy cou-
pling should not be small; the implications of uni-
tarity for the process yy-mn have been studied
by Carlson and Tung" and by Lyth" with a view
to getting information on the Eyy coupling. Both
papers write down Omnes-type solutions: Lyth
allows terms in the left-hand cut in addition to the
pion Born term, and concludes that the eyy cou-
pling is not completely constrained. His calcula-
tions in fact assume elasticity, and that any scalar
isoscalar resonance is narrow; however, his or-
der-of-magnitude estimate of an upper bound for
g, , based on the likely magnitude of the left-
hand cut, is encouragingly close to our estimate.

We now turn to the anomalies (4.12)-(4.14) in-
volving axial-vector currents. Several previous
authors" ""have used these Ward identities,
neglecting anomalies, in conjunction with POT, to
make predictions on scalar-meson couplings to
pions in particular. We study whether these re-
sults are affected by taking anomalies into ac-
count- they seem not to be changed, but our argu-
ments are not watertight. A common discus-
sion" "of the arm coupling proceeds somewhat
as follows. The 8„"-8 "A'„-8"A„Green's function
is given the following low-energy parametrization:

+ A +B{p~+q2) + Cv2

(m, ' —p') (m, ' —q') (m, ' —r2)

('T .10)

where r =p+q is the momentum associated with
8"„. Using the chiral low-energy theorem (4.2) and
single-particle dominance we obtain

2S' 'm '(m '-2p')
(m 2 p2)2 (7.12}

(m '-p')(m '-q')(m ' —r')

(7.13)

where we have allowed a contact term quadratic in
the field momenta. In the single-particle-domi-
nance approximation the anomalous trace identity
becomes

Using (7.14}and the nonanomalous 2' chiral Ward
identity (V.11) we find

A'=2F 'm m ' B'=-2F 2m ~m '
IT 0 1T' 1I' 0

C'= S 2m ~{m 2 -m 2) a'= 0,

g,.m,', g;m
2i' ' 2'�'

When we go to the mass shell, the contact terms
do not contribute to the coupling constant, and as
A =A', etc., the same on-mass-shell coupling
(7.6) is found as before.

The parametrization (V.13) is not the only one

Comparing these expressions with the parametriza-
tion (7.10) we see that

A = 2F.'m„'m. ',
B=-2F 'm m '

IT IT 0

C = E.2m. 4(m, 2 m. 2),

which yields an on-mass-shell &sw coupling (7.6).
As shown in Sec. IV, the trace identity (7.12)

has an anomaly in models with a fundamental fer-
mion structure; however, we can still find two

ways of deriving (7.6). Neither of these is com-
pletely convincing, which is why we sketch them
both.

(a} The parametrization (V.V) is inconsistent
with the anomalous Ward identity (4.14): The sim-
plest consistent parametrization for the 8~-~~A~-
8"A, vertex is
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that could be chosen. However, other choices
either seem to have a larger number of param-
eters, which are hence not all determined by the
Ward identities so that no prediction can be ob-
tained, or else are not consistent with all the low-
energy theorems.

(b) Alternatively, Crewther's method" of ob-
taining the mrs coupling could be used. In this
derivation, only 8 and one of the axial divergences
are taken off the hadronic mass shell, and (V.6) is
obtained from a resulting trace identity. Accord-
ing to Wilson's analysis ' (see also Sec. II) anoma-
lies can only arise if three or more fields are
taken off the mass shell in deriving low-energy
theorems. Hence Crewther's method is not sub-
ject to anomalies, and his derivation of (7.6} is
not affected.

Vill. DISCUSSION

We have discussed which anomalies arise in the
trace identities of broken scale invariance if
canonical behavior of strong interactions is as-
sumed. We have also discussed the phenomeno-
logical relevance of these anomalies to high-en-
ergy processes, and via POT to the couplings of
a scalar isoscalar meson o'. In particular we ob-
tain a connection

lim, , (8.1
1 . e(e e' y- ha-drone)'» 12s'F, ~ „o(e e'- y- g p')

between the two-photon coupling of such a meson
and asymptotic e e' annihilation cross sections.

Apart from the phenomenological testing of
broken scale invariance, canonical singularity
structure, and POT via E(I. (8.1), there remain
several interesting open theoretical questions.
There is the question of what canonical anomalies
are present in conformal Ward identities, and
whether they are simply related to the canonical
trace anomalies. " The answer to this question
may provide clues to the significant problem of
what are the conformal analogs of the Callan-
Symanzik anomalies. ' As concerns the applica-
tions of the anomalies, there might be other ways
of measuring the axial trace anomalies (4.12)-
(4.14) which would shed light on the question of
the quark "mass." Finally, in our low-energy ap-
plications of the trace anomaly (3.8}using POT we
treated the o particle in a simple pole approxima-
tion. It may be possible to take into account fi-
nite-width effects and unitarity, as has been done
by other authors studying the isoscalar mm s
wave r4'37'39
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APPENDIX: TRACE ANOMALY IN HIGHER ORDERS
OF PERTURBATION THEORY

From the point of view adopted in this paper—
asymptotic scale invariance realized by canonical
behavior at short distances —the trace anomaly
and the V- V-A anomaly are due to similar physi-
cal phenomena and are equally likely to be real-
ized in nature. However, if we choose to study
products of currents from the perspective of per-
turbation theory, then there is an important dis-
tinction between the two anomalies. The axial-
vector anomaly has the remarkable property that
it is not modified by higher-order corrections,
i.e., the value of the anomaly computed from the
simple triangle graph is actually exact to all or-
ders. This property is not shared by the trace
anomaly.

This difference between the two anomalies is
easily understood in a qualitative way. It is pos-
sible to define a regulator which leaves chiral
symmetry invariant, e.g., Pauli-Villars regula-
tors chosen in chiral singlets. Then the usual
chiral Ward identities are still valid in the regu-
lated theory. This condition makes it possible to
prove the nonrenormalizability theorem for the
axial-vector Ward identity. But in the case of the
trace anomaly, the underlying scale symmetry is
violently broken by the la, rge mass which is in-
troduced in the regulator. The usual scale-in-
variance Ward identities are modified by new
terms depending on the regulator mass. As we
take the regulator mass to infinity, these extra
terms give rise to higher-order corrections to
the trace anomaly. "

We now calculate the leading radiative correc-
tion to the trace anomaly in fermion electrodynam-
ics. The anomalous trace identity for the fourth-
order quantities has the form

(Al)

This form is dictated by the following require-
ments:

(1) The anomaly must be a polynomial in p be-
cause the absorptive parts of L„„and Il„„are regu-
lar and therefore satisfy the nonanomalous trace
identity.

(2) Dylan's version of Weinberg 's theorem'8
fixes the degree of the polynomial as quadratic.

(3) There is gauge invariance.
We can easily calculate C'4' by using Weinberg's

theorem. According to the theorem, in the deep
Euclidean region n, („'„)(p) diverges at most like p,
while II(„'„)(p) diverges like p'. Therefore the lead-
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ing divergence of II'„'„' must be canceled by the
anomaly. Where

(4) 2Q 0|2
C

3r 2r2 ~ (A5)

ll'„".(P) = (P„p.-g„.p')ll"'(P')

we have

a
2P2 ll(e) (p2) g (e)

Bp' P2~ oo

For larger momenta II'~' is given by ~'

Q Of PII"'(p') ~ + —+, ln
3m 4n' m

so that

(A3)

The second-order term obtained here is seen to
agree with the result of the calculation of Sec. III.

We emphasize once again that from our point of
view the presence of high-order-perturbation-
theory corrections is irrelevant when considering
the trace anomaly in hadronic physics. This is
because we invoke the hypothesis that the leading
singularities of products of hadronic currents are
given by canonical models, so that only the canon-
ical singularities (which may be calculated from
lowest-order diagrams) are relevant.
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The formal light-cone properties of commutators involving current divergences are studied in tke
gluon model. Relations are derived which make it possible (in principle) to distinguish the vector- from
the (pseudo) scalar-gluon model. In the vector-gluon model these relations provide an experimental
determination of the bare quark masses. The additional assumption that the residues of any a=0 fixed
poles in current scattering amplitudes are polynomials in q-' makes it possible to relate the a. term in

pion-nucleon scattering to convergent integrals over neutrino-scattering structure functions; the
polynomial assumption dictates a prescription for subtracting a (linearly) divergent sum rule derived
previously. The same technique generates subtracted sum rules for the (neutrino- and spin-dependent)
structure functions W; and G, . With the parton-model assumption that the leading scaling behavior
of current-divergence and divergence-divergence scattering is given by free-field theory, it is possible
to relate fixed-pole residues in ep, en, pp, and vn scattering, deep-inelastic data, the cr term,
baryon mass differences, and the bare quark masses; approximate values for the bare quark masses and
the parameter p,„can be obtained.

I. INTRODUCTION

In this paper we study properties of light-cone
commutators involving current divergences in the
vector-gluon model. All our considerations are
formal; that is to say they are untrue in perturba-

tion theory. It is frequently argued that the scal-
ing observed in the SLAC-MIT inelastic electron
scattering experiments implies that formal field
theory might be relevant to the real world. This
argument is not totally compelling (especially
since the data do not exclude iogq' terms} but at


