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c~, t &+c» t, , =0. (82)

To show (ii), consider a tensor t,, constructed
from the L,-,' and the structure constants. It must
be invariant under the adjoint transformations,
1.e.~

k l k0 = 5 t,.~ = -a c~] t,~
—g c~~ t.. .

for all vectors a~. It follows that

If the Lie algebra is semisimple, (82) may be
written

CA. tt —t. CAE = 0,
which shows that the matrix t commutes with all
the matrices c„k=1,. . . , m. But, for a simple
Lie algebra, the adjoint representation is irreduc-
ible. It follows that the matrix t must be a multi-
ple of the identity, and this is statement (ii).
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I -invariant n-point functions of scalar field theories satisfying the Wightman axioms are considered

in the framework of the recently proposed inhomogeneous U(3, 1)-invariant extension which is

Weierstrass analytic in both the real and imaginary parts of complex four-vectors. The algebraic variety

over which the extension is analytic is investigated, and it is shown that there is a shift in the

appearance of singular points from n &6, as for the customary complex analytic extension, to n &10.
The extended analyticity domain is investigated too, and it is proved that it contains all the spacelike

points of the analyticity domain of the physical n-point function. A procedure to reach physical
timelike separation, as well as any separation, is introduced, and it is shown that the above type of
Weierstrass analyticity is sufficient to determine the physical n-point function at any separation from its
value at spacelike separation. The above results are applied to the generalized Haag theorem in order
to see whether its validity can be extended to more than the first four vacuum expectation values for
the considered type of field theories.

I. INTRODUCTION

In a recent paper' the extension to complex four-
vectors z~ = $, —i@~ of L - invariant n-point func-
tions

g~ =x„-x~,~ k=1, 2, . . . , n-1 (1.1)

of a scalar field theory satisfying the Wightman
axioms was investigated from a new analyticity
approach, namely, Weierstrass analyticity in both
the real and imaginary parts g, and q„.

A theorem was proved which essentially states
that under certain restrictions all possible ana-
lytic extensions of cv„($„.. . , („,) to complex
four -vectors z, = g, —&g, are characterized as
follows:

(1) There exists an extension (Bargmann-Hall-
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Wightman theorem ), cu „(g~,g». . . , $~, q~},2 (j.)

m=n-1 which is analytic in the domain

Dmc'=(4 na I
— & 4p&+ 'na&V+'

k=1, 2, . . ., m; p=0, 1, 2, 3)

and (complex) analytic in the variety

(1.2)

M" =(U&&)U, &
=z, z&, i,j=1,2, . . . , m) (1.3)

over which the orthogonal scalar products z&z&

vary for all the z's in the tube

7"'~=(z~
~ z~ =(~ —f0~; $~, 0~MD~~&; k =1,2, . . . , m).

T' "=UA" T' A'EL (C)

and is invariant under the proper complex orthog-
onal Lorentz group L (C).

(2) There exists a new extension, cv „' (t'» g»
. . . ; f, , q„), which is analytic in an open and
connected subset 2~ of the region'

=((~,q~ (]~ &0, ri~ &0; k=1, 2, . . . , m)

and (real) analytic in the variety

(1.6)

Mt'. =(V„IVi,=2(z~z;+z~z, ); f,i=1, 2, . ",~),

over which the Hermitian scalar products
—,'(z, zf+zfz~) vary for all the z's in the domain

P&=(z, (z„=g, fq, ; ~„&-,uses&; k=1, 2, . . . , s ).

(1 6)

Furthermore, the new extension possesses a
single-valued continuation to the extended domain

r e) pC!) 74) As)~U(3 1} (1.9)

and is invariant under the unitary U(3, 1) group.
In a more recent paper, ' some examples of

so~ analytic extensions were constructed with
corresponding analyticity domains v l as an ex-
plicit check on the validity of the theorem.

In the same paper we introduced an algebraic
procedure for constructing the analyticity domain

(1.4)

Furthermore, the extension possesses a single-
valued continuation to the extended tube

of the physical n-point function without any re-
cursion to the extended tube 7' ' i by disproving a
rather popular belief that this domain cannot be
constructed without the knowledge of the w„' ex-
tension. This ultimately proved the independent
existence of the two nonequivalent extensions m„"~

and w@ in the framework of the assumed type of
Weierstrass analyticity.

As is well known, the extension u„' possesses,
among others, the following properties'.

A ': The matrices (U, &) of the variety (1.3) have
rank r ~ 4. This property has relevant physical
implications, since it ultimately implies a restric-
tion on the first four vacuum expectation values for
the validity of the generalized Haag theorem.

B ':The identity I can be continuously connect-
ed to the total inversion I„on account of the
connectivity properties of the invariance group
L+(C). This property is of central importance in
the derivation of the TCP theorem.

C ~: The L, (C} invariance group preserves rank
and order (as complex manifold) of the Lorentz
group, a property which has some relevance in the
expansion of the scattering amplitude.

The corresponding properties of the extension
w@ are as follows'.

Ael: The matrices (V, & }of the variety (1.7}have
rank r &8.

8@:The identity component I can be continuous-
ly connected not only to the total inversion I„„but
also to the space inversion I, and the time inver-
sion I, on account of the connectivity properties
of the U(3, 1}invariance group.

Cai: The U(3, 1}invariance group possesses
order and rank larger than those of the Lorentz
group and the full invariance group; the inhomo-
geneous IU(3, 1) group presents the interesting
feature of admitting the SU(3) group as a little
group.

Even though the above-listed properties of the
new extension are rather striking as compared to
the corresponding properties of extension u„',
obviously they do not cast a shadow on the exten-
sion of the Bargmann-Hall-Wightman theorem,
which retains all its power centered on its unique-
ness once the framework of complex analyticity is
assumed.

Nevertheless, in our opinion„ the above prop-
erties are sufficiently interesting to motivate
further studies on the new extension.

It is the purpose of the present paper to investi-
gate some aspects of the new extension so@ which
are essential for an evaluation of the possible
physical applications of properties A~, 8@, and
C@ listed above.

In Sec. II we study the dimensionality, together
with the singular and exceptional points of the
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algebraic variety M@.
In Sec. III we investigate the real points4 of the

extended domain 7'„' in order to see whether they
have equivalent properties and effectiveness as the
Jost points' of extension a@~' .

In Sec. IV we attack the problem of how to reach
real timelike points (which are outside both analy-
ticity domains v and 7' ) in order to see whether
relations between spacelike and timelike separa-
tions can be obtained in the framework of the so@

extension.
In Sec. V we investigate whether the knowledge

of the extension w@' in a (real) neighborhood of a
physical spacelike point uniquely determines the
n-point function se„at all physical points. Finally,
we apply our results to the generalized Haag the-
orem.

Points of M with m~ 5 and r&4 are singular
points and their neighborhoods are no longer lo-
cally Euclidean. In this case analyticity simply
refers to boundedness and continuity.

The variety M@~l defined by (1.7) is also an alge-
braic variety in the —,m (m+1) scalar products
V&& = (& (~ +g& q& and is also an open subset of the
set of all mxm real symmetric matrices. How-
ever, the rank of the matrices (V„) is ~8 (Ref. 1)
while the rank of the matrices (S,~ ) is &4.

The above difference in the rank has implications
for the dimensionality of the variety M"~ as well
for the location of exceptional and singular points.

As is well known, a real symmetric mxm matrix
of rank r can be brought, via a similarity trans-
formation, into a form in which only the first r
rows do not vanish:

II. THE ALGEBRAIC VARIETY N~m

iso ~ ~ ~ ~ ea11 ~ ~ ~ll ~ ~ ~ ~ ~ ~

lm'' V'
2m

As is well known, ' the n-point functions se„
($„.. . , $ ), m= n-1 are (real) analytic in the
variety

M.=(s„)s,= t,. g, ; f,f =1,2, . . . , m}, (2.1) ~ ~

P 0 ~ 0 0
~ ~

over which the scalar products $& $& vary for all
the $ 's in an open and connected subset S of the
domain for all spacelike g:

D =($, (g~'&0; k=1, 2, . . . , m) . (2.2)

w„(g„.. . , $„}= h„(S», . . . , S„). (2 3)

M is an algebraic variety in the ~ m(m+1)
scalar products $& $& and is an open subset of the
set of all real symmetric matrices with rank
r & 4 with dimensions

2 m (m+1) for m =1,2, 3, 4

Thus, there exist functions h„(s», . . . , S ~), with
S&&~M, such that

(2.5)

Thus, the extension A@i (V„, . . . , V )
=w„"'($„q,; . . . ; (,ri„) in the 2 m(m+1) elements
V, &

is actually defined on a variety which in gen-
eral has dimension less than & m(m+1) if m&8 and
the rank is maximal.

To find the actual dimension we must subtract
from ~ m (m+1} the number of elements Vq& which
are zero after the similarity transformation.
Clearly, such a number is —,

' [(m- r) (m-r + 1)] .
For M we have, putting r =4,

dim (M )=-,' [m(m+1)] --,'[(m-4)(m-3)]

(2.6)

dim(M )=
4m-6 for m &4.

(2.4) similarly for M~~ we have, putting t'=8,

dim (M ~ ) = q [m(m+ 1)] -[(m —8) (m —7)]
For points of M with m ~4 (s & 5) where the rank

is not maximum, namely for exceptional points, '
M is locally an open set in a ~ m (m+ 1)-dimen-
sional space, and the Weierstrass definition of
real analyticity applies.

For points of M with m & 5 (s & 6) where r =4,
M is locally an open set in a (4m-6)-dimensional
Euclidean space, and the standard definition of
real analyticity also applies.

= 8m —28. (2.7)

We thus see that the extension A@i (V», . . . , V )
is defined on a variety' @~ whose dimension for
m& 8 cannot exceed Sm -28 if the rank is maxi-
mum.

As analytic counterpart of the algebraic rule
(2.7) we have the following lemma.
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Lemma Z. l. If a function fe) (z„.. . , z; z», . . . ,
z») =w"„) ($„q,;.. . ; $„,)) ) is analytic in the ex-
tended domain 7' e) and invariant under the U(3, 1)
group, then the following equations hold in v'

(2 8)

which can be written

p f]n) +p f n)

with

8 * 8
Pvp- Zfv~ p f p~8ZJ Zf

(2.16)

(2.1V)

Q]z) Qe&

( zz z *" f zZJ Zf
(2.9)

(2.10)

For t), =v, Eq. (2.16) reduces to (2.8). For g»] v

recall that a function ft"which is invariant under
U(3, 1}and analytic in ~'" is also a function of the
scalar products' V„=,'-(z)z*, +z, z,), i.e.,
z(2)( (2) (gJ n (Z )z . ~ ~ z Z mz Z g z ' ' . z zm) =w n ('b) z )hz. . . z zz mr 7)m)

(2)=&n(Vu V m} ~

with p, , v =0, 1,2, 3.
Indeed, consider a one-parameter subgroup of

U(3. 1) characterized by the transformation A(a).
Differentiating the identity

But then

(2.18)

g(2) ( ~ ¹

tf kg, . . . ~ Z~y Zg, . . . , Z~I

(2.11)

with respect to a we get

afe) a[A(a}z,]"
s[A(a)z~]" sa

sfz' z[z,'n'(z)]z]
s [z', A'(a)] " sa

At a=o we have

(2.12)

fe)(A(a)z„. . . , A(a)z; z', A'(a), . . . , z' A'(a))
(,) a (2) av„, ay„o.„)„=I — I z,. z -z» „„)=o,

lsS ZJ ZJ

(2.19)

and relation (2.8) for p n) v follows from (2.16).
Consider now the function w ". Differentiating

the identity

w tn)(A(a) t'„A(a)q„. . . ; A(a) $,A(a)))„)

(2)
n (519 lit ' ' ' i &nz z ))m)

(2.20)

with respect to a, where A(a) is a transformation
of I, ) HU(3, 1), and following a similar procedure
as above, we get

Bw(2' Bwtl II n
a+v ~'" a«+"'& e " g)v (

=0

t) [A (a)z q]"
ea

and

-H" Z
a-"0

(2.13)
(2.21)

In view of the structure of (2.18), this equation
can be satisfied if and only if

])[z,'A'(a)]]'
~a (2.14)

ew(') aw(»
~fp g~v ~fv g~y

J f
(2.22}

where H"" is the infinitesimal generator of the
A (a) transformation.

Consider the one-parameter subgroup for which
all elements of the matrix (H""}are zero except
for a pair H~" and H~ such that H~"= -H¹~= const,
H "v=H +. Then relation (2.12}becomes

sf tn) ])f&» sf &»

fv gZ" J~ gZv fv gZ¹P JP gZf f

(2.15)

and similarly for the other terms in the q's in
(2.21).

Using the substitution

(2.23}

a„„a&»+a¹„a(»= 0

with

(2.24}

and by means of Eq. (2.8), relation (2.22) can be
written
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(2.25}

On account of the structure of (2.18), Eqs. (2.9)
and (2.10) easily follow from (2.24).

Equations (2.8), (2.9), and (2.10) represent a set
of at most 28 independent equations for 8n vari-
ables, the z,. and z,*. Consequently the dimension-
ality of M~" for m& 8 and r =8 is 8m —28 as de-
rived from the algebraic rule (2.7}.'

This essentially means that for m& 8 and when

the rank is maximum there are at least 8m —28
functionally independent Hermitian scalar products
which can be formed out of the 8m variables zj„
and z~+„.

Furthermore, in this case the tangent space of
any point of M " is locally Euclidean and has also
dimension 8m —28.

If for m & 8 the rank is not maximum, then the
tangent space has dimension —,[m(m+ 1)] and it is
no longer locally Euclidean. Indeed, in a way
equivalent to the case for M„(see Ref. 2), the
tangent space at any point of M ~" is determined
by a set of linear equations in the differentials
dV„whose coefficients are Sx8 minors of (V„}.
If all those 8x 8 determinants vanish, then the set
of equations is satisfied by any choice of d V„.

For m ~ 8, M &~ is clearly an open set in a (real)
2[m(m+ I)] dimensional Euclidean space. Indeed,
since there are no points for m & 8 which are sin-
gular in the sense of algebraic geometry, the tan-
gent space is always locally Euclidean and has
dimension —,'[m(m+ 1)].

By identifying the dimension of the variety with
the dimension of its tangent space, we can sum-
marize the above results with the following prop-
osition.

Proposition Z. I. The dimension of the algebraic
variety M ~~~ is —,'[m(m+1)] for m ~ 8; Sm —28 at
nonsingular points for m & 8; and —,'[m(m+1)] at
singular points for m& 8.

The dimensions of the algebraic varieties Af„
and M~', thus, coincide for m =1, 2, 3, 4 and in
both cases no singular point occurs. For m
=5, 6, 7, 8 the dimension of M is 4m —6, while
that of M"' is —,'[m(m+1)] and singular points can
occur only for M . For m & 8 and maximum rank,
the dimension of M is 4m —6 and that of M ~" is
8m -28. Finally, for m& 8 the dimensions of M
and M~' again coincide at singular points.

An interesting (open and connected) subset of
M~'~ is the variety

M~'~ =(V,~) V,~KM&"; rank(V, .~) -4;

(2.26)

Clearly, M~" behaves like M for what concerns
both the dimensionality and the location of excep-
tional and singular points.

III. REAL POINTS IN THE EXTENDED DOMAIN r '
~

(3.2)

where G =(g„,) and F is a nonsingular matrix. Re-
lation (3.1) is then proved by simply putting

a, —(E;,~Fu, . . . , E(„i 0, 0, . . . , 0),

i =1, 2, . . . , m (3.3)

where 0, 0, . . . , 0 consists of 4-r zeros.
All four-vectors o, must be spacelike by con-

struction. '4 This implies that S is a subset of
the set of all four-vectors e, or, equivalently,

(3.4)

Indeed, consider a spacelike physical point
($„.. . , $„)eS . Then there always exists a point

($„i)„'.. .;t, q )ES,"' such that

~jj —$j(j

=45g+nif); .
Choose, for instance, the point

f(=a), , q, =bg, , i=1, 2, . . . , m

(3 5)

(3.6)

with a and b real constants satisfying the restric-
tions

0&a&/, 0 &b &j,, a'+ b'=I .
Then Eq. (3.5) follows. Furthermore, the point

In Ref. 4 the existence of physical (real) space-
like points in the extended domain r'&'~ was in-
dicated, and the cases of two- and three-point
functions were explicitly discussed.

We shall now investigate this problem in a more
general framework by proving first the following
lemma.

Lemma 3.1. The algebraic variety M is a sub-
set of the variety M ~".

Consider the variety M "' as defined in (2.26).
Any element V,j&M ~'~ can be written as a scalar
product of real four-vectors n,. such that

V;; = $,.$j+q,.qj

=n,.nj ij =1, 2, . . . , m. (3 1)
Jh

Indeed, any real symmetric m x m matrix (V&}
of rank r & 4 and index 1 can be written, through
a similarity transformation, in the form
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((„))».. . ', (,)) ) as defined by (3.6) is a point of
S, if conditions (3.7) are satisfied, since in this
case V.

z is within the analyticity domain of exten-
sion w '„by construction.

Finally, if the variety M(„' constructed accord-
ing to (3.5), (3.6), and (3.'7) does not span the
entire variety M, then it constitutes a subdomain
of analyticity. In this case one can perform an
analytic continuation through a chain of overlap-
ping polycircles until relation (3.4) is satisfied.

The major implication of Lemma 3.1 can be ex-
pressed in terms of the following theorem.

Theo~em 3.1. The extended domain 7' ' con-
tains all the points of the analyticity domain S of
the physical n-point function.

Consider real four-vectors g, , i =1,2, . . . , m
according to relation (3.5). They cannot belong to
r(') since ))» =-Im(z, ) e0 by construction for any

(s)zAET m

Real four-vectors $, , however, do belong to the
extended domain )'('). Indeed a point (I„.. . , z )
e T(') defined by means of (3.6) and (3.7) can be
written

a=cosa, b=sine, z&=e ' (3.6)

But then there abvays exists a U(3, 1) transforma-
tion, such as the one-parameter transformation
A(a) =e' 1 for which

Azg, = FI 1y 2 ~ ~ Q m « (s.9)

This is essentially a mapping from I,~T to
points z&=Az, = g,~ v' ', and consequently shows
the existence of real spacelike four-vectors in the
extended domain 7' ".

The fact that all physical spacelike points of S
belong to the extended domain 7' ' then follows
from Lemma 3.1. Since for all physical points
($„.. . , $„)~S there are points ($„()«;.. . ; $, () )
~S(') for which relations (3.5), (3.6), and (3.7)
hold, then, corresponding to all physical points
$~& S, there are points z, ~7 ' and transforma-
tions AHU(3, 1) for which relation (3.9) holds.

On account of the topology' of M „and its in-
variance properties, it is not difficult to see that
each real point of 7' ' possesses a neighborhood
of real points all in v' ' .

Note that, in view of Lemma 3.1, the variety

T =($($, )$,4&M„.; t' =0; i, j, k =1, 2, . . . , m),

(3.10)

namely the so-called equal-time manifold, is also
contained in M ' .

It is interesting to remark that T g M ' lies in
the singular subset of M('~ only for m~ 9, while
T AM lies in the singular subset of M„ for m ~ 5.

From Theorem 3.1 and Proposition 2.1 it follows

'fs(2) UA(2) )(2) A(2)~ U (3 ] ) (3.13)

and they all constitute analyticity subdomains for
the au '„extension.

Since no point of M ' where the rank is ~ 5 can
be a physical point, we have as a consequence that
no point of 8 is contained in 7'(

We can thus complement Theorem 3.1 with the
following corollary.

Co~olla~y 3.1. All points of 8 are contained in
gl(&)

m

Let us recall that the diagonal elements V,&
of

M ~ must be negative, ' i.e.,
z]z. =(q +'g] & Oy i=is 2y. . .ypQ . (3.14)

This implies that only real spacelike, lightlike, or
null four-vectors can be boundary points of 7' ',
while real timelike four-vectors are outside the
analyticity domain 7' ' and consequently they can-
not be approached in the framework of the se(„'~ ex-
tension.

Leaving the investigation of this problem to Sec.
IV, let us now remark that the real parts $~ of
yoints zf, ~7' ' are arbitrary four-vectors and,
consequently, they can be timelike. Indeed, start-
ing from a point z, =)&-ig, ~7 ', where both $~
and ))«are spacelike, there always exists a U(3, 1)
transformation A for which $«=Re(Az«) =Re(z,') is
a timelike vector, even though restriction (3.14)
is preserved. '

A relevant question is whether the real parts $&

of points z,~V' ' can also be arbitrary timelike
vectors.

The answer is in the affirmative, as can be seen
from the following argument. Consider an arbi-
trary timelike point ],. . . , t' . A corresponding
point z« = $« —if)«~r' ' can be constructed by put-
ting

))A =(o(,) —1}$,$), i,j =1, 2, . . . ,m (3.16}

where a,~ are free parameters suitably chosen to
ensure that z, is within the analyticity domain.
Since

V;;=a]~ $] $~, (3.16}

that all the physical points M for m ~ 9 lie in a
singular subset of M ' . This is not necessarily
the case for the subvariety M ' . In this connec-
tion, the following domains can be introduced:

S,".' =(5«, f)«l 4, ~)«eS.'"; »nk (5,$, + ();f),) 4-;

i, j, k=1, 2, . . . , m),

(3.11)
rh'I'=( «I «

= 4- '7
«i t'«: ))«~wm'i

(3.12)
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this implies that all diagonal terms e» must be
negative.

To show that the matrix (V,~) can have rank
r ~4, consider the matrix (t', (,.}. Multiplying the

first row and the first column by a~a», and the
second row and the second column by vn», we do
not change the rank of the resultant matrix. Put-
ting (without summation}

i/2o.„=(u„a,,}
the rank of the (V,,) matrix so constructed re-
mains identical to the rank of ($, t'~).

(3.1V}

IV. THE TIMELIKE PHYSICAL POINTS

On account of the results of Sec. III, we can
state that given an n-point function so„ in a neigh-
borhood of a point (t'„.. . , t' )ES, we can reach
any other point of S through an analytical continua-
tion in se„' by means of a chain of overlapping
polycircles. Similarly, we can approach any light-
like or nuB separation.

The same procedure, however, is not applicable
in the framework of the av~„" extension to reach
timelike physical points since they are outside

p (S)
75

We introduce now what we shall term an "aux-
iliary function" and show that via that function we
can also approach in a unique manner any (real)
timelike separation.

Consider the extension h„"(V», . . . , V ) of a phys-
ical n-point function w„(E„.. . , $ ) and affix to
each of the elements V„=(,$, +q,q&CM„*~ an imag-
inary part -i e„, where the &„are infinitesimal
parameters independent of the $, and g, vectors.
We call the function k„"(V» -ie», . . . , V ia )-
so constructed the "auxiliary n-point function. "

Clearly the function k~„" is equivalent to a first
type extension, i.e. ,

k„(V»-se»~. . . , V~~-tz~)=h„c(U, », ~, U ~).

(4.1)

Indeed at nonsingular points there always exist
points ((,', q,';. . . ; ]',7)')ES~," for arbitrary

k($g+9gRf $g5g 849) y

e„=2(gq,' + FJ q,'),
(4.2}

(4.3)

e.g. , for infinitesimal g,'HV, and spacelike $,'.'
This ensures us that A~" is analytic in the

(V„-ie„)complex space within a narrow strip
along the V, &

axis with the nonnegative part of the
V«axis constituting a cut.

Let us now stress the differences between the
auxiliary function k„" and the extension jg „".

The separations (,' in h„" do not generally coin-
cide with the separations E, in A~„". Indeed, for in-
finitesimal q&HV„ the E', vectors are totally space-
like, while the corresponding (, in (4.2} are arbi-
trary four-vectors. This allows the identification
of the physical separation with the $, vectors of
k„" rather than with the g', vectors of the h„' func-
tion.

Furthermore, the invariance group of the auxil-
iary„ function is the U(3, 1) group, while the in-
variance group of the h~„" function is the L, (C}
group. On account of the independence of the imag-
inary parts $,~ from the real parts V&&, the actual
functional dependence of the k~„'~ function is on the
vectors z,~~'„'", and the set of transformations in
v' " leaving the auxiliary function invariant is the
U(3, 1) group. On the contrary, the actual depen-
dence of the h„" function is on the vectors z,' = g„'

—inde T'0), and the set of trmsformations in ~ (1)

leaving h~„" invariant is the L,(C) group.
We are now in a position to approach a physical

timelike point preserving the U(3, 1) invariance and

related broader connectivity properties. Indeed,
starting from a point of $ we can identify such a
point with a real point of v'~~. A U(3, 1) transfor-
mation or an analytic continuation will bring us
into a new point of 7'~ whose real part can be
any timelike point. We then introduce the auxil-
iary function and consider the limit when the imag-
inary part of such a new point of v'„' goes to zero
by moving inside the analyticity strip of the auxil-
iary function. This procedure will bring us infin-
itesimally close to a physical timelike point pn

account of the infinitesimal character of the &'s

according to the following chain of transitions:

wn(5&~ ~ ~ ~ i hm)~ 4&S~~ 4 + 0 ~

hn(S»» See}~

h„(V» ~ . . ~ V~„)~

h'„"(V„,. . . , V ),
(a)i ~

k & kV» z6yyy ~ ~ ~ y

S~ ( $~HM,

Vgg
—z[(Z(zf +zfzy)] —S()&M~ q Zy —)y&T ~ p

V(( =
z [(z(zp +z pz))]EM, z~ = $~ —ig~G 7', $~ = (Rezq)»;

e (x)
V~~ zE~~)y V)] tE]g~M~ y E]g - 0y

(4.4)

lim k„(V» —iz», . . . , V —iz ) =h„'((,$, -ie„,. . . , $ $ —iz ),
ljjy.~ ~ ~ ~ Rm~o

e,]=0.
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When taking the limit q,', . . . , q' —0, the boundary
of the analyticity domain 7'~" is crossed without
affecting either the uniqueness or the absolute
convergence of the power-series expansion of the
function, since for any value of q„ the auxiliary
function k~~~ remains within its analyticity domain.

As a side consideration, let us remark that the
introduction of the auxiliary function ensures the
convergence of the mass integration with respect
to arbitrary tempered weight functions in the inte-
gral representation of the n-point function, as well
as the convergence of the Laplace transform for
any separation.

V. CONCLUSIONS

In Sec. II we investigated the variety M &" over
which the au„" function is (real) analytic and we
stressed its differences with the variety M for
the physical n-point function w„. We found a shift
in the appearance of the exceptional points from
m =n-1 &4 in M to m ~8 in M, and a corre-
sponding shift in the appearance of singular points
from nz & 5 in M to m ~ 9 in M ' .

Since M behaves like the variety M"' of the
w„" function for what concerns the location of ex-
ceptional and singular points as well as for the
dimensionality, the above result implies that for
5 +m & 8, singular points can occur for the alge-
braic variety of the w~„" function, while they do
not occur for the algebraic variety of the w'„"
functions. '

The physical implications of the above result can
be expressed by the following theorem.

Theorem 5. 1, For n=1, 2, . . . , 9, the physical
n-point function w„($„.. . , g ) of a scalar" field
theory satisfying the Wightman axioms possesses
removable singularities at all points of the variety
M where the rank is less than maximum.

In Sec. III we proved that the variety M is fully
contained in M ", and we showed that the extended
analyticity domain v' "of the se~" extension con-
tains all the points of the analyticity domain S of
the physical n-point function. "

Consequently, the physical n-point function w„
at any point of M can be identified with the w'„'
extension at the same point of M GM "'.

The proof of Theorem 5.1 then relies on a known
theorem on removable singularities" which essen-
tially states that if a function is analytic in a neigh-
borhood of a point, except possibly an exceptional
set of points, then the function is analytic in a
complete neighborhood of that point.

In the framework of the w(' extension it is pos-
sible to state the analyticity of w„at exceptional
points of M only for n =1, 2, 3, 4, 5.

Consider, for instance, the case n = 5 (m= 4) and
an exceptional point EEM,. Then dim(E)& dim(M, )
=10. To see that w, has a removable singularity
at E, we must consider a complete neighborhood
of E, namely we must increase the dimension of
the variety by considering a neighborhood N of
dimension 10 with the exception of a set of points
where the dimension is &10. In this case the w~'~

and w~' extensions produce identical results since
E is an exceptional point for both M ~" and M ' .

Consider now the case n =6 (m =5) and a point
SEM, where the rank is less than maximum. Then
dim(S)& dim(M, ) =14. In this case S is a singular
point of M, ' and the use of the se„"' extension does
not allow the singularity at S to be removable. In
view of Theorem 5.1, this essentially implies that,
since M 5('~ preserves as compl. ex manifold the
dimension of M„a neighborhood of dimension 14
of the point S is not sufficient to remove the sin-
gularity at S. The point S, however, is an ex-
ceptional point of M~t" and dim(M,"')=15. A com-
plete neighborhood of dimension 15 of S is then
sufficient to remove the singularity at S.

The cases n=V, 8, 9 then follow on similar
ground.

As is well known from the framework of the
function, the physical n-point functions

w„((„.. . , $ ) for n = 1, 2, 3, 4 are uniquely deter-
mined at any separation from their values at equal-
time separations. '

An interesting question is whether through the
use of the w~" function we can increase the number
of physical n-point functions which are uniquely
determined from their value at equal times.

In this connection we can state the following
theorem.

Theorem 5.~. For n = 1, 2, . . . , 8 the physical n-
point function w„($„.. . , $ ) of a scalar field theo-
ry satisfying the Wightman axioms is uniquely de-
termined at any spacelike separation from its val-
ues at equal-time separation.

Consider the equal-time manifold T defined by
(3.8) and the n-point function h„((, $„.. . , $ $ ),
n = m + 1 = 1, 2, . . . , 8 in a (real) neighborhood of an
equal-time point ($,$, )ET Then. , .in view. of
Theorem 5.1, h„ in analytic in a complete neigh-
borhood N~M ' of the considered point.

Perform the transition to the h~„" extension by
adding to each element E„.(,.E T scalars q,.g„of
infinitesimal value. This can be done by choosing
apoint (t'„q„.. . ; (, q QS2~'~ for which the vectors

have infinitesimal length or finite values
of their component but infinitesimal values of all
their scalar products.
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The new function h„(V„, . . . , V ) so constructed
with

also admits an absolutely convergent power-series
expansion since the point (V„.) is in the neighbor-
hood of ($,. $,.).

Recall that the complete neighborhood N~M ~"
of (g,.g&) contains an exceptional set E at which
det(V„) =0 as well as a regular set E at which
det(V, ,)=0, but not =—0.

Consider a set of vectors q, such that (VU}GR.
Then the customary analytical continuation by
means of a chain of overlapping polycircles can be
performed starting from a neighborhood N' of
(V„}with N'QN x0. This will allow us to reach
in a unique manner an arbitrary spacelike separa-
tion and the proof of Theorem 5.2 is completed. "

Both Theorems 5.1 and 5.2 remain within the
analyticity domain of the w~„ function without any
recursion to points outside of r''~" such as phys-
ical timelike separations. Nevertheless, Theorem
5.2 is sufficient to determine uniquely the physical
n-point function at any separation from their val-
ues at equal-times. This can be done, for in-
stance, by using the well-known property in the
framework of the w „' extension for which the phys-
ical n-point functions are uniquely determined at
any separation from their values at spacelike
separation. '

Leaving aside at the moment the problem of
reaching timelike separations in the framework of
the su~„' extension, we can state a two-step pro-
cedure according to which the first transition from
equal-time separation to any spacelike separation
arises from the m'„" extension, while the transi-
tion from spacelike separation to arbitrary sepa-
ration arises from the w „' extension.

The application of the above results to the gen-
eralized Haag theorem is straightforward. Al-
though the topic demands further investigations,
we can state that there is relevant evidence ac-
cording to which the validity of the generalized
Haag theorem' can be extended up to the first
eight vacuum expectation values of scalar field
theories satisfying the Wightman axioms.

Until now we essentially used the property ac-
cording to which from the knowledge of the w&„"

function in r''~" we can reach or approach any
physical separation with the exception of real
timelike separations, since those points are out-

side of r'&'~

In Sec. IV we introduced the so-called "auxiliary
function" which guarantees the crossing of the
boundary of r'~'~ to reach timelike points, pre-
serving the abso1utely convergent power series
expansion, the uniqueness of the transition, the
existence of an integral representation of the n-
point function with arbitrary tempered weight-
functions, and, most important, the validity of
the U(3, 1) invariance during the limit procedure.
We shall now restrict our attention to the sub-
variety Mi2~EM ' of rank r ~4 defined by (2.26)
with corresponding subdomain r' ' e r'&'& given in
(3.11).

Theorem 5. 3. The knowledge of the se~„' function
in a real neighborhood of a real point of r '~"
uniquely determines w~„' everywhere in i

' "y
hence it uniquely determines the auxiliary func-
tion and the physical n-point function at any sep-
ration.

In Sec. III we showed that each real point P of
r' "possesses a neighborhood N of real points all
in r' ' or equivalently, according to Corollary
3.1, all in r'"'. Clearly, all points of %have
rank r & 4. Consequently, the analytic continu-
ation by means of a chain of overlappying poly-
circles will allowus toreachallpoints of r '&" wNl
rank r ~4, namely r'&, and the first part of the
theorem follows.

The variety M"' over which the function is now
defined has the same dimension of M "and con-
sequently forms a real. environment for the auxil-
iary function in M ' . The uniqueness of the aux-
iliary function then follows from the know1edge of
the u „'~ function in M~". The physical n-point
function at any spacelike, lightl. ike, or null sep-
aration arises from the se~„'~ function and at any
timelike separation arises from the auxiliary
function.

The impl. ications of Theorem 5.3 are rather
deep. The broader assumption of Weierstrass
analyticity in the real and imaginary parts of com-
plex four-vectors, instead of the more restrictive
assumption of complex analyticity, "allows the
determination of the physical n-point functions at
any separation from their knowledge at all space-
like separations. "

Furthermore, Theorem 5.3 now allows a direct
link between Theorem 5.2 and the generalized
Haag theorem. Indeed, for n = 1, 2, . . . , 8
(m = 1, 2, . . . , 7) starting from an equal-time sep-
aration, Theorem 5.2 will allow the transition to an
arbitrary real point of r' ' . Then Theorem 5.3
will determine the physical n-point function at any
separation, from which the application to the gen-
eralized Haag theorem directly follows.

Finally, Theorem 5.3 introduces a different
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prospective for the possible physical applications
of other properties of the ce ~„'& extension which

have not been investigated in the present paper,
such as the broader connectivity properties and

the larger rank of the invariance group.
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Note that 2[m (m +1)]=4m —6 for m =3, 4.
Note that 2[m(m+1)] =Sm -28 for m =7, 8.
At nonsingular points for m «9, relation (4.2) con-

tains 8m —28 conditions for the Sm variables $I,&, g&&.

Similarly at any point for m& 9, relation (4.2) contains
2[m(m +1)l conditions for Sm variables and Sm
& ~[m(m +1)l. Relation (4.3) then follows, for instance,
by assuming that the g„'& V+ are infinitesimal four-
vectors, or by using the arbitrariness of the $&&.

9To visualize the above shift in relation to the dimen-
sion of the carrier space, one can think of M as an
algebraic variety defined in terms of scalar products
$& $, of vectors $; in a Minkowski space E3 &. Then for
m larger than the dimension of the carrier space (m &4),
points at which the rank is less than maximum are
singular. The situation is similar for the variety M
which is defined in terms of scalar products z& z& of
vectors z& in a complex Minkowski space E3 ~. Then
points of ~~ with m & 4 at which the rank is less than
maximum are also singular. The situation is different
for +, since it can be defined in terms of the linear
combination of scalar products $;(&+ g&g& of vectors
(& and g& defined in two independent (real) Minkowski
spaces E3~

&
and E3"&. Then the carrier space is the

eight-dimensional Kronecker product E3 &
x E3"

&
and

singular points can occur only for m & 8.
The case of the parity-violating n-point function of

a scalar field theory was investigated in Ref. 1. The

analytic properties of the ~„extension are the same
as for the parity-conserving function, with the difference
that the invariance group is the unimodular SU(3, 1)
group. The cases of vectorial and tensorial field
theories follow the same pattern since the SU(3, 1)
group contains all representations of nonspinorial type
(Ref. 1). Finally, the transition to distributions was
also investigated in Ref. 1. The g~t extension for
spinorial field theories, however, has not been investi-
gated at the moment.

This result should be compared with the corresponding
properties of Jost points of the uf~~ extension.

S. Bochner and W. T. Martin, Several Complex
Variables, edited by M. Morse and A. W. Tucker
(Princeton Univ. Press, Princeton, N. J., 1948), p. 173.
This theorem on removable singularities applies to
functions of both real and complex variables.

The case n =9 (m =8) is excluded from Theorem 5.2
because of lack of uniqueness in the transition from Ts
to M&t. Indeed in the transition from a point ($& $&) e T&

to a point ($&$&+q&g&)e M&~, the transition of the rank is
from r = 3 up to a maximum of r = 7. This essentially
means that starting from an (equal-time) exceptional
point of M8, we can only construct through the intro-
duction of the infinitesimal g; g& terms a neighborhood
of that point entirely consisting of exceptional points.
Consequently we cannot reach a regular point since the
transition to rank r =8 is now impossible, and the
analytic continuation from T 8 to M8 would not be unique.
Note that this lack of uniqueness is not in contradiction
with Theorem 5.1 which holds for n =9 (m =8) too.

Let us recall that such definition of Weierstrass
analyticity implies complex analyticity as a particular
case. See Appendix B of Ref. 1.

I~Note that the starting ~oint of Theorem 5.3 is an
arbitrary point of S & 0', namely a point (x&, .. . , x„)
for which $„=x~ -x&+~~ S (k =1, 2, ..., m) is spacelike.
This is already a generalization from the use of a
"totally" spacelike point, namely a point (xL, ... , x„) for
which all differences x& -x& are spacelike.


