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In conventional quantum electrodynamics both the electron mass and the muon mass are
free parameters, so that their ratio is arbitrary. In a unified theory of weak and electro-
magnetic interactions, this need not be the case. We emmine models in which only the
muon mass appears as a counterterm. The electron is massless in zeroth order, but devel-
ops a finite and calculable mass of order 0.m&. Unfortunately, the precise value of the
electron mass depends on details of the models, and in particular on masses of unobserved
vector bosons.

I. INTRODUCTION

The lepton mass spectrum is one of the long-
standing mysteries of theoretical physics. The
size of the electron-muon mass ratio suggests
that the electron mass is entirely electromagnetic
in origin, but, until recently, it has not been pos-
sible to implement this idea within the context of
loca1 quantum field theory. Typically, in renor-
malized perturbation theory, the electromagnetic
mass is either zero, because of some unbroken
symmetry, or infinite, in which case the infinity
must be canceled by a counterterm, leaving the
mass a free parameter. However, in the recently
developed class of renormalizable models with
spontaneously broken gauge symmetry, ' there is a
third possibility: In such theories, the only
counterterms necessary for the cancellation of all
infinities in the theory are those allowed by the
gauge symmetry. If a zeroth-order electron mass
and mass counterterm are forbidden by the gauge
structure, then the higher-order contributions to
the mass must be finite.

This third possibility is an example of a phe-
nomenon which is quite common in theories with
spontaneously broken gauge symmetry. The gauge
symmetry imposes certain relations among the
coupling constants in the theory. When the sym-
metry is spontaneously broken higher-order ef-
fects may change these zeroth-order relations,
but because the theory can be renormalized in a
gauge-invariant way, the corrections must be fi-
nite. For instance, consider the couplings of the
gauge fie)ds. If the gauge group is simple, there
are many zeroth-order relations because the
gauge couplings are characterized by a single pa-
rameter, the gauge coupling constant. By the
same token, the infinities associated with the re-
normalization of the gauge coupling constant can
be canceled by a single counterterm, with the
same structure as the zeroth-order couplings. If

the symmetry is spontaneously broken, higher-
order effects may contribute to the couplings of
the gauge fields in some complicated way, but the
divergent parts must have the zeroth-order form,
since there is only one counterterm to cancel the
infinities. The corrections to the zeroth-order
relations must be finite.

Weinberg' and the authors' have studied the
consequences of the above considerations for fer-
mion masses. In this paper, we give a review of
the earlier work. We analyze two unsuccessful
but instructive attempts to apply these ideas to
the electron-muon mass ratio. Finally, we show
that it is possible to implement the idea that the
electron mass is entirely electromagnetic within
the framework of unified theories of weak and
electromagnetic interactions. In particular, we
will exhibit models in w? ich the electron-muon
mass ratio is calculable and of order a.

II. ZEROTH-ORDER MASS RELATIONS

In a theory with spontaneously broken gauge
symmetry, the general zeroth-order fermion
mass matrix is a sum of a bare-mass term and
a tadpole term coming from the Yukawa coupling
proportional to the zeroth-order vacuum expecta-
tion values of the spinless meson fields. A zeroth-
order mass relation is a relation among the mass-
es in the zeroth-order mass matrix which is left
unchanged by arbitrary (but sufficiently small)
changes in the renormalized parameters. We dis-
tinguish four types of zeroth-order mass rela-
tions~:

(0) mass relations determined by an unbroken
subgroup of the symmetry of the Lagrangian,

(l) mass relations determined by the represen-
tation content of the spinless meson multiplet,

(2) mass relations involving accidental sym-
metry, and

(3) mass relations which arise due to the con-
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straints imposed on the Lagrangian by the re-
quirement of renormalizability.

Type (0) is the familiar exact mass relation as-
sociated with an unbroken symmetry. Such a re-
lation will be maintained in higher orders. The
vanishing of the neutrino mass might be a type-(0)
mass formula. But this type of relation cannot ex-
plain the small, but nonzero, electron mass.

A type-(1) mass relation can occur when the
Yukawa couplings are incomplete. If the fermions
transform under a representation D of the sym-
metry group of the Lagrangian, a spinless meson
multiplet can couple to fermions if it transforms
according to any irreducible component of DxD*.
If there are no spinless mesons in one or more of
these representations then the Yukawa coupling
terms cannot give the most general zeroth-order
mass matrix no matter what vacuum expectation
values the spinless meson fields take. For ex-
ample, if there is no spinless meson which cou-
ples to ee and no bare-electron-mass term, then
the masslessness of the electron in zeroth order
is a type-(1) mass relation. This type of mass
relation was first analyzed by Weinberg. '

A Lagrangian is said to have an accidental sym-
metry if the most general renormalizable Yukawa
couplings and couplings of the spinless meson
fields among themselves have a larger invariance
group than the full Lagrangian. This type of model
has been discussed by Weinberg

' and by Coleman
and Weinberg. ' Such a Lagrangian gives a natural
set of zeroth-order mass relations for the spin-
less mesons; when the symmetry is spontaneously
broken there are "pseudo-Goldstone bosons, "'
massless in zeroth order, associated with the
accidental symmetry. We have not found any ap-
plication of type-(2) mass relations to the prob-
lem of the electron mass, so we will not discuss
this type any further.

Type-(3) mass relations can occur because the
Lagrangian is required to be renormalizable, so
that only quadratic, cubic, and quartic couplings
of the spinless meson fields are allowed. It is
possible for the zeroth-order vacuum expectation
values, obtained by maximizing 2, to be qualita-
tively different from the true vacuum expectation
value, obtained by minimizing the classical po-
tential. A simple example of this phenomenon
was given by the authors in an earlier paper'.
Consider a gauge theory based on a U(1) gauge
group with four complex spinless meson fields,

and p, which transform as ft)„-e'"
It is easy to write a Lagrangian invariant under
this group which is maximized at Qy g f8 0,
(II), x 0, for a range of all the parameters. But this
is only possible because renormalizability forbids
the coupling g'p,*. Such terms will be induced in

the classical potential by higher -order effects and
will give rise to a calculable vacuum expectation
value for the p, field. If there is a fermion in the
theory coupled to p„ then the vanishing of its
mass is an example of a type-(3) mass relation.

III. INSTRUCTIVE FAILURES

A contribution to the electron mass of order
am„can presumably come from a diagram like
that illustrated in Fig. 1, where W is some mas-
sive intermediate vector boson with couplings of
electromagnetic strength. For such a, diagram to
exist, the electron and muon must be combined
into an irreducible representation of the gauge
group. Weinberg' has suggested a model of this
type based on a gauge group of chiral SU(3)xSU(3),
with the observed leptons in a Konopinski-
Mahmoud triplet (g', v, e ). Before discussing
this model, we will examine a simpler model
based on the gauge group SU(3).

We assign the right-handed leptons, ttl„, to a 3,
and the left-handed leptons, g~, to a f:

Under an infinitesimal gauge transformation,
1+ i(d'T, , where T,. for i =1 to 8 are the gauge
group generators, the fermions transform as fol-
lows:

(2)

where X, are the usual SU(3) matrices. The elec-
tric charge is —,'(T, + W T,) and the weak charge is
Ty + i T~. There is also an intermediate vector
boson coupled to the wrong-helicity weak charge
T, + i T,. The contribution from the exchange of
this vector boson is suppressed by "superstrong
symmetry breaking. "' That is, there is a spin-
less meson multiplet in the theory whose vacuum

FIG. 1. Feynman diagram which could lead to an
electron mass of order em&.
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expectation value breaks the symmetry down to
the SU(3)xU(1) of the original Weinberg model
and gives a very large mass to the other four vec-
tor bosons. This superstrong breaking can be
done with an octet of mesons.

In this model, there is a doubly charged vector
boson coupled to ep'y" y, e, so that the diagram
in Fig. 1 exists; but it is easy to see that it cannot
contribute to a calculable electron mass. The
zeroth-order lepton mass matrix comes entirely
from the Yukawa couplings of a 3 and a 6 of spin-
less mesons. The vacuum expectation value of
the 6 contributes equally to the muon and electron
masses, while the 3 contributes to the masses in
equal magnitude but with opposite signs. If the
zeroth-order muon mass is nonzero, the zeroth-
order electron mass can only vanish due to an ac-
cidental cancellation between the contributions
from the 3 and the 6, which will not be stable
under small changes in the parameters; so there
is no zeroth-order mass relation. To put it an-
other way, there are two independent mass
counterterms from the 3 and 6, so both the muon
and electron masses are free parameters.

The trouble with Weinberg 's model' is consid-
erably more subtle. The gauge group is SU(3)
xSU(3), the right-handed fermions are a (3, 1),
and the left-handed fermions are a (1,3).' Under
the infinitesimal gauge transformation 1+iso„T,
+ico~T~ the fermions transform like

&4~ = &+z ~g kz y

Sly)g sQPL ~f PL y

(3)

with g„and g~ as in (1). The observed weak
charge is T", + T, + iT,"+iT„and the superstrong
breaking can be done with a (3, 3) of spinless me-
sons.

Because of the chiral nature of the gauge group,
there is no bare-lepton-mass term and the only
meson representation which can couple to leptons
is a (3, 3). We describe this representation by a
complex 3-by-3 matrix field Q which transforms
like

pectation value. The zeroth-order muon mass
m„= fa is a free parameter, but the zeroth-order
electron mass vanishes. Since there is a scalar
meson which couples to ee, this is an example of
a type-(3) mass relation.

Unfortunately, no matter what other spinless
meson multiplets are included in the model, the
diagram in Fig. 1 cannot contribute to a calcula-
ble electron mass. To see this, we analyze the
contribution in the original gauge- symmetric La-
grangian (rather than, say, the unitary gauge),
with the gauge symmetry breaking introduced ex-
plicitly in the form of tadpoles. Alternatively,
one can think of the diagrams in this language as
contributions to the effective action, where the
tadpoles represent the classical fields of the spin-
less mesons. If the diagram in Fig. 1 is to con-
tribute, there must be a contribution from the
diagram in Fig. 2. This is obvious because only
the piece of the muon propagator proportional to
the muon mass contributes to the electron mass.
Therefore a 9'~ must be emitted at one vertex
and a WR reabsorbed at the other. Since there
are no other doubly charged vector bosons in the
theory, there must be a direct mass mixing be-
tween the two, which can only come from a four-
pronged vertex involving two tadpoles.

Now assume that the diagram in Fig. 2 gives a
nonvanishing contribution. Then there is also a
nonzero contribution from the diagram in Fig. 3,
where we have just closed the fermion line and
coupled in the meson coupled to ee (chirality for-
bids the closing of the electron loop without this
coupling) . But this diagram gives a contribution
to the effective action which forces the scalar me-
son coupled to ee to have a nonzero vacuum ex-
pectation value. Furthermore, it is a gauge-in-
variant quartic polynomial in the classical fields,
so such a term must be present as a counterterm
in the original Lagrangian. But then the meson
coupled to ee develops a zeroth-order vacuum ex-
pectation value and there is an electron-mass
counterterm, so the electron mass is a free pa-

(4)

The gauge-invariant Yukawa coupling is f/~PE~
+ H.c. It is possible for the p field to develop a
stable zeroth-order vacuum expectation value of
the form

0 a

(y)0= 0 0 0

0 0 e r"( ~+y'5) y'( I-v5)

Small changes in the parameters will change
the value of a but not the form of the vacuum ex-

FlG. 2. A contribution to the electron mass in
Weinberg's SU{3)x SU(3) model.
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rameter. We have shown that if the diagram in

Fig. 1 contributes to the electron mass in Wein-
berg's theory, then the mass is not calculable.

This argument does not rule out two-loop con-
tributions to the electron mass or contributions
not involving vector-boson exchange. ' Such con-
tributions are not obviously of order am„. In this
paper, we will be concerned only with one-loop
contributions involving vector-boson exchange.
We will always choose the parameters in the La-
grangians so that other contributions are small.

IV. SU(3) X SU(3) X SU(3)

It is easy to modify Weinberg 's theory so that
the argument given above does not apply. The
trick is to enlarge the gauge group so that there
is another doubly charged vector boson. We will
consider a model based on the gauge group SU(3)
xSU(3)xSU(3). In analogy with the Weinberg
model, we assign the right-handed leptons p„ to a
(3, 1, 1), the left-handed leptons g~ to a (1,3, 1),
and the spinless mesons p having Yukawa cou-
plings to the leptons to a (3, 3, 1). Under an infin-
itesimal gauge transformation 1+i~& T, +i~LT,
+ i~&' T ~, these fields transform as in (3) and (4).
The Yukawa coupling is as before, and the zeroth-
order vacuum expectation value of (t) is again
given by (5).

To do the superstrong breaking, we need two
more complex 3-by-3 matrix fields X, and X„
which are a (3, 1, 3 ) and a (1,3, 3 ), respectively.
They transform according to

&Xx = &+z ~
g X y &Xx(d s ~a y

5Q l(dL ~i X2 2X2(OS Ai

It is convenient to impose a peculiar charge
conjugation invariance on the unshifted Lagran-
gian. In a representation in which the y matrices

FIG. 3. Feynman diagram leading to the loss of the
zeroth-order masslessness of the electron in Weinberg's
theory; X marks the scalar meson coupled to ee.

e y" ('I+y5) y"(1-ys) e

FIG. 4. Feynman diagram leading to a calculable
electron mass in our SU(3) x SU(3) x SU(3) model.

are imaginary, the transformation is W„- WL,
gL-p„*, g„-pL, p-(t), and X,—X,. This invari-
ance forces the gauge couplings of the R and L
vector bosons to be equal. It is spontaneously
broken by the ft) vacuum expectation value.

The X, and X, vacuum expectation values are
diagonal and have the form

o o o)
0 5 0 + O(a),

002
where fbf, fb-c/, and fb+c/ are»faJ. The
terms of order a are different for X, and X, be-
cause of the spontaneous breakdown of the charge-
conjugation invariance. These vacuum expectation
values give very large masses to all the vector
bosons except the four which are coupled to the
SU(2)xU(1) subgroup generated by T„+T~+ Ts,
T „'+ T L+ T» which in the lepton system is the
group of the original Weinberg model.

In this model, the masslessness of the neutrino
can be imposed as an exact type-(0) mass rela-
tion. We require that the Lagrangian possess an
exact global U(1) symmetry wherein P- e"8$,
P~- e 'sf~, P„-e'8$~, and all other fields are
unchanged; this symmetry is obtained by omitting
detP from the Lagrangian. After the spontaneous
symmetry breaking, there will remain an exact
gauge U(1) —just the electromagnetic gauge
group- and, in addition, an exact global U(1) cor-
responding to a chiral transformations on the
neutrino field. This symmetry keeps the neutrino
massless in all orders of perturbation theory.

Finally we consider the electron mass. Now the
diagram in Fig. 2 cannot contribute because there
is no direct mass mixing between W„and WL .
Instead, both these vector bosons can mix with

so that there is a contribution from the dia-
gram in Fi.g. 4. Closing the lepton loop, we again
obtain a vacuum expectation value for the meson
coupled to ee, but here this vacuum expectation
value is calculable because the invariant which
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contributes is not allowed in the original renor-
malizable Lagrangian: It is a sixth-order poly-
nomial.

To calculate the contribution of the diagram in
Fig. 1, it is convenient to work with the shifted
Lagrangian in the Landau gauge, so that there is
no mixing between vector boson and the Goldstone
mesons. If the gauge coupling constant of the 8
and I. vector bosons is We/cos8 and the coupling
constant for the S vector bosons is e/sin8, so that
the photon couples to the correct electric current,
the leading contribution to the electron mass is

3 M
" 26 28 lnM, M, +cos2)lnM~ 16~cos e +

where M and M, are masses of the doubly charged
vector bosons, and g is the mixing angle between
W~ and (W„+W~ )/vY. In terms of the other
parameters,

M' =, (b'+ c')+ O(e a ),cos'8

4e
cos'8 sin'9

x [b'+ c' +[(b'+ c')' cos'28+ b'c' sin'28] '~'}

+ O(e'a'),

V

cosA. ILL -sinA. X' ~

s„=cosp X~ —sinp p„+,

sl =cosA. X~+sinA, p, ~ .

Under an infinitesimal gauge transformation
(1 =i~' T, +i&u'T, ), gs and gz transform as in (2),
while the singlets transform according to

5s =i~'s .
The electric charge generator is (T, + v 3 T,)/2
+ Tg The only spinless me sons in the model are
two triplets with U(1) quantum numbers al. They
transform according to

5Q~ —see A, ]Qq+ uu Qg,

5/2 =su'A, $2+ sm Q~ .
The Yukawa couplings are

f&z, 4i 4+f '4z, 4a*&s+ H c

and there is an invariant bare-mass term ms~s„
+H.c. The vacuum expectation values are

-(b'+ c') cos28
cos2E =—,

[(b'+ c')' cos'28+ b'c' sin'28] '~'

Other contributions are smaller by a factor of
a /b or more.

While this model has the property we have been
after, it is not economical. It requires 24 vector
bosons, and 31 spinless mesons survive after
spontaneous symmetry breaking. This kind of
proliferation seems to be a necessary consequence
of the type-(3) mass relation because the diagram
in Fig. 4 which contributes to the electron mass is
so complicated. The last model we describe over-
comes this problem.

V. SU(3) X U(1)

We modify the SU(3) model in Sec. 11 by includ-
ing another charged lepton, which is an SU(3)
singlet, s. In terms of the eventual mass eigen-
states, the lepton fields are

cosp p.
' + sinp X '~~

In terms of the observable masses, m„and m~,
and the angles p and A. , we have

af = m» sinp cos A. + m„cosp sin A. ,

bf '=- m»cosp sink. —m„sinpcos A. ,

m = m~ cosp cos A. —m„sinp sin A,

and the relation

m„cosp cosA, = m~ sinp sin A. . (6)

No additional spinless mesons are needed to im-
plement the superstrong breaking. If [ b [» ( a (,
the wrong-helicity current and doubly charged
current contributions are suppressed. This is a
model with a photon and eight massive vector
bosons: Weinberg's W' and Z, and five super-
heavy vector bosons. Only four spinless mesons,
two neutrals and a doubly charged pair, remain
after spontaneous symmetry breaking. As in the
SU(3)xSU(3)xSU(3) model, there is a type-(0)
mass relation guaranteeing the masslessness of
the neutrino. There is a global invariance of the
original Lagrangian under p, ,—e' p, „g„-e' g» f~-e '

pL, . After spontaneous sym-
metry breaking, there is still a global chiral in-
variance on the neutrino field.
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Since there is no spinless meson coupled to ee,
this model has a type-(1) mass relation, keeping
the electron massless in zeroth order. Contribu-
tions to the electron mass come from the diagrams
in Fig. 1 and in Fig. 5. In the symmetric-gauge
language, the contribution comes from diagrams
with three or more tadpoles on the internal lepton
line.

To calculate the electron mass, we again work
with the shifted Lagrangian in Landau gauge. Be-
cause of (6), the logarithmic divergences from
the diagrams in Figs. 1 and 5 cancel. If the gauge
coupling constant of the octet of gauge bosons is
e/cosg and the coupling constant of the singlet is
e/sin9, the electron mass is

3 mx ppzD
um„cosp cosh.

&&m cos mD —mx mx

o ",
) .

Here mD3 =2e3(a3+ t3)/cos38 is the squared mass of
the doubly charged vector boson. In this model,
the unobserved lepton must be extremely massive.
In fact, for (6) to give a reasonable value for the
electron mass, mx must be of the same order of
magnitude as AD, which is at least a few hundred
GeV.

VI. COMMENTS AND CONCLUSIONS

We have only discussed models in which the
leptons are combined into representations of
SU(3). This restriction is not necessary. We can,
for instance, add an extra neutral lepton and use
the four-dimensional representation of O(5).
Models of this type are interesting because they
are automatically anomaly-free and because they
can lead to a very small, calculable, but nonzero
neutrino mass. Another possibility is to add two
charged leptons and use the five-dimensional rep-
resentation of O(5). Such theories are natural ex-
tensions of the Lee-Prentki-Zumino model. But
all these models seem more complicated than the
SU(3) schemes described in this paper

The SU(3) models do have anomalies, and are
difficult to extend to hadrons. It may be possible,
however, to eliminate both these problems by
building hadrons out of three [conventional strong-
interaction SU(3)] triplets of quarks with the un-
conventional charge assignments (+3, 3, —,),

2 I I(3 3 3) and (- 3 3 3 ). The quarks can

W

x+

FIG. 5. Together with Fig. 1, this Feynman diagram
leads to a calculable electron mass in our SU(3}x U(1)
model.

transform under the weak SU(3) gauge group like
three triplets: one with charges (, , 3, -3) and two

with charges (3, —3, ——', .) It is then possible to ar-
range the lepton and hadron anomalies to cancel.
These models are quite complicated and rather
artificial, and we will not discuss them further
here.

The most annoying feature of the models we have
presented is that the predicted value of the elec-
tron mass depends more or less sensitively on
many parameters which, while measurable in
principle, are well out of reach of contemporary
experimental technique. It certainly seems un-
likely that the ideas discussed in this paper can
lead to a parameter-free prediction of the elec-
tron-muon mass ratio, but it may, at least, be
possible to do slightly better. In particular, it
would be nice to eliminate the need for more than
one gauge coupling constant. This can probably be
done in the SU(3)xSU(3)xSU(3) model if one adds
another lepton multiplet transforming as a triplet
under the S group and enough spinless mesons so
that there are more charge-conjugation symme-
tries; however, the cost in extra fields seems
prohibitive.

We cannot claim to have given an explication of
the lepton mass spectrum, but we have solved an
interesting technical problem: W'e have found
rational, if implausible, models in which the elec-
tron mass is finite, calculable, and of order
am„. Hopefully, the ideas presented in this paper
will be useful in the search for better models.
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Several SU(2))&U(1) gauge theories of weak and electromagnetic interactions based on Han-Yambu
quarks are presented which satisfy all known selection rules of semileptonic and nonleptonic weak

1interactions, excluding the AI = z rule.

Several possibly renormalizable unified theories
of weak and electromagnetic interactions have re-
cently been proposed. ' ' In fact, a large number
of such mathematically consistent models exist, '
but the imposition of a few physical constraints,
specifically the absence of ~8=1 neutral cur-
rents, the absence of ~S = 2 nonleptonic processes,
the cancellation of Adler-type anomalies, the sup-
pression of induced neutral currents in semilep-
tonic processes and in the KL - g~ mass differ-
ence, ' the criterion that the theory gives the cor-
rect sign and magnitude for the decay n 2y, and
the apparent suppression of v v couplings, "
reduces the number of viable theories consider-
ably. We present here several models based on
the group SU(2) xU(1) which sa, tisfy the above con-
straints. " Hadrons in these models are described
by the Han-Nambu three-triplet quark model, "
which incorporates both the phenomenology of the
naive quark model and a sensible spin-statistics
assignment for the quarks. As Lipkin'4 has em-
phasized, such an approach is less likely to re-
sult in a clash between the weak and strong sym-
metry structures. Georgi and Glashow' have re-
cently presented a gauge theory based on Han-
Nambu quarks for the group SO(3). Despite the
added economy of such a model, the lack of a
weak hypercharge may lead to difficulties in even-
tually incorporating strong interactions into a re-
normalizable theory, "so SU(2)xU(1) models may
provide useful alternatives.

We begin with a description of the hadrons. The
three Han-Nambu triplets have the charge assign-

ments

("l
QI = 9l,

(.l

LI ) L2) Lay

3I,. ($) =3I,. cost+A,. sin),

&,. (&) —= X, cost —3I,. sin(,

It is assumed that these nine quarks span a (3, 3)
representation of the strong-interaction group
SU(3) xSU(3)' and that all observed hadrons are
SU(3)' singlets. Because there are four charged
quarks, one can choose the SU(2) gauge multiplets
to be either four doublets and one singlet or two
triplets and three singlets. " In the former case,
the weak currents will contain many terms and the
constraints on the mixing parameters that result
from imposition of the observed selection rules
are mathematically intractable. The two-tr iplet
case is easier to handle and in fact has been anal-
yzed in detail for the group SO(3) by Georgi and
Glashow. ' The SU(2) xU(1) analog of their para-
metrization is

(
7'~, = sinP3I2(e) + bA. ,(X) + sinP cos P(P,

3I,(e- y)

f d',
T~, =

~
si np(3I) eh+'A, ( ')X+1 snpi spn~6I

x,(e- y)


