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A method for treatment of the transverse or longitudinal shifts of multiply internally reflected light
beams is developed in terms of eigenfunctions for the reflection processes. Localized wave packets
composed of plane-wave eigenfunctions are used to discuss the detailed structure of the shifted
intensity distributions for several experimental conditions. With this approach image widths and over-all
shifts, as well as splittings between images, can be calculated. The predictions are compared with the
experimental results of Imbert and are found to agree with the observed transverse splitting between
left and right circularly polarized light beams. Since the theory presented here disagrees with that
proposed by Imbert in several respects, experiments are suggested which would distinguish between

alternative theories.

I. INTRODUCTION

Internally reflected light beams may undergo
shifts of position in the plane of incidence (longi-
tudinal) or normal to the plane of incidence (trans-
verse) when reflection occurs near the critical
angle for total internal reflection. The longitudinal
shift was first studied by Goos and Hinchen!; in
this case an unpolarized light beam which is multi-
ply internally reflected between parallel reflecting
surfaces is split into two plane-polarized beams
with the beam which is polarized parallel to the
plane of incidence being displaced more. The
transverse shifts were first predicted by Fedorov,?
and have recently been observed experimentally by
Imbert.3** Here different transverse shifts for
left and right circularly polarized light are ob-
served.

A number of different theoretical approaches
have been used to study the longitudinal shifts.
Artmann® was the first to use a stationary-phase
argument to calculate the position of the shifted
beam. Another theoretical approach has been
based on consideration of energy flux within the
evanescent wave.® A thorough discussion has been
given by Lotsch,” based on an approximate solu-
tion of Maxwell’s equations in which the amplitude
depends on the coordinates transverse to the beam
direction.

The transverse shift has been treated by the sta-
tionary phase method by Schilling® however, he did
not properly take into account the effect of phase
shifts arising from the reflection process. The
theoretical calculations of Costa de Beauregard,®
Ricard,!® and Imbert®:*! are based on consider-
ations of energy flux within the evanescent wave.
Actually such calculations can predict at best only
the centroid of the shifted beam; on this basis, for
example, it is not possible to calculate details of

1

the intensity distribution within the multiply re-
flected beam.

This fact is easy to overlook, and has led de
Broglie and Vigier!'? to suggest that photons pos-
sess rest mass. This has been refuted by Troup
et al.'® Also, Costa de Beauregard and Imbert!*
have pointed out that in the case of the longitudinal
effect, the light beams of different plane polariza-
tions do not interfere, so that an unpolarized light
beam is split into two beams. Similarly, they ar-
gue that for the transverse effect, since right and
left circularly polarized light beams will not in-
terfere, unpolarized light will be split into two
beams. The experiments of Imbert®* appear to
agree with predictions made by using energy-flux
calculations.

One should instead be able to calculate these
shifts by a straightforward application of Maxwell’s
equations, comparing the reflected wave with the
incident wave. In this paper we shall carry out
these calculations for a multiply reflected wave
packet consisting of a superposition of plane waves.
In general our results disagree with those of
Imbert® and Ricard!® in particular, for the ex-
perimental conditions used by Imbert,® we find that
both left and right circularly polarized light beams
are shifted in the same direction, with a separa-
tion which is in agreement with the observations.
For other experimental conditions the images are
found to have a complicated structure, i.e., in
some cases more than two images should be vis-
ible.

In Sec. II of this paper we develop the formalism
required to describe multiple reflections in terms
of eigenfunctions of the reflection process. In Sec.
OI we discuss a number of applications, such as
reflection from metallic surfaces and reflection in
the interior of a prism. Numerical calculations
are carried out to find the detailed image structure.
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Il. EIGENFUNCTIONS FOR MULTIPLE-
REFLECTION PROCESSES

In this section we develop the necessary algebra
for the description of multiple internal reflections.
The phenomenon is well understood for a single re-
flection.!* However, for the observation of longi-
tudinal and transverse shifts many reflections must
be used. Therefore, as in the discussion of reflec-
tion of electrons,!® it will be convenient to express
the results in a form in which eigenfunctions for
the reflection processes appear.

Consider, as in Fig. 1, a wave packet of light of
frequency w/27 incident from the interior of a
medium of index of refraction n. It is at the aver-
age angle of incidence 6§ from the unit normal # to
the interface, where % points into the medium. In
the figure the plane of the reflecting surface is
considered vertical, and the horizontal projection
of the packet’s average wave vector is at an angle
of incidence A from the normal 7#. The fact that A
and 6 can be different allows for the possibility that
the path inside a prism can be helical. (For
repeated reflections inside an equilateral triangu-
lar prism, A =30°) We choose a right-handed rec-
tangular coordinate system (x,y,2)such that the z
axis is parallel to the average direction of the in-
coming beam and the x axis is horizontal, at the
angle 37 - A from #. Then for a particular Fourier
component of the packet, one has a propagation
vector, k=(k,,k,,k,), with &,> (k2 +E2)"2, It is as-
sumed that the values of k, and k£, are symmetrical-
ly distributed about zero in the packet. The magni-
tude of k is =nw/c.

In the (¥, y’, 2’) coordinate system, where y’ is
vertical and x’ is in the reflecting plane (see Fig.

reflecting plane

2! (normal to
reflecting plane)

beam direction s

projection of
beam in x2*
plane

X(in x'z' plane)

y '(porallel to
reflecting pianes)

FIG. 1. Reflection geometry. The horizontal unit
vector # is normal to the vertical reflecting surface and
points toward the region from which the beam is inci-
dent. The z axis is in the average beam direction and
the x axis is horizontal. The x’, y’, 2’ coordinate axes

are parallel or perpendicular to the reflecting surface,
as indicated.

N. ASHBY AND S. C. MILLER, JR.

=3

1), the components of k are
k. = (k, cos?A - Bk, sin A+k,sin A cosf)/cos A,
k) =(k, cos6+Bk,)/cos A, (1)
k] =-k, sinA - Bk,+ R, cosé,

where g is given by
B =+(cos?A - cos?6)+/2, )

After reflection, the wave vector, denoted by K,
is the same except for a reversal in sign of &,.

The effect of reflection is most easily discussed
in terms of polarizations perpendicular and paral-
lel to the plane of incidence. Unit polarization
vectors normal to and in the plane of incidence
are given, respectively, by

-

R kX#n

N lkxal 3)
e xk

gp=t=

After one reflection, the electric field amplitudes
Ey and E ; are multiplied by 7, and 7,, respec-
tively, where

1-R

TVTeR @
1-n’R
"P=1imR (5)

At incidence angles less than the critical angle, R
is given by

R=7el—,(—k2+k;2+k2/n2)”2, (6)
z

while at incidence angles greater than the critical
angle

R=35 (k* = % = k2 /nP) 2. (7)
z
For angles of incidence greater than the critical

angle for total internal reflection, the coefficients
ry and 7, may be put in the form of phase factors

r~=e-2i&,,’ 'Vp=e-2‘6P, (8)
where
tanby =—iR, tand,=n*tand,. 9)
The polarization vectors of the reflected wave are
., k"Xn
el
=& (10)
YA )
31 = ey :k

After the first reflection let the reflected beam
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be incident on a second vertical reflecting surface
at the same average angle of incidence 6, with re-
spect to the second surface’s unit normal vector
n". The first and second surfaces intersect at the
angle 24, and hence

(" X#), = -sin2 A . 11

Unit polarization vectors appropriate for the
description of reflection at the second surface are
given by

-
Y14
s _ KT XA
ey = IEIIX;‘IIII ’
- (12)
eyxk”
p= k :

In general, the polarization vectors &y and &7 are

rotated with respect to &, and &, by an angle B.

Therefore a plane wave, which before reflection

is a superposition of polarizations of the form
E=Eyéy+Epép,

becomes, just before the second reflection,
E"=Ejey +Epey.

The amplitudes (Ey, E;) are given by the 2x2 re-
flection transformation matrix

<E;}>_ ¥ yCOSB —rps'mB>(E,,,
Eg <r,,sinB 7pCcOSB EP)
ET(EN>
Ee (13)

The effect of a series of reflections can then be
represented by multiplying the amplitude (EY, E})
by a number of matrices of the form of 7, one
factor for each reflection. The coefficients »,
and 7, are given by Eqs. (4)-(7), and the angle B
is given by

sinB=¢p - éy
_(zﬂ X;l”)xk” EII X;l
lk” %"k |B" X7
-(ﬁ"Xﬁ)'Eﬂk
T K" XA K" X7 |

_sin2A kyk
- D.D_

2ksin A
=-~D—+'D—_'—(ky cosé+8k,), (14)

where
D 2=k>2cos?A + (1 - B?)k,? - k2 sin%f
+2ky R, Bcos6+2k, sin A(k,cos6~Bk,).
(15)

To simplify the discussion, we shall assume that
the source is a line parallel to the x axis, as in
the experiments performed by Imbert.3** Then
one may assume k =0 so that D, =D_. In Sec. III
the effects arising from nonzero k, will be dis-
cussed. If the reflection is repeated m times with
the same geometry for each reflection, succeed-
ing reflections can be represented by the same re-
flection transformation matrix, 7, and the state
of the reflected wave is represented by a trans-
formation matrix T™.

The matrix T has eigenvalues A given by

N.=3{(cosB)(ry, +7p)
+i[4r ¥ p— (cos2B)(ry +7 p)2] 12}, (16)

with eigenfunctions proportional to

a.\ _ 7 pSinB
(b,) <rNcosB-)t,)' an

For incidence angles greater than the critical
angle, the eigenvalues may be put in the form

)\i=ei§"-i(6p+6”)’ (18)
where
cosyp=cosBcos(bp—156y). (19)

The eigenvectors for A, and A_ correspond in
general to elliptically polarized light waves. Only
when the angle of incidence is exactly equal to the
critical angle for total internal reflection do the
eigenfunctions correspond to left and right circu-
larly polarized light beams, respectively. Wave
packets constructed with only eigenvectors cor-
responding to A, give different transverse shifts
than those constructed only with eigenvectors cor-
responding to A_. After m reflections, each eigen-
vector would be multiplied by the phase factor

AL™

III. CALCULATIONS OF THE TRANSVERSE SHIFT

If an expansion to first order in %, of the phase
of the eigenvalues given by Eq. (18) is a good ap-
proximation, then one may use the method of sta-
tionary phase to find approximate expressions for
the final position of the image and hence of the
transverse shift. For example, for metallic re-
flection we may set

Sp=0y
=37.

Then § =B and thus to first order in &,
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. .,[2ksinA }
| 2o
Pp=sin \: D.D. (k,cos6 + Bk)
28sin A 2k,cosfsinA
sin%¢ > T ksin?g

gsin“( (20)
Hence, after m reflections, right and left circu-
larly polarized light beams are shifted in the posi-
tive and negative y directions, respectively, by

2 cosfsind

k sin2%g (1)

This is the same expression that was obtained by
Schilling,® except that in Eq. (21) there is an ad-
ditional factor, sinA/sing, which arises from the
assumed helical path.

In a prism of index of refraction =, if the angle
of incidence is significantly greater than the criti-
cal angle, one can similarly expand the phase
£y —(6p+08,) in Eq. (18) to first order in k,. The
terms arising from the expansion of +y then give
rise to. lateral splitting of the images, while the
terms arising from —(6,+6,) give an over-all
shift. The resulting expressions are lengthy, and
will not be given here. However, in Fig. 2 these
shifts are plotted for the eigenfunctions corre-
sponding to A, for the particular case A=6328 A,
n=1.8, m =28, A=30°. Near the critical angle for
total internal reflection, indicated in the diagram
by the vertical dashed line, the method of station-
ary phase breaks down and the shifts appear to ap-
proach infinity. However, the difference between
the shifts, plotted as the dashed curve in Fig. 2,
approaches a finite value at the critical angle;

[e]

.02

SHIFT in thLIMETERS
o

]

ol
(o]

—

8 in DEGREES

FIG. 2. Shifts in image position by the stationary
phase method for the two eigenfunctions corresponding
to A, and A_, for wavelength 6328 A, n = 1.8, m= 28,

A =30°. The vertical dashed line is at the critical angle
for total internal reflection. The dashed curve is the
difference between the two shifts.

7
this difference is given by
AL,=AL +AL,, (22)
where
AL1=m?'—A- cosesmA’ (23)

T sinZ%6

and is essentially Schilling’s result multiplied by
sinA/sing due to the assumed helical light path.
The effect of the phases 5, and 6, gives an addi-
tional contribution to the splitting,

__ A cos®§(2sin®A - sin®6)
Mo sin‘gsinA

AL, (24)
This result agrees with that of Boulware!?; the
total splitting AL, agrees closely with that of
Imbert?

tanA 2\
tand wsinbcosh’

AL, =m (25)
at the particular value of index of refraction
(n=1.8) used in the experiment. In fact, at n=1.78
for A=30° the expressions (22) and (25) are in
exact agreement. However, at other values of »
the two theories give different results; for ex-
ample, at n=1.5 with § and A nearly equal,
Imbert’s expression, Eq. (25), predicts a splitting
about 40% greater than is predicted by the Egs.
(22)-(24) obtained here and by Boulware.'”

Also, Imbert’s formula gives equal and opposite
shifts for the two polarizations, whereas it may be
seen from Fig. 2 that both shifts are positive. The
reason both images are shifted in the positive y
direction is that, in the exponent -i(6,+5,) of Eq.
(18), when A # 6 there arise terms proportional to
k, for small &,.

Because the stationary phase method breaks
down near the critical angle, it was felt that more
extensive numerical calculations were necessary
in order to predict the lateral shift of the image of
a line source; therefore, computer calculations
were performed to find the intensity distribution
in the image. The incident-wave packet was as-
sumed to consist of a superposition of plane waves
with the amplitudes weighted by the exponential
function

f(ky)=30e"°"*5", (26)

The incident wave is thus written

f ) dk, f (k,) expli(k, y + k,z — wt)] [y (&) £ i& oK) VZ,

)]

where the + signs correspond to right and left cir-
cularly polarized light beams, respectively. In
terms of the eigenfunctions, Eq. (17), the polar-
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ization vectors can be written in matrix form:

(1) () e 5)
where

c. =T§'ﬁ%ﬁ—5 (29)

. o =lb.7ia.) 50)

B ; §(a+b- —a-b+)‘

After m reflections, the wave packet is modified
in such a way that

C,=-M\"Cy,

C.=-r."C_, (31)

so the final wave packet is
f dk, f (k,) expli(k,y + &,z - wi))

X[A,"C,(a,8y+b,8p)+A."C_(a_2y+b_2p)].
(32)

This integration was performed separately at z=0
for right and left circularly polarized light beams
corresponding to the + signs in Eq. (27), for a
=6328 A, n=1.8, m=28, 4=30°, 0=30/k, and
average incidence angle at the critical angle. The
results are plotted in Fig. 3 on a horizontal scale
expanded by a factor of 300, corresponding to the
magnification used by Imbert.®> These distributions
are much like the images obtained by Imbert. The
distance between peaks is comparable to the split-
ting in Fig. 2 at the critical angle. However, be-

LEFT CIRCULAR
>
=
un
4
L
[
z
(9]
=
E IGHT CIRCULAR
-
()
x
0 2 4 6 8 10 12 14
SHIFT IN MILLIMETERS

FIG. 3. Numerically calculated intensities for left
and right circularly polarized light beams of wavelength
6328 A, for m = 28 reflections, n = 1.8, A = 30°, and
exponential weighting function characterized by o= 30/¢;
the average angle of incidence is the critical angle. The
horizontal scale has been magnified by a factor of 300.
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cause of the great widths of the images, it is diffi-
cult to compare the splitting with experimental re-
sults without knowing the details of the experi-
mental analysis of the photographic images. The
widths of these curves are not due to our choice

of o, but rather are due to the fact that near the
critical angle, the exponent -i(6,+6,) in Eq. (18)
is proportional to vk, for small k,. This causes
broadening of the images and is also the source

of the breakdown of the stationary-phase method.

An alternative experimental arrangement has
been reported by Imbert* with incident unpolarized
light, in which after 28 reflections the beam was
analyzed into right and left circularly polarized
components. Numerical calculations using wave
packets similar to those in Eq. (32) have been per-
formed in which the outcoming eigenfunctions are
analyzed into right and left circular polarizations,
with averaging over initial phases. The results
differ from those shown in Fig. 3 by only a few
parts in 10%. This slight difference arises from
the fact that the eigenfunctions do not in general
correspond to circularly polarized light.

It is also of interest to investigate the case in
which the average plane of incidence is horizontal,
so that §=A, since then §, and 6, are proportion-
al to |k, | rather than vk, for small k,. The re-
sulting intensity distribution after optical multipli-
cation by a factor of 300 is plotted in Fig. 4 for
the case of 28 reflections, wavelength in vacuum
6328 A, and index of refraction »=1.8 as in Im-
bert’s experiment.* The solid curve corresponds
to reflection with the centroid of the incident beam
at the critical angle, sinf=1/n, and with the beam
spread determined by 0 =10/%. In this case, with
k. =0 the tangents of the phase shifts are linear in
&, |:

tand, = |k, | /&, (33)
tand, =n*[k, | /k .

On the other hand, the dotted curve in Fig. 4
corresponds to o = 30/k, with the centroid of the
incident beam incident at an angle 10’ greater
than the critical angle. The shift is greatly de-
creased in this case. Similarly the shift would
also be greatly decreased if the beam were local -
ized in the x direction, requiring a distribution of
values of k, in the wave packet. The reason is
that &, occurs linearly and k, occurs quadratically
in the square root appearing in Eq. (7), for R.
Then for small &, the linear term in &, is the
more important term. On the other hand, if A # 6,
as long as the spread of values of &k, occurring in
the packet is somewhat less than the spread of k,
the transverse shift will not be affected appreci-
ably. This is because in Eq. (7) for R, when k&,
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FIG. 4. Numerically calculated intensities for right
circularly polarized light beams of wavelength 6328 A
for m= 28 reflections, » =1.8, and A = 6. An exponen-
tial weighting function has been used. The solid curve
corresponds to 0= 10/%, reflection at the critical angle;
the dotted curve corresponds to o= 30/, and an angle
of incidence 10’ greater than the critical angle. The
dashed curve corresponds to ¢ = 90/ with reflection at
the critical angle.

and k, are small, both k, and k, occur linearly
under the square root. Owing to the fact that the
sign of k, effectively changes at each reflection,
after two reflections the linear terms in &, in the
eigenvalues A, cancel; the eigenvalues then depend
quadratically on k, and linearly on k,, and the
linear terms in &, are the more important.

The dashed curve in Fig. 4 corresponds to re-
flection at the critical angle with 0 =90/k. Left
circularly polarized light would give images identi-
cal to those in Fig. 4, but reflected about the verti-
cal axis; thus unpolarized light would give rise
to a number of peaks. If Gaussian weighting fac-
tors were used instead of exponentials in construc-
tion of the wave packets, Figs. 3 and 4 would be
substantially the same. From these curves it is
clear that there is no single simple formula for
the transverse shift near the critical angle.

It has been suggested that simultaneous observa-
tion of the longitudinal and transverse shift is im-
possible because they would have to be focussed in
different ways.!* Actually it should be pointed out
that with multiple reflections there can be no lon-
gitudinal shift for the geometry discussed above

|3

because, as noted previously, the eigenvalues
A : (after two reflections) are even functions of
k.. There is no linear %2, term in the exponent
of A,, so there can be no net shift in the x direc-
tion for any even number of reflections.
Furthermore, when the geometry of the reflect-
ing planes is such that the longitudinal shift is ob-
servable, there can be no transverse shift. Thus
consider the process of multiple reflection between
parallel planes of a plane wave with wave vector
(k,,k,,k,). Inthis case we may take A=6, =0,
and the normals # and #” point in exactly opposite
directions. Clearly then the angle B vanishes,
and the 2 x2 reflection transformation matrix be-
comes diagonal. The eigenfunctions of the reflec-
tion process are then linearly polarized parallel
and perpendicular to the plane of incidence. With
the choices of axes shown in Fig. 1, the wave vector
of the wave incident on the second reflecting sur-
face is (k,, ~k,, k,). After two reflections the
wave vector incident on the third surface will be
(%, Ry, k,) and the wave amplitude will be multiplied
by e 8¥ or ¢ *°, as the angles 6, and &, are
even functions of k,. Since there are no terms
linear in k in the phases 6, and &§,, there will be
no transverse shift. Thus we conclude that the
longitudinal and transverse shifts cannot be ob-
served simultaneously.

IV. CONCLUSIONS

While the results obtained in this paper for the
splitting between the transversely shifted images
generally are in agreement with experiment,
several new aspects of the phenomenon have been
demonstrated. First, it has been shown that both
images can be shifted in the same direction in
disagreement with the predictions of Costa de
Beauregard, Imbert, Ricard, and Schilling. Sec-
ond, the agreement between the present calcula-
tions and those of Imbert for the splitting between
the images is coincidental; this agreement occurs
only for an index of refraction » = 1.8, which was
used in the experiment. These results suggest
that more experiments should be performed with
different indices of refraction, and that some ef-
fort should be made to detect the asymmetry in
the shifts, possibly by comparing images at differ-
ent wavelengths.
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