
2412 YOICH IRO IAMB U

*Work supported in part by the National Science Foun-
dation (Contract No, NSF GP 32904 X) and the John
Simon Guggenheim Foundation.

iT. Bell and Y. Nambu (unpublished report).
O. Klein, Z. Physik 58, 730 {1920);J. H. Van Vleck,

Rev. Mod. Phys. 23, 213 (1951);L. D. Landau and E. M.
Lifshitz, Quantum Mechanics (Addison-Wesley, Reading,
Mass. 1958), p. 373.

SFor nonassociative algebras see, for example, R. D.

Schafer, An Introduction to Nonassociative Algebras
{Academic, New York, 1966).

4P. Jordan, Z. Physik 80, 285 (1933);Nachr. Ges.
Wiss. Gottingen (1933), p. 209; P. Jordan, J. von Neu-
mann, and E. Wigner, Ann. Math. 35, 29 (1934);
A. Albert, Ann. Math. 35, 65 (1934).

~M, Giinaydin and F. Gursey, Yale University report
(unpublished).

PHYSICAL REVIEW D VOLUME 7, NUM BE R 8

Degeneracy of Relativistic Cyclotron Motion

15 A P R IL 1973

Sadaakt Yanagawa
Department of Applied Physics, Faculty of Engineering, University of Tokyo, Tokyo, Japan

(Received 5 July 1972)

The quantum-mechanical problem of the relativistic cyclotron motion of a charged particle in a
uniform magnetic field is solved by consideration of the symmetry which the system obeys. It is shown

that its symmetry is isomorphic to the Lie group called G(0, 1) or G(1,0), and doubly degenerate
infinite series of wave functions with a constant energy eigenvalue are labeled by the eigenvalues of the

operators X', L +S„and S,. Here X is the relativistic Hamiltonian referred to in the present
problem, and L, and S, are the usual orbital and spin angular momentum operators, respectively.

I. INTRODUCTORY REMARK

In a previous paper' it was shown that the non-
relativistic Hamiltonian H

P„——y + P+—~, 1

which expresses the motion of a free electron in a
uniform magnetic field H directed in the z direc-
tion, apart from the z component of the space co-
ordinates, has a symmetry of the Lie group G(0, b)
generated by the infinitesimal operators A, , A, ,
and E (identity) defined as

A, =A„+iA, ,

. eHA„=-—-i y,Bx 2'
, eH

A, =-—+i x,

n.Anr
i By Bx k

They satisfy the following commutation relations:

[A„A ]=— E -=bE, -
[A~', A, ]=A. .

or

A g„=i|I„".
(4)

These functions are given explicitly in Ref. 1, and
each function is labeled by the eigenvalue of A,"'.
Here, A or A is nothing but the raising or low-
ering operator for angular momentum (L, or L ),
respectively. Further, when we define operators
B, and B, as

B, = A+ ' x+iy

c

B = — A+ ' x —iy

1/2

(n, -m, ),2eSH

[A",', A ]=-A .
Each operator commutes with 0"', and all degen-
erate eigenfunctions g„, $„', .. . of semi-infinite
numbers with a constant eigenvalue (n+-, )I&e, can
be obtained by operating with the A, operators on
any eigenfunction with the same eigenvalue; name-
ly,

A, g„=g„'
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and

B3=B,B )

= 2m c 3 (n+ 3)g &u, —ek cH+ m3c 4 .

Both give the same eigenvalue

(13b)

it can easily be seen that the operators B, and B
correspond to creation and annihilation operators
of a boson particle, and they (with the operators
B, and E) form the Lie group G(0, 1) as shown by
the commutation relations

and

[B„B]=-Z,
[B„B,]=B, ,

[B„B]=-B

(6)

II. RELATIVISTIC CYCLOTRON MOTION

Now we treat the relativistic Hamiltonian

$C = c(n„II, + n „H,) + P m c

from the same standpoint. It is more convenient
to use X' than 3C, because the eigenvalue problem
for the eigenfunction 4 with four components (P„

t4331 44)l

(10)

is equivalent to the following one for the function
with two components (p„p3), defining S, = (,' ', ):

—= (2mc3H"'+ekcHS, +m c )

The Hamiltonian H may be written in terms of
these operators as

H"' =gru, (B,B +3) .

It is to be noted that the operator B, or B does
not commute with H, and the role of these oper-
ators, unlike that of A, or A, is one of getting a
new function by raising or lowering the eigenvalue
of P„, namely,

2neh cH+ m'c 4 . (14)

A3=A"3'+~ O, (15)

in place of A3 in Eq. (3), it is easily seen that the
operators A, and A, commute with 3C and then nat-
urally also with X'. (In treating X3, one works in
a two-dimensional space, -', c,-S,.) The same
commutation relations hold as in the nonrelativis-
tic case, namely, they form G(0, f3) again. Then
we can say that the operator A, or A plays the
same role for the relativistic eigenfunction 4„(S,
=1) or C„(S,=-I), respectively, as the operator
A, or A does for the nonrelativistic eigenfunction
$„,or P„. On the other hand the operator B,
[Eq. (6)] introduced before translates the one
series of functions with a constant eigenvalue of
S, and an energy quantum number n to the corre-
sponding series of functions with the same eigen-
value of S, and the energy quantum number n ~1.
But the doubly degenerate series cannot be mixed
up by these operators in either case.

Let us then introduce the operators in the con-
stant-E space satisfying the commutation rela-
tions

We write the eigenfunction for (13a) as 4„(S,=I),
whose first component, Q„ is P„,. The eigen-
function for (13b) will be written as 4„(S,=-1),
where the second component, Q~, is g„. The third
component, Q„and the fourth one, Q„are given
by Eqs. (12).

Because of the infinite degeneracy of the func-
tions g„or g„, as shown for the nonrelativistic
case, we have a doubly degenerate series of eigen-
functions: [4„(S,=1)] and [4„(S,= —l)J.

Now when we take A, as

(16)

Q3 and (Lt 4 are obtained from the re lations

c

and (12)

They are

Q, =B —,'0, ,

Q =B,-' 0

&' = 2mc (n —3)h (u, + eh cH + m c', (13a)

Here Eqs. (12) are to be compared with Eqs. (5)
and (8). From Eq. (11) we get for E3

It is well known that the relations in Eq (16) are.
identical to those which angular momentum opera-
tors satisfy; namely, they form the Lie group
G(a, 0), isomorphic to the three-dimensional rota-
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tion group or SU(2). They do not commute with the

Hamiltonian 3C, but they do commute with 3C'. How-

ever, as stated before, it is not necessary to con-
sider the symmetry which keeps the Hamiltonian

3C invariant, but it is sufficient for us to use the
symmetry of 3C' for our present system. Keeping
in mind the commutativity with 3C', let us operate
with B,S on the functions of the first series, and

with B S, on the functions of the second series, in
which we define

The resulting functions will be the functions of the
second and the first series, respectively. Thus
we see that the first series {4„(S,= 1)) is connected
to the second series (4„(S,= -1)f by the operators
B,S, and vice versa by the operator B S,.

Each Casimir operator of G(0, b) or G(a, 0) has
no difference from 3C' apart from some constants.
Thus we can conclude that the system has the in-

variance symmetry of G(a, 0) or G(0, b), and each
degenerate function is to be labeled by the eigen-
values of the operator 3C', A„and Q, . By the way,
if we construct the operator

B —,v+ —B+-,cr

we find that it commutes (fortunately) with 3C and

A, . This may be quite accidental within our pres-
ent knowledge. But this operator is just the opera-
tor that transforms the function C„(S,= 1) into the
function 4„(S,=-1), and vice versa, in four-di-
mensional Dirac space.

Thus the whole space of degenerate eigenfunc-
tions is reduced to a 4-fold-degenerate irreducible-
representation space of G(0, b). On the other hand,
the same space is reduced to infinitely degenerate
two-dimensional irreducible-representation
spaces of G(a, 0).

%e have a relation similar to the relation be-
tween the three-dimensional rotation group and
the permutation group in the theory of many-elec-
tron systems.

S. Yanagawa and T. Moriya; J. Math. Phys. 11, 3244 (1970).
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The relevance of the representation theory of the conformal group to quantum field theory is

illustrated in two dimensions by the Thirring model. Space-time position operators and their complex
extensions are defined as operator-valued functions of the generators. These complex position variables

coincide with the Gel'fand-Naimark labels and can be interpreted as labels for nonorthogonal coherent
states. A Hilbert-space metric then becomes necessary. It is given by the matrix elements of the metric

operator G and is nontrivial for the nonanalytic supplementary series and the analytic representations.
In this case G ' gives the two-poir. t function for the Thirring model. For nonanalytic representations
only weak {infinitesimal) conformal invariance holds for interacting fields if causal and spectral
properties are imposed, while those properties become compatible with strong {global) conformal
invariance in the case of analytic representations which lead either to free fields or to interacting fields

with a quantized value of the coupling constant.

I. INTRODUCTION

In the axiomatic approach to quantum field the-
ory or S-matrix theory, the symmetries and the
analyticity properties of n-point functions were
investigated at first, using respectively the
methods of group theory and functional analysis,

in a quite separate manner. The use of group the-
ory was largely restricted to the finite-dimen-
sional representations of the Lorentz group in
space-time or those of the internal symmetry
groups in charge space. The deeper methods of
unitary representations of groups that unify in-
variance principles with Hilbert-space construc-


