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A new relativistic algebraic analog of the harmonic oscillator is constructed, based on the

algebra of the pseudo-orthogonal group SO(3, 2) and a certain family of Hermitian represen-
tations which have the level and multiplet structure of the harmonic oscillator. This SO(3, 2)

oscillator approaches the nonrelativistic oscillator in the limit in which the parameter 0
which labels the representations tends to infinity. The relativistic character of the SO(3, 2)

oscillator depends on the fact that the generators include a Lorentz subalgebra together with

a set which transforms as a four-vector under that subalgebra and permits the construction
of a conserved covariant electromagnetic current. It is found that the "minimal" such
current coincides with the electromagnetic current of the harmonic oscillator in the nonrela-
tivistic limit. The SU(3, 1) oscillator model previously described by Cocho et al. is also
investigated with regard to the electromagnetic current, its conservation and its nonrelativ-
istic limit. The two models are qualitatively very similar, except that the SO(3, 2) oscilla-
tor with 10 generators is somewhat simpler than the SU(3, 1) oscillator with 15.

I. INTRODUCTION

In this paper we compare two relativistic ana-
logs of the charged harmonic oscillator based on
representations of the algebras of SO(3, 2) and

SU(3, 1)." The motivation for investigating these
models arises from the successes of the sym-
metric oscillator quark model in predicting par-
ticle properties, ' and the evident desirability of
recasting it into a relativistic framework, 4 togeth-
er with the considerable degree of success that
has been achieved in applying algebraic methods
to the hydrogen atom, ' to nonquark models for
elementary particles, "and to nuclear physics. '

We are primarily interested in investigating the
new SO(3, 2} oscillator model, but feel that it is
useful to present a more detailed treatment of the
SU(3, 1) oscillator model at the same time. AI-
though the SU(3, 1}oscillator (with 15 generators)
is more complicated than the SO(3, 2) oscillator
(with 10 generators), the two models are really
quite similar, and so far as we know are the sim-
plest examples of relativistically covariant alge-
braic models having a familiar system as a non-
relativistic limiting form.

After considering the one-dimensional analog of
these models as an illustrative example in Sec. II
we develop the relationship between the dynamical
Lie algebra of p„)„L,„and n for the nonrelativ-
istic oscillator, and the Lie algebras of SO(3, 2)
snd SU(3, 1}, in Sec. III. The construction of the
electromagnetic vertices and the implications of
current conservation in these models are investi-
gated in Sec. IV. From these considerations, we
relate the parameter 0 which occurs in the alge-
braic models to the masses and "spring constant"

of the nonrelativistic oscillator and show that the
minimal electromagnetic currents have the cor-
rect nonrelativistic limit (i.e., that of the nonrel-
ativistic harmonic oscillator).

II. A ONE-DIMENSIONAL EXAMPLE

The simplified case of one space dimension will
be considered first to illustrate the correspon-
dence between the algebras and the limit that will
be used in later sections. As usual, the states of
the one-dimensional oscillator will be labeled by
the eigenvalues of n=—ata:

il~ n) =n~ n), (2 1)

[E,y, E y] =H~, [H~, E,~] =+2E,~,

E ~y E~yf Hy Hy

(2.3)

The states of the family of Hermitian representa-
tions of this algebra" which will be used here are

where n =0, 1, 2, . . . . (The caret will be dropped
in the equations below; n will denote either the
operator 8 or its eigenvalue, as the context re-
quires. } The actions of a and at on these states
are given by

a (n} =(n+1) (n+I}, )an 1+) =(n+1)~ )n) .
(2.2)

These states and matrix elements can be dia-
grammed as in Fig. 1. The groups SO(1, 2) and
SU(l, 1) share the same Lie algebra (the noncom-
pact real form of A, in the standard notation)9;
this algebra has three generators E,„and H„
which can be chosen to satisfy
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FIG. 1. States and matrix elements for the one-dimensional oscillator. The numbers in the boxes are eigenvalues
of n =a~a; the numbers in the lines are matrix elements of at and a, which act toward the right and left, respectively.

completely labeled by the eigenvalues of N =- —2H&'.

X[ n') =(n'+ kn) I n), (2.4)

where n'=0, 1, 2, . . ., and —,'0, the minimum eigen-
value of N in the representation, labels the mem-
bers of the family of representations. The actions
of E,z

are given by

Z „In') =l(n'+ 1)(n'+f1)j~') n'+ 1),
(2.5)

Z, „In'+1) = —[(n'+1)(n'+n)ji"~n') .

The states and matrix elements are diagrammed
in Fig. 2. Comparison of Figs. 1 and 2, or of Eqs.
(2.1), (2.2), (2.4), and (2.5), shows that if the
statds with n =n' are identified, then

0-~'E „-c'
in the limit 0-~. (2.6)

-0-~'Z -a+f

Thus the momentum p =i v ,' (a~ —s) —and the coordi-
nate ( =W(a +a), though not the Hamiltonian, can
be expressed in terms of the operators E,&, with-
in the representation of Fig. 2, in the limit 0-~.
The number operator n does not have an exact
analog in the SO(1, 2)-SU(1, 1) Lie algebra; but
N = n+ -,'0 labels the energy levels in a similar way,
and is an adequate substitute. " At the same time,
for arbitrary 0, the SO(1, 2)-SU(1, 1) algebra con-
tains the algebra of SO(l, 1), the Lorentz group
for one spacelike dimension and one timelike di-
mension; thus "Lorentz-covariant" vertices can
be defined.

This suggests that in general a correspondence
can be set up between the m-dimensional oscilla-
tor and the algebra of SO(ni, 2) or SU(ni, 1). (The
latter two algebras are, however, distinct for
m & 2.) This correspondence will be studied below
for the physically interesting case m =3.

compared with the Lie algebras of SO(3, 2) and

SU(3, 1), with special regard for the limiting forms
of the latter as 0 (defined below) approaches in-
finity. As a common meeting ground for these
algebras we shall use a form in which the genera-
tors appear either as diagonal operators or as
raising and lowering operators for those diagonal
operators. ' This form is convenient for the con-
struction of diagrams (such as Figs. 3-5 below)
which clearly exhibit the approach of the matrix
elements to their limiting values.

A. The Algebra of the Nonrelativistic
Harmonic Oscillator

The Hamiltonian for the three-dimensional har-
monic oscillator can be written in the form

H = —,')f(o(p'+ P)
=)i(g(n+ —,'),

where

(3.1)

(3.2)

L 3
= (x&2 —&2&x

Fi„=+ af hi+ Pi +&(Pi —4) )

n = -,'(p'+g'- 1) .

(3.3b)

(3.3c)

(3.3d)

These operators have the Hermiticity properties

and, as in the last section, n will be used to de-
note either the level-number operator or its eigen-
value. Because of the presence of angular momen-
tum operators in the algebra, the usual annihila-
tion and creation operators are not as appropriate
here as in the one-dimensional example. Rather,
we shall introduce operators F,„and deal with the
following set:

f i =-I i~'f 2
= haPs —4PR+i($8Pi —hiPs) (3 3a)

III. THE ALGEBRAS OF THE OSCILLATOR,

OF SO(3,2), AND'OF SU(3,1)

In this section the Lie algebra of the dynamical
variables of the nonrelativistic oscillator will be

and satisfy a number of commutation relations
derivable from (3.2). We shall be primarily inter-
ested in the set

-Q, -&(n'-))k&n'(fl+n'-1 } P -&-~n 1(&(n'+l)(Q+n') P-Q-2(n'&1) ~-

FIG. 2. States and matrix elements for a family of representations of the algebra of SO(1, 2) and SU(1, 1). The num-
bers in the boxes are eigenvalues of H& = -2N; the numbers in the lines are matrix elements of E

&
and -E+&, which

act toward the right and left, respectively.
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[L„L,]=+L „[«I,L,J =0,

[L„F,„J=+ F,„, [n, F,„]=+ F,„,
[L~, L ] = 3L~& [ F~y, F «] = -I,
[L„g]=0, [L „F,„]=0.

(3.4b)

(3.4c)

(8.4d)

(3.4e)

In addition, there are some commutators that
serve to define new operators,

F ( + ) ) -=[L F ~y J = hs + &Ps

F,(, ,»= [L„F„,y)] =~~, - f(, - iP, ~P„
(8.5}

which satisfy

IL ~ F.(aa, y)
]= [F, y F,( .„)]
=[F,y, F,(~~, y)J

= [F~(a+ y), F&(ma+ y)J

=0. (3.6)

The remaining commutators are expressible in

terms of the commutators (3.4b)-(3.4e) by repeat-
ed use of the Jacobi identity [[A, B],C]+[[B,C], A]
+[[C,A], B]=0.

Equations (3.4b) and (3.4c) show that L, and F,„
act as raising and lowering operators for the two
commuting Hermitian operators L, and n, while

(3.4d) together with (3.4a} and the second of (3.4e}
give information about off-diagonal matrix ele-
ments. Choosing the eigenvalues of L, and n as
labels for basis states, and starting from the
ground state with n =0, l =0, it is a straightfor-
ward matter to construct the diagram of states
shown in Fig. 3. The exact method of construction
can be inferred by a careful comparison of Eqs.
(3.4) and Fig. 3. It is quite similar to the usual
construction of representations of the angular
momentum algebra, with the exception of the use
of the second of (3.4e); this relation [together with

(3.4d) and the Hermiticity relations] determines
when degeneracy occurs, and the values of the ma-
trix elements when it does.

n=0
l =-0

0

n= l
l =1

A

2

„gz
0

n=2
E= 2, 0

n=3
&= 3, 1

—146/5 «Y
d2/15

A"

/ 3/5l 2/5

~4

&1/5 g

4 4/Sg

p
I

Aii
VYMiz

-4

-e

FIG. 3. States and matrix elements for the three-dimensional oscillator. The numbers in the boxes are eigenvalues
of RL&, the numbers in the vertical lines are matrix elexnents of L, (which act upward and downward, respectively);
and the numbers in the horizontal lines are matrix elements of +E~& (which act toward the right and left, respectively).



RELATIVISTIC ALGEBRAIC ANALOGS OF THE CHARGED. . . 2393

h. = $xt &4 =v(z F~(zo. y)+F~y),

$3 = a(F+(a+ y) + F (a+ y))
1

Ps =I)+ Pz (a F):(za+ y) vy} &

P3- z (F,(o~y) —F (o+y))

(3.7)

It should be noted that only Eqs. (3.4} need to be
explicitly satisfied in the construction of such dia-
grams. Direct calculation, using the Jacobi iden-
tity and Eqs. (3.4)-(3.5), shows that all the com-
mutators in (3.6) with "+" signs commute with the
lowering operators L and F. „; and, by Hermitian
conjugation, all those with "-"signs commute with
the raising operators L, and E,z." This is suffi-
cient to ensure the vanishing of those commutators
when there is a "highest" state"; this is the
ground state in Fig. 3.

Equations (3.3c} and (3.5} can be solved for the
$] and p;:

P, and E, , as well as n, and hence provides a com-
plete dynamical description of the nonrelativistic
harmonic oscillator.

B. The Algebra of SO(3,2) and Its
"Os4:illator" Representations

In Appendix A it is shown that a Hermitian repre-
sentation of the algebra of SO(3, 2} is characterized
by the Hermiticity and commutation relations (A22}
and (A23) for the subset of generators E, , E,„,
H, and H„. As for the nonre)ativistic oscillator
algebra, these relations can be used to construct
the diagram of states, shown in Fig. 4, starting
with the ground state [0, -Qj." Note that this is
a family of representations, since the real pa-
rameter 0 is restricted only by the condition 0 & —,'.
Figures 3 and 4 show a remarkable similarity;
in fact, there is an exact correspondence if we let
Q —~ and make the identifications

Thus Fig. 3 determines the matrix elements of the 1L~=E~~, Ls= ~H~, (3.8a)

N=Q
t=p

0 -Q +))/'Q
gE

N= 1+0
l=1

)2 -Q-2 )/2{Q+]) g

N=2+A
. 4=2,0

'4 -g-4 g&3(g+2) g

N=3+0
E= 3s 1

'6 -Q-6
i

&& 0+1; 2 -Q-3 i4' 2(+2) s -Q-5

-2
Y 45{II+2)/5 ~ Ye{Q+I)/3~ 0 Il 2 ~~ 2 fl 4

&{2fl-I)/3h
m&5{Q+1)/3 J, „

3(Q+2)/5 ~ - O

Y

W+)2))-))/ ~

-Q-3
I'f, &v

)/{9+2)/5 ~
42(2O-&)/5 ~—

-4 -Q-1~
FIG. 4. States and matrix elements for the "oscillator" representations of 80(3, 2). The numbers in the boxes areeigenvalues of H~ = 2L& and H&, the numbers in the vertical lines are matrix elements of E~~ = L~; aad the numbersin the horizontal lines are matrix elements of +Evy. The operators 0 t/tE,

y andN-=)ffo-Hy -are the analogs ofthe operators E& and a, respectively, which appear in Fig. 3. The parameter 0 is subject to the condition 0 & $.
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F&y= lim (0 'E,y),
A~~

n=N-A,

where

(3.8b)

(3.8c)

namely,

t, = lim (0 -~sL (,),

P, = lim (0 ~sL(s).

(3.12a)

(3.12b)

¹-pH~-Hy ~
1 (3.9)

Alternatively, we can compare (3.4} with the
SO(3, 2) relations (A22} and (A23) written in the
following equivalent form:

E~o ~E~„, H~=H~, E~~ =-E~y, N =N,

(3.loa)

(3.10d)

E ~(a+ y ) = [E.ni E ~y] ~

E s(sn+ y ) = [E s n s E s(a+ y )]
(3.11a)

And again, the commutators involving these opera-
tors either vanish,

l .. .(sa, „)]= l .„.(., y)]

[Etym Ea(sa+ y)]

[E&(n+ y)~ Es(sa+ y)]

=0, (3.11b)
or can be expressed in terms of the commutators
(3.10b)-(8.10e) by repeated use of the Jacobi iden-
tity and (8.9).

From comparison of (3.7) with (A26) and (ARV)

[noting the definitions in (3.5) and (3.1 la), and the
identifications (3.8a) and (3.8b)], we see that the
coordinates and momenta are very simply related
to the usual antisymmetric generators of SO(3, 2},

[H, E, ]=+RE, , [N, E, ]=0, (3.10b)

[Ha, Esy] =+RE,)„[N,Esy] =WE sy, (3.10c)

[E~n, E a]=Ha, [E,y, E 7] Hy,

[H, N]=0, [E,E „]=0, (3.10e)

where N is defined by (8.9). These relations be-
come identical to (3.4} in the limit A -~ when the
identifications (3.8) are made, and it is noted
from Fig. 4 that H„has eigenvalues of the form
-A —a, where c is constant as A- ~.

lt is interesting to note from Fig. 4 that for
large but finite A the correspondence between the
nonrelativistic oscillator and the SO(3, 2} oscilla-
tor becomes poorer as the level number increases.
This is what one would expect if the nonrelativis-
tic oscillator is an approximation to a relativis-
tically correct system; the nonrelativistic oscil-
lator must fail as the excitation energy becomes
comparable to the rest masses of the constituent
particles.

As with the nonrelativistic oscillator algebra,
there are further commutation relations which de-
fine new operators:

The remaining generators of SO(3, 2} are the angu-
lar momenta L,&

and, from (ARV}, the number
operator N =L~,.

C. The Algebra of SU(3,1) and Its
"Oscilhtor" Representations

This model is very similar to the SO(3, 2) oscil-
lator. The representation to be used here, shown
in Fig. 5, was constructed by the use of relations
(B18) and (B19) of Appendix B, starting from the
ground state [0, 0, -0]." Note that in this case
there are three commuting generators (Ha, H(),
and H„) which can be used to label the states;
there is no degeneracy of the states of Fig. 5 with
respect to these labels. However, the correspon-
dence with Fig. 3 is not immediately apparent, for
the reason that the states are not separated into
angular momentum multiplets. From Fig. 5 it is
apparent that the identifications

L;V~ (E,n+E-, s), Ls=Ha+Hs,

n=N --4A, where N=---4H~- -,HB - 4H„,3

(3.13)

(3.14}

[L„I.,] = +L „[N,L,] = 0,

[Ls, Esy] =~E.ye [»E.yl =+E,), ~

[L„L ] = RL„[E,„,E „]= H„,

(3.15a)

(3.15b)

(3.15c)

(3.15d)

[I„,N]=O, [L„s,z.y]=0. (3.15e)

Comparison with (3.4) and the observation from
Fig. 5 that H„- -A as A- ~ leads to the final iden-
tification

F,„=itm(n-'y'E„) .
A -iso

The additional operators of interest are

(3.16)

are necessary to obtain the correct multiplet struc-
ture and level numbering. When the states of Fig.
5 are combined to form angular momentum multi-
plets, a diagram very similar to Fig. 4 is obtained.
The eigenvalues of 2L, and L, are, of course, the
same; and the matrix elements of +8» differ only
in the constant terms under the square-root signs.
From (3.13), (8.14), (B18), and (B19), one obtains
the relations
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vY E,(8, „)=-W2[E,8, E,„]=[I„,E,„],
(3.1V)

P, = »m [(2fl)-y'V', ,], (3.19b)

(, = lim [(2Q) I, , ],4 (3.19a)

2E~(a+ 8+„)=2[E~a~ E~(8 ~ „)]=[&~~ ~&E~(8 ~ y)]~

with commutators which either vanish,

[L as Et(a+ 8+ y)] [Eay~ Et(8+ y)]

[Eay~ E s(a+ 8+ y) ]

= [Es( 8+ y )» E &(a+ 8+ y ) ]

=0, (3.16)

or can be evaluated in the limit A -~ by repeated
use of the Jacobi identity and (3.15), noting that
the second of (3.15d) reduces to [F,y, F y] =-1 in
the limit (3.16). Thus the nonrelativistic limit
(3.4}-(3.6) is again regained as fl- ~.

Comparison of (822) and (823) with (3.V), taking
careful note of the numerical factors in (3.1V),
yields

where the T~ and L„„are the symmetric and anti-
symmetric generators of SU(3, 1). The I,;, (with
i,j =1, 2, 3} are, of course, the angular momentum
operators; and T~=2%, from (823). The remain-
ing generators T„have no dynamical significance
here, but will be needed for the construction of
Lorentm-covariant vertices in Sec. IV.

IV. ELECTROMAGNETIC VERTICES

While the last section has shown a close corre-
spondence between the Lie algebra of the nonrela-
tivistic oscillator and those of the algebraic oscil-
lators, this result is really vacuous from a physi-
cal point of view until it is shown that there are
consistent interactions, in particular, with the
electromagnetic field. The construction of co-
variant electromagnetic vertices for the SO(3, 2)
and SU(3, 1) oscillators will be investigated in this
section; and it will be shown that the "minimal"

3 3
N=4$2 Ne i+gA

&=0 l= i

[0 0 -Q [-(v Q }—[0 1 -Q-2',

v

N~tofn
C=Z, O

/2(&+1) s -,'0 2 -&-4a ;&3(g +z);

N=3
4=3, 1

3 -Qex

[1 -1 -Q-l, (ZQ+);, ) 0 -Q-3, i&~(G+~) r -Q-5,

E* ~i

I-1 0 -Q-)[

[-2 0 -Q-2[

Mi ~4
7 ( ~&Q+2 ]7

s+Q+1 I r~l 1 -Q-3[ [2 -2 -Q-2[ I 1 2 -Q-5[ [2 -1 Q-4i

l Y
~i JT /z

'C Y g y
[0 -1 -Q-2, i/ Q+ 2} [0 0 Q 4[ 13 -3

l l ~ —l
~z

~«+2 ~ [-» -Q-41 [1 -2 -Q-3',

Wi
)'

[-1 -1 -Q-3,

V
[-3 0 -Q-3[

FIG. 5. States and matrix elements for the "oscillator" representations. of SU(3, 1). The numbers in the boxes are
eigenvalues of H~, Ha, and H&, the numbers in the lines sloping downward to the left are matrix elements of E,~; the
numbers in the lines sloping downward to the right are matrix elements of E~8, and the numbers in the horizontal lines
are matrix elements of +B,y. For this algebra, L, =v g((g,a+E,8) and L4= Ha+Ha. Q ~tH,

y
andff = -$Ba-$H8—~ H& are the analogs of the operators E»

&
and s which appear in Fig. 3. For this representation, A & 0.
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A. The Electromagnetic Vertex of the

Nonrelativistic Oscillator

The nonrelativistic Hamiltonian for a system of
two harmonically bound masses is

K = -', p, '/m, + -',p, '/m, + —,'ii(x, -x,)'
= —,

' Ps'/(m, +I,) + —,'g~(p'+ P)
with

(4 1)

m,x, +m~,
R pl p2~

1 2

y'2
X=- -X1+X2=-

p, co

(4.2a)

(4.2b)

currents for these oscillators do indeed approach
that of the nonrelativistic oscillator in the appro-
priate limit.

The wave functions for this system can be written
in the form

P,(%, x) =—(5, x
~

s
I P, )

eifg' R /R
y (x) —eiPg' R/h(x~ g 0) (4 2)

where P, is the total momentum [i.e. , the eigen-
value of P„ for the state

~
a, P, )] and P,Qx =- (x( a, 0)

is the internal wave function describing the rela-
tive motion of the two particles.

If the oscillator potential is not to be perturbed
by a Coulomb potential, only one of the particles
can be charged. If e, and m, are the charge and

mass of this particle, the requirement of mini-
mal coupling applied to (4.1) yields

XP{x,) = — ' [p, X(x,)+X(x,) ~ p, ]
1

(4 4)

to lowest order in e, . With the change of variables

-iiPi PPR
( I )gR

PP2 1 702

m,m,
m +m p,

(4.2c}

5-0+iix/m„PR PR,

x x, p p —QPR/pgi,
(4 &)

which means that p, —Pz —p„and x, -5,, we find

r

�&e
'~~' +~" ~' ~Q~~ x Pg-p„~ + ~

&
—p„e' '' "'""

(4.6)

When P„ is replaced by its eigenvalues (0, in the first instance and 0, in the second), Eq. (4.6} can be put
into the form

d Rd xgq3CI $, =- d R b, P~ J,O g, (4 I)

where we have introduced the notation

(b, p~~g(%, 0)~a, %,}=—e' ~ i
' "+(b,$~[,}(0)c~a,5,)

(4.8)

with

(b, 0, ) j(0)) s, P,) =-{b,O)A~(in„+, )&,A(in&, P.)I o, 0),
(4.9)

where

[a%.+~,) —(algid}~' p],
1

(4.10)

A(na„P, ) =- exp[im, (ii,h&u) ~RV, ~ (], (4.11)

and, of course, a similar expression for A(m„$,).
The internal states

~
a, o} are defined by (4.2). In

(4.10) and (4.11), p, and x have been replaced by
the dimensionless variables p and ( defined in
(4.2b). The velocity V, is given by 5, = (m, +m, )V, .
(Note that all states of a nonrelativistic system
have the same mass, that of the constituent par-

ticles. ) From the form of the definitions above,
the kets ~a, 0,) and ~b, $g are evidently time-
independent state vectors for the composite sys-
tem.

Equations (4.9)-(4.11) give us the matrix ele-
ments which will be compared below with the ma-
trix elements of the relativistic current ~ Note that
the right-hand side of (4.9) has the form of an op-
erator 3, (constructed from P, , $„and the inter-
nal operator p, ) acting between internal states
which have been "boosted" by the operator A. 14 It
will be observed that the form (4.11) for the boost
operator A is not restricted to electromagnetic
interactions; the same form would be obtained
for any interaction expressible in terms of a local
field and its derivatives.

It may happen, and does for the quark model,
that one wishes to consider a system in which both
particles are charged, and neglect the perturbation
of the oscillator potential by the Coulomb potential.
If the second particle had been charged instead of
the first, Eqs. (4.9)-(4.11) would have been modi-
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fied by the replacements

~2 el ea i ™2p p

(4.12)

so when both particles are charged, the matrix
element of the electromagnetic current is a sum
of two terms of the form (4.9)-(4.11). Of course,
one term can generally be neglected if (e,/m, )
»(e,/m, ) or vice versa. A simplification results
also if m, =m„provided (t), and (3I), are parity
eigenstates. In this case, the signs of g and p
can be inverted in the second term to obtain

(b, P, I $(0)ia, P, ) = (b, 0I A (m, P, )JA (m, P,) I a, 0)

(4.13}
with

cance here as in (4.7)-(4.9}. Our task for the re-
mainder of this paper is to examine the relativis-
tic electromagnetic current matrix elements
(b, P~ I J„ I a, P,) and the nonrelativistic limits of
the p =1, 2, 3 components; the latter should coin-
cide with (4.7)-(4.9).

For SO(3, 2), the generators can be divided into
a set L„„which generates a Lorentz subgroup,
and a second set I'„=-L» which transforms as a
four-vector under that Lorentz subgroup. (See
Appendix A.) For SU(3, 1), the generators can be
taken to be the Lorentz generators L„„together
with a set T„,which transforms as a symmetric
traceless tensor under the Lorentz subgroup.
(See Appendix B.} Thus, if we limit ourselves
to vertex operators which are at most linear in
the generators, the vector vertex operators are

& =—
I. 2(P. + P, ) —(u&~)~'p],

where

(4.14) Jp = A,P~+ A~q~+ ASLqv P"+ A4 q„q"+ ASF„
(4.19)

for SO(3, 2) and

teal —
Kgb'

—W2, g:—g + g p (4.15)

w, and v& are the orbital parities of the states
I a, 0}

and
I b, o).

B. Relativistic Vertices and Current Conservation

It will be assumed that a general Lorentz-co-
variant vertex can be written in the form

p
= BjP~+ B2Q~+ B3LpvP

(4.20)+B4LI1v@ +B5TpvP +BST „q"
«» SU(3, 1), where P„-=', (P,„+P,„}-and q„=P,„—P». The A,. and B, are invariant functions of
Puff

For the electromagnetic vertex, there is the
additional condition of current conservation

W, ...(X)=-e""-'o'""(b,p, la„.. . . (0)ia, p.)

= " ~ -'» "'"(b P, IJ„„.. . Ia, p, )

3"(b, V, ig„(X)Ia, 0,) =0,

or, from (4.16),

(4.21)

P,„=M,c(g, sinht, , cosh&, ) (4.18)

(4.16)

(or as a sum of such terms), where
I a, 5,} and

I b, P~) denote time-independent state vectors of
the system, the "internal states"

I a, 0,) and

I b, P,) belong to an infinite-dimensional Hermitian
irreducible representation of the appropriate alge-
bra, and the operators J„„.. . are constructed
from the generators of that algebra and the total
four-momenta of the states. '4 The moving states
I a, P, ) or I a, P,) are obtained in the usual manner
by applying Lorentz boosts to the rest states, e.g. ,

I a, P.) =A. I a, 0) -=e'" ' '
I a, 0), (4.17)

where (, is defined by

(&. »}"(b-,~el J, I a, &.) =o. (4.22)

The contributions from the first two terms in
(4.19) or (4.20) follow immediately; the remaining
contributions can be evaluated by the method of
Ref. 7. Taking the last term of (4.19) as an exam-
ple, we note that (4.17) and the four-vector char-
acter of I „ imply

A, 'r'qA, = f A, )q" 1'„, (4.23}

where I A,j is the 4 x4 matrix transformation from
the rest frame of particle g, so that

P,„=f A.)„"P,„(O) (4.24)

with P,„(0)=— (O, M, c). The invariance of the Lo-
rentz scalar product now yields

and the B; —= L,.4 are the generators of Lorentz
boosts. With (4.17), Eq. (4.16) prescribes a vec-
tor vertex of the same form as (4.9); the bras,
kets, and current operators have the same signifi-

I

p."A.-'r„A. =p~(0)r „
=-I, cP

(we are using the metric +++ -}, and thus

(4.25)

(&, —& )"(b, 0&I r ~ I a P,) = -M,c(b, $~ I A, 1'~ I a, 0)+M,c(b, 0I r A, '
I a, P, )

=I-M,c(n, +0)+M~c(n~+Q)](b, l, i a, 5,), (4.26)
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from the last of Eqs. (A27) and Fig. 4. The various
contributions to the current-conservation equation
(4.22) are listed in the second column of Table I,
evaluated in the rest frame of state g and with

P, along the third axis to simplify the off-diagonal
terms.

It will be assumed that the coefficients A, and 9„
which can be functions of M,', M~', and Q'=-Q" Q»
do not vary violently from one level to the next.
With this assumption, it can be shown by taking g~
infinitesimal and &, =0 that the terms involving
off-diagonal SO(3, 2} or SU(3, 1) generators must
vanish individually. Thus the electromagnetic cur-
rents reduce to

f(M) =M(n+Q) . (4.33)

Expanding f(M, ) about M„ inserting the result into
(4.29}, and setting M, =M, =M yields

F(M, M) =f '(M)/Mc .

Hence

(4.34)

where

G(M, , M(,) = B~(M, , M~, 0)/B, (M, , M, , 0), (4.32)

for the SU(3, 1) current (4.28). If it is assumed
that the inverse dependence of n on M can be ex-
pressed as an analytic function, then the same is
true of

J„=A,P„+A Q„+A~L„„Q"+A,F„, (4.27} (4.35)
(4.28)

—,'(M, ' M, ')-cF(M, , M, ) = M, (n, + Q)- M, (n, + Q),

(4.29)

where

F(M, , M(,) = -A~(M, , M(„0}/As(M, , M((, 0),

(4.30)

for the SO(3, 2) current (4.27), and in the form

s(Ms M~ )G(M-, , M~) =M, '(n, + —', Q} —M~s(n~+3~Q),

(4.31)

J&= BjPp+ BgQp+ B~Lpv Q" + B5TpvP"

for the SO(3, 2) and SU(3, 1) algebras, respectively.
For the particular value Q' = 0, the current con-

servation equation can be written (by reference to
Table I} in the form

for the SO(3, 2) current, where M, denotes the
mass of the ground state (n=0). Similarly, for
the SU(3, I) current one finds

1 3 Mp*G(*,x)d —, , —1)n.
Np

(4.36)

J„=A,P„+A,r„,
J~ = BjP~+BSTPvP"

(4.37)

(4.38)

Since 0& dn/dM&~ for a physically reasonable
mass spectrum, Eqs. (4.34) and (4.33) show that
neither A, nor A, can vanish. (The possibility A,
=A, =0 is excluded for a charged system; see be-
low. ) The same is true of B, and B, Thus th.e
"minimal" electromagnetic currents are of the
forms

TABLE I. Contributions to the current conservation equation.

Term in
current E Contribution to (b, P(, I f()& J& I a, 0) Comments

I ~„P"
gV

~u

Tp~V

PVO

-~(M t —M(, t)ct(b, Pg Ia, 0)

f()'(b i P(, I ai 0)

Mlcl P& I (b i P(, If 3/I a ~ 0)

[ M, c(s, +-9)+Mac(n~+ 0)] (b. PI, Ia, 0)

[M tet(s, +$0) —M( tat(sz +$0)] (b, P((Ia, 0)

2[M (M, ct —28()(s +$Q)+M&tc (s&+$0)] (b, P& Ia, 0)

+ 2M. clP~ I (b ~ P& I &3&la. 0)

Not needed for current conservation.

Cannot be conserved.

Always conserved.

Cannot be conserved.

' The term I'& occurs only for SO(3, 2), while T~" snd T»0(" occur only for SU(3, 1). Recall the definitions of P&d Q„ following Eq. (4.20).
With reasonable behavior of the coefficients.
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A, (M, M, 0) = -(ec/M)dM/dn. (4.41)

for the SO(3, 2) and SU(3, 1) cases, respectively.
Equations (4.29), (4.31), (4.35), and (4.36) express
the mutual relationship between the mass spec-
trum and the ratio of the coefficients in these mini-
mal conserved currents, in partial analogy to the
usual relation between the form of the Hamiltonian
and the minimal electromagnetic current.

Up to this point, the total charge has not been
specified for the algebraic oscillators. This can
be done by setting

(a, 0[ &, ~ a, 0) = ec, (4.39)

where e denotes the total charge; e.g. ,

McA, (M, M, 0) +(n+Q)A, (M, M, 0) = ec (4.40)

for the SO(3, 2) current (4.27}. Substitution of
(4.34) and (4.33) into (4.40) yields

dM 5'(g)

ln „~p c (4.46)

which has not yet been used. Inserting this into
(4.41) and (4.34), along with (4.33) and (4.44), and
setting e = e, (only one particle charged) yields

A, (0) = -egret/M, c,
A,(0) = -F(0)A,(0)

=e,(m, +m, )/mPI, .
(4.47)

In the above, A, (0) =-A, (M„M„O), and F(0)-=Z(M„M,).
Vfith these values for the coefficients, and with

(4.45), the nonrelativistic limit of the minimal
SO(3, 2) current (4.37) becomes

There is an independent item of information con-
tained in (3.1),

A similar calculation for the SU(3, 1) current
yields

~e( m, lf

) (4.4&a)

B,(M, M, O) =(e/M )dM/dn. (4.42)

Comparison of (4.41}with (4.34} and (4.33) shows
that the coefficients A, and A, cannot both be con-
stant; the same is true of B, and B,. Further-
more, constancy of Azs By or B, would imply
M -0 as n-~, while constancy of A, would imply
an exponential dependence of M on n.

C. The Nonrelativistic Limit of the SO(3,2) Vertex

In order that the SO(3, 2) electromagnetic (or any
other) vertex have the nonrelativistic oscillator
vertex as its limiting form, it is necessary first
of all that the boost operator in (4.17) have the cor-
rect limit. From (4.18) and (3.12a), one finds that

Iimexp(ig, 5}=exp(fQ~'c 'V', ~ (} (4.43)

as V,/c —0 and Q —~. Comparison with (4.11)
shows that the correct limit will be attained if

~m Mpc 2

PP1 g S(d (4.44)

together with the condition (which will be used
again below) that the ground-state mass has the
limit

Mp m~+nt~ (4.45)

as 8~/M, c'-0. (In fact, of course, all the states
must approach this mass in the nonrelativistic
limit. ) We shall take (4.44) as a defining equation
of the SO(3, 2) oscillator. It relates the SO(3, 2)
parameter 0 to the nonrelativistic oscillator mass-
es and level separation; it also guarantees that
Q-~ in the nonrelativistic limit Iru/M, c -0.

Finally, using the definition P„= ,(P,„+P»—),the
limit (3.12b) (recall that I'„=-1.»), (4.44) and (4.45)
yields the nonrelativistic limit

(4.48b)

D. The Nonrelativistic Limit of the SU(3,1) Vertex

The considerations of this subsection parallel
those for the SO(3, 2) oscillator. Because of the
difference by a factor W2 between (3.19a) and
(3.12a), Eq. (4.44) is replaced by

1 m~ Mpc
2 Nlg S(d

(4.49)

Using (4.42), (4.46), and the analogs of (4.33) and
(4.34) yields

B,(0}= e,h &u/M, 'c',
B,(0}= G(0)B,(0)

= e~(4m~+ 3mi)/4m~MD.

(4.50)

From (B23) and Fig. 5, T„--,'Q5„Qa-s~, for
i, j c 3. Using the above together with (3.19b) and
(4.45) in (4.3&) leads to

(4.51}

This is precisely the desired current (4.10} of the
nonrelativistic oscillator. Note that the arguments
could equally well have been inverted, to yield
the level splitting k~ starting from the require-
ment that the SO(3, 2) current have the limit
(4.48b) .
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in the limit as Ke/Moc'-0. Thus the minimal
SU(3, 1) current also yields the nonrelativistic
oscillator current (4.10) in this limit.

9,(t) =(cosh&) "

(4.57b)

E. The Scalar Form Factors

It can be expected that the dependence of transi-
tion amplitudes and form factors on t=- -Q"Q„will
be important in some applications. Here we wish
merely to compare the two models by considering
the simplest form factor, that for the interaction
of the ground state with a scalar field,

90(t) —= (0, 0i0, p) =(0, 0i e'('i~4i 0, 0), (4.52)

evaluated in the rest frame of one of the states for
simplicity.

The evaluation of expressions such as (4.52) is
straightforward in the present formalism, and has
been described in Sec. 78 and Appendix A of
Ref. 10. Briefly, the method is to write the boost
in the form

ea(E++ E )
7 (4.53)

where the E, belong to a triplet of operators sat-
isfying

[E, , E ] =H, [H, E,] =+2E, . (4.54)

(-~) e s"s-'
~

-&u) = (coshn) (4.55)

where -co here denotes the eigenvalue of B. From
(A26), (A23), (B22), and (B19), the appropriate
operators are found to be

F ~=iF ~(~+ ~), H=H~+2Hy,

with L~ = --,'i(E, +E ) (4.56a)

for SO(3, 2), and

E ~=ig ~(g~y ), H = H6+ Hy, with L„= i(E, +E )-
(4.56b)

for SU(3, 1). From (4.52), (4.53), and (4.56), we
see that u = —,'g for SO(3, 2) and (r = g for SU(3, 1).
Thus Figs. 4 and 5 yield

9,(f) =(cosh-', &)
'"

(4.57a)

for SO(3, 2) and

The matrix elements of (4.53) can easily be evalu-
ated between the states of each representation of
the subalgebra generated by the operators in (4.54).
Some values for such matrix elements are given
in Eq. (A24) of Ref. 10; in particular, for the
ground state

~
-&u},

for SU(3, 1), where (4.18) has been used to ex-
press cosh/ and cosh —,'g in terms of t=-Q" Q„."
As a consistency check, we note that the expres-
sions (4.57) coincide with the nonrelativistic form
factor

9 (-IP)e'"'"~" fd =e+ "'~" ( '(x) (4.58)

or

() (-k')=c sotf u'*8+" "~ '"e-'

= exp— (4.59)

in the limit of small
~
t

~
(for which t=-k'), with

0 given by (4.44) or (4.49), and with M, -m, +m, .
Factors of the form (4.57} but to different pow-

ers enter in all form factors and transition ampli-
tudes (scalar, electromagnetic, or otherwise).
Thus the two models have different characteristic
t dependences away from the nonrelativistic limit,
though, of course, these can be modified by t de-
pendence of the coefficients in the vertex operators.

V. DISCUSSION

The algebras of SO(3, 2) and SU(3, 1) (and the
families of representations depicted in Figs. 4 and
5) have been shown to provide I.orentz-covariant
algebraic analogs of the nonrelativistic harmonic
oscillator, " in the sense that the level structure,
matrix elements, and minimal electromagnetic
currents of the algebraic oscillators coincide with
those of the nonrelativistic oscillator in the limit
V/c -0, g(d/M, c'- 0. The electromagnetic cur-
rents have been assumed to be of first order in
the algebraic generators; the coefficients neces-
sarily have a mass dependence which shows up for
excitation energies comparable to rest-mass en-
ergies, and is determined by the functional de-
pendence of the mass on the level number n.

Of the two algebraic oscillators, the one based
on SO(3, 2) enjoys the advantage of greater simplic-
ity. It has the minimum number (10) of generators
that are needed to correspond with the dynamical
variables x„p„I.„, and n of the nonrelativistic
oscillator; this is also the minimum number from
which one can form a set of Lorentz generators
and a four-vector needed to construct a covariant
electromagnetic current. There are also quantita-
tive differences, in the relations between mass
spectra and electromagnetic currents, and in the
form factors, as has been discussed in Sec. IV.
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The SO(3, 2) oscillator provides an interesting
example of a system which possesses an apparent
symmetry that does not correspond to a subalge-
bra of the dynamical variables. Although the spin
multiplets at each level are appropriate to a family
of SU(3) representations (as for the nonrelativistic
oscillator), the SO(3, 2) algebra does not contain
an SU(3) subalgebra that connects these states

Since the SO(3, 2} and SU(3, 1) algebraic oscilla-
tors are consistent (in the sense of Lorentz co-
variance) even when the excitation energies and

c.m. kinetic energies are comparable to the rest-
mass energies, they provide generalizations of
the harmonic oscillator which may be useful in
situations (such as the quark model) where non-
relativistic approximations are not justified.

and, of course,

r, s
(Alo)

By direct calculation, the commutation relations
are found to be

[I rt t I tll] = t(gtt rtt gtu rt grt It'tt+gnt tt) '

(A11}

The group of Lorentz transformations will be
identified with the subgroup generated by the l„„
with 1 & it, v &4. According to (All), the remain-
ing generators l» satisfy

[I», l~, ] = i(g„-~l„- g„,l~, ) for 1 & (p, o) &4.

(A12)

APPENDIX A: THE GENERATORS OF SO(3,2)

The group SO(3, 2) consists of those unimodular
transformations which preserve the bilinear form

Thus an infinitesimal Lorentz transformation
transforms l» to

xgy =- x 'y'+ x'y'+ x'y' —x'y' —x'y' (A1)

in a real space, where the metric matrix g has the
diagonal elements g„„=g"'= (1, 1, I, -1, -1}. If the
transformation matrix in

(A13)

By comparison, a covariant four-vector v„should
transform to

x- ax, y- ay

is written as an exponential,

then unimodularity of a requires that

Trb =0

and preservation of (Al) requires

(A2)

(A3)

(A4}

(A5)

(ge t' t' g)tt vr=gttn(1+i(pnfpa) ag &v

= ~
v

+ &po( gut ~ o gvo"t ) -.

(A14)

Equations (A13) and (A14) show that I» is a covar-
iant four-vector under Lorentz transformations,
the same as the physical momentum (when coordi-
nate vectors are assumed to transform contravari-
antly).

The set of generators
or

(bg) = -bg. (A6)

= i/3 k sl3, , 0 —= 2l,2,

e, y
= —,'[+(I„+I„)+ i(i„—I„)], b „-=-I„—I„

The form (A3) also requires that b, and hence bg,
be imaginary. Thus we can write the expansion

bg= Q(r, l„,g,
r, s

(A7)

(I „g}™-=i(5', 5,"—-5,' 5"„). (A8)

[The elements of the matrices a, b, and I „, will be
written with one upper and one lower index, e.g.,
(I„,)'„. Note that multiplication by g either lowers
or raises the "adjacent" index, as above. ] The
matrices (A8) are not all independent, since l „,g
= -I„g. Solving (A8) for /„ yields

(l „,)'„=-i(5„'g,„-5,'g„„), (AB)

where the $„, are real parameters and the l „,g are
a complete set of imaginary antisymmetric 5x5
matrices:

b = Q(ph p
+ Q(,petp+ ~r,

P &I P

(A17)

where the dots denote terms involving commuta-
tors of the operators (A15). Comparing (A17) and
(A15) with the expansion (A10), in which all the pa-
rameters are real, we find that the parameters of
(A17) must satisfy

&*.a = &. &+y =-&.g
for p=n or y. (A18)

constitute a complete set from which the rest can
be obtained by taking sums and commutators; e.g.,

(A16)

Therefore, the expansion (A10} can be written in
the alternate form



C. J. HIEGGELKE AND D. %. JOSEPH

In a unitary representation, the transformation
will be written

(A19)

with capital letters to distinguish these operators
from those in the fundamental representation. An

expansion of the form (A17) must hold here also,

B=Q)pHp+ Q(,pEyp+ ~ ~ ~, (A20)
P &2P

and unitarity of A requires Hermiticity of 8,

AI'PENDIX B: THE GENERATORS OF SU(3,1)

Trb =0 (82)

The group SU(3, 1) consists of those unimodular
transformations which preserve the scalar product

+t~ —+ i%~i + +0 4~8 + + $4~$ +44~4 (81)
Again writing the transformation in the form (A2)
and (A3), we find

B =B,

or, from (A16), that

(A21)

or

gotg =~ (83}

&~~ =~.a Ha =Ha

E+y 3 Hy Qy
(A22)

for p=o. or y,
[Ha, Eyy ] = +2 E,y, [Hy, E,a] = +Eya,

[E„,E,„]= [H, H„]=0.
Four commutators define new generators,

(A23)

The commutation relations are, of course, the
same as in the fundamental representation. From
(A15) it follows that

[E p 4E1p] Hp 1 [Hp1 Eyp] a2Eyp

(&g)' = &g. (84)

So it is now necessary to expand 5g in terms of a
complete set of Hermitian matrices. The expan-
sion we shall use is

or

(t„„g)"=-526„'+5„'5„'—,'g" g„—„ (86)

&g= Z((p. tp. g+7(p. tp. g)' (85)
Pp&

where f,„„and g„„are real parameters, L„„gis de-
fined as in (AS) except that the indices now run
from 1 to 4, and

IE4a1E4y]=E4(a+7)1 [Eya~E4(a+y)]=E4(2a+y) 1

p(tpy) a = 52 8'va+ 5u g'pa - 25agpv ~ (87)

L$= L,~
= qH~.

For the Lorentz boosts the results are

(A25)

L44 (L14 2L24) +(2 Ey(pa+7)+Euy) v

IL24= 2(E+(a+y)+E -(a+y) ) (A26)

And for the four-vector l"„-=L» the results are

(A24)

and the remaining commutators either vanish or
can be expressed in terms of (A23) and (A24) by
use of the Jacobi identity.

The generators L„, can be expressed in terms of
the E's and H's by use of (A15) and (All). 'Ihe re-
sults are, for the generators of rotations,

L,= (L„*tL„-)=E...

e note that l„„gis antisymmetric, t„„gis sym-
metric, and l„„and t„„are both traceless. The ex-
pansion of 5 is, of course,

Z(h pv fpv+ y)put pv) ' (86)

[tpa 1 t pal =+2(gyp tpa +gvaf pp + gyp va+gpatvp}

(Bll)

The commutation relations

[~pub tpa] = 2(guptpo gvafup gpptua+gpotup)1

(89)

[t„„,t,.] =[i.„t„„]

2(gyp tpo gvatp p +gp ptuo gpatup) ~

(810)

(~1 +»2) =1(2 E4(2a+y) Euy) &

1 ~

~2 22(E+(a+7) Eda+7))1 (A27)

follow by direct calculation from (AQ) and (87).
The complete set of the l„„are here identified

with the Lorentz generators. An infinitesimal
Lorentx transformation transforms t„„to

tave —tpv+ttpo[tpv1 lpa] = tpv+ (pa(gvptpo gvotp p +gp ptvo gpotup}1
which is precisely the transformation of a covariant second-rank tensor:

(812}
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(ge o'pog)„(ge' ' 'g)„ t s=g„y(1+i(p tp, )" g g„,(1+i(p,tp, )',g' t 8

~pa[( v gp p 6p gpo)5v+ 5p(5ogvp 5pgva)] taa

pv+ (pv(gpptvv gpatpv+gvp'tpa gvatpp} (813)

e, =- V —, [(t 8+t,s)+t(lp, +t,s)],

2(typ 2tyg 2taa +t$3) 7

e, 8= M[(88 —t„)S Z(ls, —t,s)],
l 1 1h 8

——2(l,a+ at»+ztza —t33) j

8,„=M[t(-t„+t„)+(t„+t„)],
by

—= -a(l»+ atn+ ptas+ t~4),

(814}

ty = Qgp h
p

+ Q)~pe~ p
+ (815)

P &8P

where the dots denote commutators as before, and

f~P = $~P f01 P=Q 01 P2 f+Py =-(gy 2

for p=e, P, or y.
%e must also remember that

tpp= t„~ and t~~ =t„+t2~+t33.

(816}

(81V)

In a unitary representation of the group, or a
Hermitian representation of the algebra, it follows
from (816) and the Hermiticity of 8 thai

The equations corresponding to (A15), (A1V), and
(A16) are

[E 8, E,y]=E,(8 y),

[Eta& E&&8+y) ] =Ex(a+ 8+ y) i

(820)

and the remaining commutators either vanish or
follow from the Jacobi identity. From (814),
(81V}, and the commutation relations of L„„and
T„„it is straightforward to express the generators
of rotations, the Lorentx boosts, and the compo-
nents of T„„in terms of the E's and H's:

L, -=(L, +i8L„}=M2(E, +E,8},
Ls =- L,~

= H~ + H

(Lw + L84) +~2 (Et(a+ 8+y) +E vy) s

Lse E+(8+y ) +E-(8+ y ) ~

(821)

(822)

[E...E,„]=[E ., E,„]=[H., E,„]=[ff„,E,.]=0,

[&., Its] =[ffs, a„]=[a., H„]=0.
There are now six commutators which define

new generators,

[Eaa~ Ecs» Etta+ 8) ~

E, =E, for p=eorp, Ey=-E y,

(816)

Tit =E+(a+ 8) E-(a+ 8) 2Ha ~ Hy

i( E+(a+ 8) +E-(a+ 8) }s

H~~=Hp for p=o. , P, ory.
Equations (89)-(811)and (814) yield the commu-

tation relations

[E~ ~Epp] Hp ~ [Hp~ E~p] +2 E~ p

for p=a, P, or y,

1
T2g E+(~+ 8) +E-(~ 8) 2 Hgg 2 y y

T„—= (T„+iT„)=E, -E,8,
T33=2Ha-H8-2Hy t

T,~=(T,~+iT84) =is 2 (E,(a, s, y) -E,y),

34 (E+(8+yj E-(8+y) ) s

(823)

[E„,E .]=0, [H„E,.]=~E... (819) T~ = -~H~ -H8 - ~Hy .1 3

for (p, o) =(a, P), (P, o'), (P, y), or (y, P),
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u ""&(»
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