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Burnett and Kroll have shown from the Low soft-photon theorem that an unpolarized radia-
tive cross section is given by an operator acting on the corresponding unpolarized nonradia-
tive cross section. Tarasov has generalized this result to cases when all spina are not
summed. We rederive his result here and are able to express it in a substantially simpler
and more useful way. Specifically we show that the cross section for a radiative process in
which the particles involved have some particular polarization configuration is given through
the first two orders in the photon momentum@ by a simple operator acting on the cross
section for the nonradiative process with arbitrary polarization.

A number of years ago Low' 4 showed that the
amplitude for a radiative process was given
through terms of order 1/k and k' in the photon
momentum by the corresponding amplitude for
the nonradiative process. This theorem has sub-
sequently been extremely useful in analyzing radi-
ative processes, ' particularly decay processes
where the photon energy is limited by kinematics,
and in delimiting the kinds of new information one
can expect to obtain from radiative reactions.

More recently the theorem was extended by Bur-
nett and Kroll' and Bell and Van Hoyen. ' They
showed, simply by squaring the Low amplitude and
proving that certain cross terms vanished, that
the radiative cross section (or, more precisely,
the square of the radiative amplitude) summed on

all sPins was given through the first two orders in
k by an operator acting on the corresponding un-
Polarized, nonradiative cross section. Further-
more the operator was very simple, depending
only on multiplicative factors and first derivatives,
and so can be used as a convenient and practical
method for simplifying the actual calculation of a
radiative cross section. '

The sum on spins was a crucial part of the praof
of Burnett and Kroll. However the Low theorem
actually contains spin inform. ation, since it gives
the radiative amplitude for any particular spin
configuration in terms of quantities which can be
obtained from a complete knowledge of the non-
radiative amplitude for the same spin configuration.
Thus one is led to ask, can one generalize the
Burnett-Kroll theorem and remove the require-
ment of a sum on spins. In particular, two ques-
tions are suggested. First, can one show formally
that the cross section for a radiative process for
particular polarization states of the particles in-
volved, i.e., the polarized cross section, depends
only on the polarized cross sections for the non-

radiative process. Second, can one put such a re-
sult in a useful form. That is, can one write the
polarized radiative cross section as a simple op-
erator acting on the polarized nonradiative cross
sections in a fashion analogous to the Burnett-
Kroll theorem.

The first of these questions has in fact been
considered previously and answered in the affirma-
tive. ' In the course of our discussion we will ob-
tain this same result by a slightly different method
which, we feel, is simpler and more straightfor-
ward.

The main purpose of this note however, is to
show that the answer to the second question is also
affirmative. That is, we extend somewhat the trick
employed by Burnett and Kroll and use it to obtain
explicitly an operator which, acting on a polarized
nonradiative cross section, gives the polarized
radiative cross section through the first two
orders in k. This operator involves more terms
than the Burnett-Kroll operator and contains mag-
netic moments as well as charges. It is however
simple, in that it has at worst first derivatives,
and it provides a direct generalization of the Bur-
nett-Kroll theorem to cases where all spins are
not summed.

Finally we prove for the new result, just as has
been proved for the Low theorem and the Burnett-
Kroll theorem, '' that the particular analytic form
or the particular kinematic variables chosen for
the nonradiative amplitude make no difference in
the radiative amplitude through the first two orders
in k."

These results are important for two major rea-
sons. In the first place the general result sets
limits on the amount of new information which can
be obtained by measuring polarizations in radia-
tive processes in the soft-photon region. In partic-
ular it means that as long as the soft-photon terms
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a,re the only important ones the polarized cross
section for a radiative process is completely de-
termined by the corresponding nonradiative polar-
ized cross section, which may often be more ac-
cessible experimentally, and by the electromag-
netic parameters of the particles involved. How-
ever, when polarizations are measured, the cross
section for a radiative process contains informa-
tion about anomalous magnetic moments, w'hich,

as a consequence of the Burnett-Kroll theorem, is
not the case for unpolarized cross sections. Thus
measurements of polarized radiative processes
even in the soft-photon region may be a useful way
of determining these moments. Secondly, the
operator formula to be derived here provides a
simple shortcut for actually carrying out the alge-
bra necessary to calculate a radiative cross sec-
tion, since with it one really only has to calculate
the nonradiative cross section, which generally
will be much simpler. Thus for example, this
theorem should simplify predictions for radiative
decays of polarized particles, just as the Burnett-
Kroll theorem has been used to simplify the calcu-
lation of unpolarized processes. ' "

To provide the starting point for our calculation
and to establish notation we review briefly the
result given by the Low theorem for the amplitude
for a radiative process. For details of the deriva-
tion the reader is referred to the original papers
of Low, ' Feshbach and Yenrie, ' and Adler and
Dothan4 or to the review contained in Ref. 5. Kith
the exception of metric" we will follow the nota-
tion of Ref. 5.

Consider the radiative process a+ c- b+d+y,
where c and d are spin- —,

' fermions and a and b

stand for any number of spin-0 bosons. For sim-
plicity of notation we have restricted ourselves to
a single incident and single final fermion, though
the generalization to more than one is straightfor-
ward. Let the four-momentum, mass, charge,
and anomalous magnetic moment of particle i be
p;, m;, Q;, and »»;, respectively, and let k and e
be the four-momentum and polarization vectors of
the photon. Take s, , with s,'s; = -1, to be a four
vector which reduces in the rest frame of particle
i to a unit vector along the spin. The Low theorem
then gives for the amplitude for the radiative pro-
cess the following formula (in the notation of Ref.5):

T ad T sd(p Pb P Pd ~)

=Qu(Pd, sd)T()u(P„s, )+ Q;D~(p, )u(p„sd) —' u(p„s, )
BT

+M(p, s )T (Q
+. '(y) +m ) M(p„s)+il(), s )- Q + — (y p +m ))T w(p„s)+0()!).

In this expression

Q = Q'»I Q» l, .p
'

i

where»l; =+1(-1)for outgoing (incoming) particles and where the sum on i is over all particles
The amplitude T, =—T,(p„p~, p„pd) has the same analytic form as the on-mass-shell amplitude for the

nonradiative process g+e-5+d. Since p,.'=m, .' it is, in the simplest case, a function of two independent
scalar variables, which however must be evaluated at values of the four-momenta p, satisfying p, +p,
= p, +p, +k. Thus in general T, corresponds to the nonradiative amplitude evaluated at a kinematic point
which may be slightly unphysical for the nonradiative process. If one wishes of course one may make a
further expansion of the p,. about a set p,'. satisfying p,'+p,'=p,'+pd (cf. Ref. 6) or equivalently choose an ap-
propriate set of variables (cf. Ref. 1) so that Eq. (1) holds with T, interpreted as the actual nonradiative
amplitude evaluated at a physical point for the nonradiative process.

In general there may be a number of expressions for T, which are equivalent for the nonradiative pro-
cess. These are related to each other by Dirac algebra or correspond simply to different choices of the
i~dependent scalar variables appearing in T,. It has been shown however'" ' that different choices of T,
change the radiative amplitude only by terms of order k, and thus from the point of view of the Low theorem
are equivalent.

To obtain the Burnett-Kroll result one simply squares Eq. (1), sums on spine, and uses the relation y„



NOTE ON THE GENERALIZATION OF THE BURNETT-KROLL. . . 245

= s(y f))/sf))' to put the result in simple form .To generalize this result we also begin by squaring Eq. (1),
but without the sum on spins. This gives

[T„,i'= q'in(P„s, )T,M(P„s,) i

'

+ Qu(P„s,)&„u(P., s.)u(P. , s, )g()P~(P, )
' u(P„s,)+c.c.)

8 Tp

8Pcx

+ Qg(~, s )Tyc(~, s,)Q(p„s,)T Q + (y P + m) +(~„,s~)+c.cKd y.ky e

md 2k p„

(4)+ Qu(P„s„)T,u(P„s,)u(P„s,) „Q,+ '
(y P, + m, ) T,u(P„, s,)+c.c. +0(k ),

where T, =y, T,y, . Clearly the first term is in the desired form of an operator Q' acting on the polarized
nonradiative cross section ~u(p~, s,)T,u(P„s,) ~

. We now want to simplify the remaining terms and put
them in an analogous form.

Consider first the third term and write it out explicitly:

QM(p„s, )TO Q~+2 (y p~+m~) 2k u(p~, s~)u(p„s, )
mg 2k"Pd

y ey'k
+u(p. , s.)u(p, s.) 2k Q, +2

' (y.p. +m. ) Tu(p. , s.).
md

Our aim is to express the term in brackets as some operator acting on u(p~, s~)u(p„, s~). To this end we
write uu in terms of the standard projection operator, i.e.,

(5)

( +y,y s~)(y Pa+m~)
md

It is then perfectly straightforward, albeit tedious, to commute first uu and then y-ey k to the right in the
second half of Eq. (5) above. This gives

u(P„s,)T, Q,(1+y,y s,)y D(P,)
4md

+ (Q~+ z~)ysy E(P~)(y P~+m~)+ s~.D(P~)ys(y. P~+m~) Tu(P„s,),~K

md
where

e's; k's&
Ek(P')=k. 'kx-k.

p
Ex. (8)

ln principle Eq. (7), together with a similar expression for the fourth term of Eq. (4), gives, when substi-
tuted mto Eq. (4), a result equivalent to that obtained by more formal methods in Ref. 8. To actually show

that explicitly however one must carry out some rather complicated and tedious, though perfectly straight-
forward, algebra and in addition project from the square of the matrix element the polarization tensors
used there.

We, however, want to go further and cast the result in a much simpler and more compact form which is
analogous to the Burnett-Kroll theorem. The crucial observation necessary to do this is the following. If
we consider the spin vectors s; as independent variables then we can write

8
y,y„=s—,, (1+y.y s) (9)

y, (y P+m) = — (1+y,y s)(y p+m).Px

which are simply generalizations of the relation

8
y =—(y.P+m)

8PP

used by Burnett and Kroll. Using these relations Eq. (7) becomes
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Qu(p„s, )TO Q~D),(p~) +(Q~+ z~)Z), (p~) + D(p~) s~ — ' 4- Tou(P„s„.) .
P 8 Pg). a (1 +y,y sa)(y.ua+~u)

~Pe) d X. +tf ~d CX 4m„

Observe that, although we have chosen the particular order (1+ysy s)(y.p+m) for the derivation, the result
must be independent of this order, since the two factors commute. One can show this explicitly simply by
starting with (y P'+m)(1+y, y s) and using s D(P)+P E(P) =0 to show that the end results are equivalent.

Now we clearly can sum the operator in large parentheses in Eq. (12) over all particles without changing
the result. Furthermore T, does not contain the spin vectors so that sT,/as=0. Thus this operator can be
combined with a similar one obtained from the last term of Eq. (4) and with the 8 T,/bp, terms of the same
equation to give for the entire radiative cross section

l~-~l'= Q'+()g(QP~()') —-+(();+~;)&i((i) -+ '*~, &(t,)(,i„)I~()., ~.))'.~(p.;.~.)l'+0()").

This equation provides the desired simple form for the generalization of the Burnett-Kroll theorem, that
is, it gives the radiative cross section in terms of an operator involving at most first derivatives acting
on the nonradiative cross section. Observe that the derivatives with respect to s, e.g. , A.S/as, just pro-
vide a compact way of saying that one should replace the vector s, which appears only linearly, with the
vector A ." If we now sum on one spin, we get a formula for a partially polarized cross section. If we
sum on all spins we get, as we must, just the Burnett-Kroll theorem, since the last two terms are linear
in s and so vanish.

As before, the quantity ~u(P~, s~)T,u(P„s„)~' is the an-mass-shell, nonradiative cross section evaluated
for values of the momenta satisfying p, +P, =P„+P„+k. In general it can be written as

T„0()(()]((= ~u(Pg) sg)Tou(Pg) s ) [ =A+ sg~ag+ sgCg+ sgs Dpp ) (14)

where A, g, C, and D are the observable (or calculable) quantities and are functions of the various sca-
lar invariants. However there remains the usual ambiguity in that there may be different choices of A, B,
Q, and D which are identical for the nonradiative process but whith differ when evaluated for the radiative
variables. We now show that the difference in ~T„q~' caused by such ambiguities is of order k'.

Suppose that there are two choices A, B, C, D and A', J3', O', D' which give identical results for the
nonradiative process. Their difference must then be proportional to X=P, +P, —P, —p~ which vanishes in
the kinematic region corresponding to the nonradiative process. Thus we can write

~T„, ,~['- ~T„', ~ ~'=(A, + s,"B„,+s,"C„,+s„"s,"D„„)X',
where A X=A —A, etc. Substituting this into our basic result, Eq. (13) gives

I)'-a I'-
I
)'l a)*= (Qx' —()2 ni();))'( p&)) (A, + s'a„,+ sgc„,+ s,"s ))„)+ (a')"o. „, (16)

which is of O(k') since

ZnA(D'(P() =0k" —E'I)(Q«"

g;q, Q, = 0 by charge conservation, and X'= k'.
To summarize briefly, the central result of this

note is Eq. (13) which generalizes in a simple way
the Burnett-Kroll theorem to cases where not all
spins are summed. This result gives the first
two orders in k of the cross section for a radiative
process in terms of a simple operator acting, on
the nonradiative cross section. It means that to
this order, a polarized or partially polarized radi-
ative cross section is completely determined by

knowledge of the nonradiative polarized cross sec-
tions and by the electromagnetic properties of the
particles involved. The result also allows one to
calculate a radiative cross section by simply eval-
uating the nonradiative cross section and applying
the operator. Since the operator is relatively sim-
ple, this may be significantly easier algebraically
than simply squaring the complete radiative ampli-
tude of Eq. (1), especially when several spine are
not summed. Finally we have shown that for the
new theorem, just as for the Low and Burnett-
Kroll theorems, the particular form of the nonra-
diative amplitude or the particular set of variables
chosen makes no difference in the radiative cross
section through the first two orders in k.
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It should be noted that because of the explicit appear-
ance of derivatives with respect to polarization vectors
in the operator in Eq. (13), knowledge of the nonradiative
cross section for arbitrary direction of polarization is
required in order to determine the radiative cross
section for a particular polarization configuration.
That is to say, the components of the functions A, B&,
C&, and D» defined in Eq. (14) must be known separate-
ly rather than just the linear combination required for a
particular polarization configuration. This is in contrast
to the situation for the original Burnett-Kroll theorem
where the single function A, , determined by the unpolar-
ized nonradiative cross section, is sufficient to deter-
mine the first two orders ink of the unpolarized radia-
tive cross section.
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Photons produced in high-energy hadronic collisions come primarily from m decays. If
the 7t. inclusive cross section exhibits Feynman scaling, then so does the derived photon

spectrum. The scaled photon-spectrum behavior in the central region (x = 0) is examined in

detail. The bremsstrahlung contribution can be estimated for not too energetic photons, and

provides a means for measuring the mean charged multiplicity at very high energies.

I. INTRODUCTION

The study of high-energy hadronic collisions has
been greatly facilitated by advances in the under-
standing of inclusive processes —processes in

which not all the final-state particles are speci-
fied. ' The most extensively studied inclusive pro-

cesses are the single-particle inclusive reactions
of the form (a: c ~b).' If particle c is not a hadron,
but rather the decay product of a hadron, d, the
observed spectrum is an indirect image of the orig-
inal inclusive process (a:d ~b). In particular, the
observation of (a: y~b) yields information primarily
about (a: &'~b). Of course the information is not


