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New finite-energy sum rules relate the isospin dependence of low-energy s-channel am-
plitudes to the ratio of p- and cu-exchange contributions in the Regge region. Applications
to iVN, KN, KA, and NA scattering are discussed. Results include the isospin dependence
of XN annihilation, SU(6) symmetry breaking in the couplings of strange baryon resonances
to the KN system, and predictions for exotic production in A —exchange reactions.

I. INTRODUCTION

Super convergence relations were originally writ-
ten for amplitudes that had no contribution from
the leading Regge trajectories because they carried
exotic quantum numbers. ' They have also been
written for linear combinations of amplitudes,
each of which has nonvanishing contributions from
the leading Regge trajectories, in situations in
which the coefficients of the linear combination
are chosen to make these contributions cancel one
another. Such sum rules require some input to
give the relation between the different Regge resi-
dues so that a cancellation can be constructed.
Universality relations between the couplings be-
tween different hadrons and the same trajectory
have been used as such an input and can be justi-
fied either on theoretical or experimental grounds. '
This paper proposes new sum rules for odd-signa-
ture amplitudes dominated at high energies by ex-
changes of the p and & trajectories. The sum rules
are obtained by choosing linear combinations of
amplitudes for which the p- and ~-exchange con-
tributions cancel one another. If the p and & tra-
jectories are degenerate, one can construct linear
combinations of amplitudes in which the p- and re-
exchange contributions cancel at all energies in
the Regge region. Such linear combinations satisfy
a superconvergence sum rule. If the p and + are
not degenerate, an energy-independent cancella-
tion in the Regge region cannot be obtained, but a
finite-energy sum rule can be written for a linear
combination of amplitudes chosen to make the p
and & contributions to the right-hand side of the
sum rule cancel one another. The particular linear
combination will then depend on the upper limit of
the integral in the finite-energy sum rule. Since
degeneracy of the p and + trajectories seems to be
a very good approximation, the approach will be
to consider primarily the degenerate case but to
indicate which conclusions are unaffected by a de-

parture from degeneracy.
Like all superconvergence or finite-energy sum

rules, these new sum rules relate the low-energy
behavior of an amplitude in the resonance region
to the parameters of the Regge trajectories that
dominate the high-energy behavior. ' When Regge
parameters are used as input, conclusions regard-
ing the properties of low-energy s-channel ampli-
tudes and possible resonances are obtained. This
sum rule differs from previous sum rules in that
its input is the ratio of the p- and +-exchange con-
tributions —i.e., the ratio of t-channel amplitudes
having different isospins. The output is expressed
in the low-energy region as a ratio of integrals of
s-channel amplitudes having different isospins.
The resulting expression relates the isospin de-
pendence of a t-channel amplitude in the Regge
region to the isospin dependence of the correspond-
ing s-channel amplitude in the resonance region.
These isospin dependences are sometimes pre-
dicted by models and symmetry schemes. Such
predictions could be tested by the new sum rules,
by analogy with the use of finite-energy sum rules
in duality treatments in which the absence of exot-
ic states in one channel is used to obtain relations
between couplings in the cross channel. ' However,
the input is not absence of exotic states, but rather
the experimental value of the ratio of the p and m

nonf lip couplings to the nucleon, and this value
does not agree with the predictions of any known
model or symmetry. ' The use of the experimental
value as input therefore includes symmetry-
breaking effects which are not simply described
by any model. The sum rule thus connects these
symmetry-breaking effects in the Regge region
with phenomena in the resonance region and can
give some insight into the symmetry breaking
there.

The smallness of the ratio of the p to + nonf lip
couplings to the nucleon is one of the unexplained
mysteries of hadron dynamics. Both SU(6) sym-
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metry and SU(3)-symmetric quark models predict
a value of —,

' for this ratio. 6'' The experimental
value' is closer to —,

' or —,'. Although the deviation
from the symmetry prediction can be attributed to
symmetry-breaking effects, there is no successful
prediction for the magnitude of this symmetry
breaking. The ratio of the p and + couplings to
the nucleon is thus an interesting experimental
number which awaits a theoretical explanation.

The smallness of this ratio has recently been
used as a new input to a finite-energy sum rule.
In the extreme limit of neglecting the p-nucleon
coupling altogether, Finkelstein' has obtained a
superconvergence sum rule for the p-exchange
contribution to p-nucleon scattering. One can
question the approximation of setting the admittedly
small p-exchange contribution equal to zero.
There is therefore interest in finding better sum
rules that incorporate the exact value and not
merely the fact that it is small. Such sum rules
should include both isoscalar and isovector con-
tributions. The sum rule for p-nucleon scattering
is not easily extended to include isoscalar ex-
changes as well as p exchange because Q parity
requires the isoscalar and isovector contributions
to have opposite signature. They are therefore
not easily incorporated in the sum rale. The sum
rules considered in this paper include nontrivial
contributions from both p and cu exchange and can
test the validity of the Finkelstein approximation
in which p exchange is neglected. However, they
are not applicable to the scattering of nonstrange
mesons, which are eigenstates of G. We there-
fore restrict our consideration to scattering am-
plitudes for kaons and baryons.

Nucleon-nucleon and nucleon-antinucleon scat-
tering are considered in Sec. II, and the ratio of
the p and ~ couplings is shown to place constraints
on the ratio of isovector to isoscalar annihilation
at low energies. Kaon-nucleon scattering is con-
sidered in Sec. III, and the breaking of SU(6) sym-
metry predictions in the ratio of the p and co cou-
plings is shown to be related to and consistent
with the experimentally observed breaking of SU(6)
predictions for the couplings of the KN system to
isovector and isoscalar resonances. The general
case of KN scattering, where K denotes any strange
nonexotie boson, is considered in Sec. IV, and the
results of Sec. III are shown to apply equally to
all K* resonances and trajectories, as weil as to
pseudoscalar kaons. This is in qualitative agree-
ment with the experimental observation that SU(6)
symmetry breaking in the production of strange
baryons via strangeness exchange seems to be
universal and independent of which K or K* is ex-
changed. Section IV considers KA scattering in
which the I= —,

' 8 channel is exotic, and the result

being that the p and v couplings must satisfy SU(2)
symmetry with the canonical mixing angle if the
exotic amplitude is required to vanish. Section V
considers NA and NA scattering and finds that the
exotic I= 2 s-channel amplitude must be of the
same order of magnitude as the nonexotie I=1 am-
plitude. This is the familiar "baryon-antibaryon
catastrophe, " which requires the existence of ex-
otic contributions to satisfy finite-energy sum
rules. However, the new sum rule provides a
quantitative estimate for the exotic contribution
relative to the nonexotic contribution. This can
be used in a quantitative and conclusive search
for exotic states.

II. NUCLEON -NUCLEON AND NUCLEON-

ANTINUCLEON SCATTERING

We first consider nucleon-nucleon scattering.
Under the assumption that these amplitudes are
dominated in the Regge region by the p and & ex-
changes, we ean write the finite-energy sum rule

8'v~ ply'~N~. (1b)

In this case the upper limit of the integral in the
sum rule (la) can be taken to be infinite to give a
superconvergence sum rule for a suitable value of
n. However, even if the p and + trajectories are
not degenerate, ~ is a well-defined number deter-
mined by the behavior of the scattering amplitudes
in the Regge region and can be determined either
theoretically or experimentally and substituted
into the sum rule.

The sum rule (la) can be rewritten

&(&(TP) —&(PP)1 d~

v"[A(Pn) A(Pn)] d~. -(2)

I.et us now consider the case in which A is the
imaginary part of the forward scattering amplitude.
The sum rule (2) then applies to the total cross
sections and the couplings appearing in Eq. (1b)
are the nonf lip couplings. For this case in which
the experimental value is z= 5, it is a reasonable
approximation to neglect z' in Eq. (2). This leads

—[&(pn) —&(pn)](1+ ~')J dv = 0, (Ia)

where A denotes a scattering amplitude at some
value of t and ~ is a parameter chosen to make the
right-hand side vanish. If the p and & trajectories
are assumed to be degenerate, z is just the ratio
of the p and & couplings to the nucleon, i.e.,



NEW FINITE -ENERGY SUM RULES BASED ON p AND 239

to the surprising result that the difference between
the antiproton and proton total cross sections oo a
proton target is equal to the corresponding differ-
ence on a neutron target when suitably averaged
over energy, i.e.,

(&(.( ( pp} —«.a( pp)) = («.~( pn) —o~.~( pn)&.

This result is surprising since the difference be-
tween the total cross sections can be assumed to
have a large contribution from annihilation at low

energies and the pn system is a state of isospin
1 while the PP system is an equal mixture of iso-
spin 0 and isospin I. This gives the conclusion
that nucleon-antinucleon annihilation in the isospin-
0 and isospin-1 states are approximately equal
when averaged suitably over energy, or that there
are additional nonannihilation contributions that
exactly compensate for any isospin dependence
in annihilation. In models in which the annihilation
is described by a simple s-channel mechanism,
the sum rule (1) requires some kind of exchange
degeneracy of isoscalar and isovector s-channel
contributions. Thus, Rubinstein's model that nu-
cleon-antinucleon annihilation is dominated by the
Regge recurrences of the pion" could not give the
whole story. An additional isoscalar trajectory,
possibly exchange-degenerate with the pion, is
needed to enable this mechanism to satisfy the
sum rule (1). If this isoscalar trajectory had odd
G parity (e.g. , if it is the isoscalar member of
the octet containing the B meson), annihilation
into nonstrange mesons would still be dominated
by odd-t" states and there would be a systematic
difference between annihilation into even and odd
numbers of pions as predicted by Rubinstein.

If one attempts to saturate the sum rule by res-
onances (admittedly a rather dubious procedure
for baryon-antibaryon scattering), degenerate or
nearly degenerate isoscalar and isovector reso-
nances would occur. Some evidence for this has
been noted in the case of proton-antiproton annihi-
lation into kaons. "

III. KAON-NUCLEON SCATTERING

We now apply the same approach to KN scatter-
ing and obtain the sum rule

N

v" AKp-A p 1 —z
dp

—[A(K n) -A(K'n](1+ «)] dv = 0. (4)

If factorization of Regge residues is assumed and
SU(3) is used to give equal couplings of the p and
w to kaons, the parameter « in the sum rule (4)
is the same as that appearing in the sum rule (la)
and is given by Eq. (1b). Note that when the sym-

metry prediction « = —, is substituted into Eq. (4),
the linear combination of amplitudes appearing in
the integral is just the one required to vanish by
the Johnson-Treiman relation' for kaon-nucleon
scattering. The disagreement between this partic-
ular relation and experiment is well known, and
the value of x obtained from the data' is about —,

'
or —,'. Note that the Finkelstein approximation'
of neglecting p exchange completely corresponds
to v=0. This sum rule can be tested both by com-
parison with experimental data and by resonance
saturation.

The sum rule (4) can be expressed in a more
convenient form by introducing amplitudes corre-
sponding to a definite isospin in the kaon-nucleon
system. These are

A(K p}=—,'(A, +A,),
A(K-n) =A„
A(K'p) =A, ,

A(K'n) = —,'(A, +A,),

(5a)

(5b)

(5c)

where A; and A,. are amplitudes for EN and KN
scattering in the state of isospin i. Substituting
these expressions (5) into the sum rule (4) yields

4 p

v "(A,(l —«) —A, (1+3«)

+A, (1+ «) -A, (1 —3«))dv =0. (6)

where A~ denotes the resonance contribution to
the amplitude. Table I gives values for the right-
hand side of the expression (7) for some typical
values of «. We see that the SU(6) limit and the
extreme approximation of completely neglecting

TABLE I. SU(6) symmetry-breaking factors.

(I+3K)/(1 —K)

Finkelstein limit 0
Real world (Y)

SU(6) limit

~ Johnson and Treiman, Ref. 6.

One would expect resonance saturation to be rea-
sonably good for this sum rule since the nonreso-
nant background should be the same for the KN
and I7N amplitudes and therefore cancel one
another. Since the KN system is exotic and has
no resonances, resonance saturation of the sum
rule (6}gives a relation between integrals over
isoscalar and isovector kaon-nucleon resonances,
namely,

fA,"v "dv 1+3«
(7)

fA, v"dv 1 —« '
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the isovector exchange give quite different relative
strengths for the isovector and isoscalar reso-
nance contributions -and that the real world is
somewhere in between. Thus the use of this sum
rule may give interesting information about the
parameter g.

As a crude approximation, one might attempt to
saturate the sum rule (7) with the strange-baryon
resonances in the lowest-lying SU(6) 56. In this
ease the sum rule could be applied to the K-ex-
change contribution to the reactions

A+ p- B+ (A, Z, I"* ),
where A. and J3 are any hadrons. For any given
pair A and B, application of the sum rule (7) re-
lates the cross sections through the expression

fA(Ãp)v "dv I+3m.

fA| (KP)v dv I —K

o (A)
rr(Z')+(r(1"*') '

where 0 denotes the cross section for the reaction
(8), corrected for the usual kinematic and phase-
space factors. Although the result (9) has been
derived only for the contribution of K exchange, we
shall see below that it is reasonable to expect it
to hoM as well for other exchanges, since similar
sum rules can be written for the scattering of the
various K* resonances that would provide the other
exchanges.

In the SU(6) limit, Table I shows that our sum
rule predicts the value 3 for the ratio of cross
sections in Eq. (9). This is in fact a well-known
SU(6) prediction obtained by considering only the
reaction (8) without invoking any finite-energy sum
rules. " This result thus shows the internal con-
sistency of using SU(6) to relate couplings at low
and at high energies and to saturate the sum rule
relating the two quantities with a set of resonances
appearing in a. single SU(6) multiplet. The experi-
mental value of the ratio (9) is in strong disagree-
ment with the SU(6) prediction and is considerably
lower. " This is in qualitative agreement with the
SU(6) breaking determined at high energies by the
experimental value of z.

IV. UNIVERSAL SU(6) BREAKING
IN E*YW COUPLINGS

One of the peculiar features of the SU(6) break-
ing observed experimentally in the reactions (8) is
that the deviation from the SU(6) predictions seem
to be qualitatively the same regardless of the ex-
change mechanism. '4 Different exchange mecha-
nisms have been studied extensively for the case in

[A(z „p) A(z'„p-}]——c„',[A(z ,p) -A(z', p)-] = 0,
(10a}

[A(K„n) -A(K'„n)] —. „Cg[ (AX nB) -A(Zgn)) = 0,
(10b}

where the coefficients C~s and C"
8 can be con-

sidered to be defined by the relations (10}.
We now assume the SU(3) relation for the three-

boson vertex, namely"

gK0t K~ p g KBK8 p (11)
gKot Kofd gKgK8 td

Note that exact SU(3) gives the value unity for the
ratio (11). However, we do not need this exact
value for our treatment, Thus our result is in-
sensitive to SU(3) breaking if it is the same for
K and Ks. One example of such a breaking would
be a departure of the w from the canonical expres-
sion with the ideal mixing angle. If we further as-
sume that the expressions (10) are dominated by
the p and u trajectories, then it follows immedi-
ately from the relation (11) that

Cctg = C08

(12)gr~r Id/gr8rg (d '

Note that this result does not require degeneracy

which 8 is a vector meson and the contributions of
different types of exchanges (S.g. , flip vs nonf lip
or natural parity vs unnatural parity) can be sep-
arated by observing the density matrices for vec-
tor-meson polarization. That SU(6) should be
broken is no great surprise, but it is very peculiar
that it should be broken in the same way for all
possible exchanges. This implies that all relevant
couplings have the same D/F ratio for the baryon
octet and that the ratio of octet and decuplet cou-
plings is also independent of the exchange.

The use of the finite-energy sum rule (4) pro-
vides a possible insight into the universal coupling
ratios to baryons of the strange K* trajectories.
If finite-energy sum rules are written for the scat-
tering of these strange Reggeons on nucleons, the
high-energy behavior of the odd-signature ampli-
tudes can be expected in all cases to be dominated
by the p and w trajectories. The ratio of isovec'. or
to isoscalar exchange in all eases depends only on
the same parameter, the ratio of the p and (d non-
flip couplings to nucleons, since the relative value
of the ~ and p couplings to kaons is uniquely pre-
dicted by SU(3) and is the same for any meson
octet. This universality ean be seen explicitly by
examining the case in which two strange bosons
K and K8 belonging to different octets scatter on
nucleons. In the Regge region where the scatter-
ing is expected to be dominated by the p and co tra-
jectories, we can write down the expressions
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fA,"(K„p)v "dv fA os(KBp) v "dv

fA~R(K„p) v "dv fA,"(Kqp) v "dv (13)

for the p and e trajectories. Even if they have
different intercepts, the energy dependence can-
cels in the definition of the coefficients (13). We
can therefore write finite-energy sum rules for
the expressions (10), eliminate the coefficients
(12) between the two sum rules, introduce s-chan-
nel isospin amplitudes analogous to the expres-
sions (5), and assume resonance saturation. We
thus obtain the expression

p and & model has been best. One might consider
then that if the sum rules (9) and (13) are to be
saturated with a small number of resonances,
then they should be applied only to these spin-av-
eraged amplitudes.

V. Eh SCATTERING

The same approach can be applied to Kh scatter-
ing. By analogy with Eq. (4) we can write the sum
rule

2 2 — 2 2
gE~P Z gKfxP F+ glCgP Z gEBP Y+

gECotlph gg pp
2 2

a „(Z')+g„(Y*') o 8(Z')+g8(Y" )
o.(a) V, (W)

(14)

(15)

Note that although the relation (9) depends upon
degeneracy of the p and u trajectories, 'the univer-
sality relations (14) and (15) are independent of
this degeneracy assumption.

Difficulties are encountered if the universality
relation is carried too far. The relation (13) has
been derived for the nonf lip amplitude for any he-
licity state of the kaon or nucleon. Consider the
forward scattering amplitude for a K* with helicity
+ i and a nucleon with helicity --,'. The total angu-
lar momentum of the system therefore has a pro-
jection of + —,

' on the direction of the incident kaon.
This amplitude ean have a contribution from the
Y~(1385) but cannot have any contribution for
spin--,' resonances or from baryons such as the A
or Z. Thus, resonance saturation limited to the
baryon 56 is clearly invalid for this amplitude.
One might quest on the use of such resonance sat-
uration for .all amplitudes if it definitely fails in
a particular case. On the other hand, it is known
that there are difficulties in fitting polarization

~ia with simple Regge models. One might argue
that the simple description in terms of p and w

pales may not be adequate to describe the spin
dependence of the amplitudes but may be adequate
for a nonf lip amplitude that is averaged over the
nucleon spin direction. This is the amplitude
whose imaginary part is related to the total cross
section on an unpolarized target, the case for
which the experimental agreement with the simple

We thus find that the ratio of isovector to isoscalar
resonance contributions to these sum rules is a
universal quantity related to the ratio rc of the p
to ~ nonflip nucleon couplings and is independent
of the strange meson. This suggests that if satu-
ration by the A, Z, and Y*(1385)is a good approxi-
mation, then the relation (9) holds for all ex-
changes:

v "([A(K-d,")—A(K'~") j(1 —~)

—[A(K b, ) —A(K'a )](1+3))dv=0. (16)

We assume as before that the dominant contribu-
tions in the Regge region come from degenerate p
and co trajectories. The parameter A. is the ratio
of the nonf lip couplings of these two trajectories
to the d, . However, we encounter a difficulty if
we attempt to leave A a free parameter to be de-
termined by experiment and introduce resonance
saturation of the sum rule (16). Only one of the
four amplitudes appearing in the sum rule is non-
exotic, namely A(K b."). Thus resonance satura-
tion combined with the assumption that there are
no exotic resonances determines the value of A. .
The result is

which is just the SU(6) prediction.
We thus find that in the KN and NN systems, in

which all s-channel isospin values are nonexotic,
it is possible to break the SU(6) relation between
the p and w couplings to the nucleon without en-
countering difficulties; and indeed experiments
seem to indicate such breaking. However, in the
case of Kh scattering, in which one of the s-chan-
nel isospin values is exotic, the requirement of
absence of exotic resonances in this channel can-
not be satisfied unless the p and cd couplings to the
6 satisfy the SU(6) relation (17).

VI. NUCLEON-6 SCATTERING

A similar sum rule can be written for nucleon-6
scattering. Again we assume that the high-energy
behavior of the odd-signature amplitude is domi-
nated by p and w exchange. The ratios of the p and
~ contributions are determined by the parameters
z and X defined by KN and K6 scattering. Thus
without any new parameters we obtain the sum
rule
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p" Q pD'+ -A. ph+' 1 —KX

—[A(pb, ) A(ph )](I+xA.))dv=0. (18)

Here again there is only one nonexotic amplitude,
namely A(ph"). Thus if all exotic amplitudes
vanish, the product zA. must be equal to unity.
However, it is evident that this is not true either
in the symmetry limit or in the real world as can
be seen from Table I.

This is just another manifestation of the well-
known baryon-antibaryon catastrophe, "which im-
plies either that resonance saturation of finite-
energy sum rules is not valid for the baryon-anti-
baryon system or that there are exotic contribu-
tions. I.et us assume that there are indeed exotic-
resonance contributions with isospin 2 and zero
baryon number. In that case, resonance satura-
tion of the relation (18) gives

v "A"(p6 )dv= —- v "A~(pa")dv.r
T- gx
I+ gA

In the same way that the reactions (8) test the
sum rule (4), the sum rule (19) can be tested by
looking at nucleon-antinucleon annihilation via 6
exchange. Consider for example the two double-
charge-exchange reactions

p+p m "+I
P+n- m'+X

where the meson M is any negatively charged
meson while X is a doubly charged exotic meson.
These reaction can be assumed to go via 6"ex-
change when the n' goes in the direction of the in-
cident antiproton. If the states M and X are
used to saturate the sum rule (19), one sees that
the cross sections (20a) and (20b) are of the same
order of magnitude since the product zX should be
small. It would therefore be of considerable inter-
est to look for the reactions (20a) and (20b). A
similar situation obtains for the pion-nucleon re-
actions obtained from the reactions (20) by line
revel sal,

(21a)

(2lb)

A detailed analysis of the application of the sum
rule (19) to the search for exotics in reactions
(20) and (21)," shows that the sum rule makes pos-
sible a conclusive quantitative test of the argument
that exotic resonances provide the answer to the
baryon-antibaryon catastrophe.
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