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We consider a classical gravitational field minimally coupled to a quantized neutral scalar field

possessing mass. We are especially concerned with the effects of particle creation and quantum
coherence on the premises and conclusions of the singularity theorems, which imply the inevitability of
singularities in classical general relativity. A closed Robertson-Walker geometry is used throughout.
Nongravitational interactions are not considered. The source of the gravitational field in the Einstein
equations is the expectation value of the energy-momentum tensor of the quantized scalar field. Lacking
a general prescription for obtaining a finite operator from the divergent formal expression for the
energy-momentum tensor, we confine our attention to situations in which plausible special methods are
available. We show that quantum coherence effects in this semiclassical model can result in a violation
of the energy conditions which enter into the singularity theorems. Then we exhibit numerical solutions
of the coupled Einstein and scalar field equations in which a Friedmann-like collapse is stopped and
converted to a Friedmann-like expansion. (In this calculation one mode of the quantum field was
assumed dominant. ) We conclude that quantum effects of the type considered here can sometimes lead
to avoidance of the cosmological singularity, at least on the time scale of one Friedmann expansion.

I. INTRODUCTION

Several powerful theorems have been proved
which imply the inevitability of singularities in
gravitational collapse and cosmology, under as-
sumptions of a very general nature. ' These theo-
rems deal with a classical gravitational field obey-
ing Einstein's equations. The energy-momentum
tensor acting as the source of the gravitational
field need only satisfy a number of plausible re-
quirements, known as energy conditions. The pos-
sibility that the conclusions of the singularity theo-
rems, and indeed the singularities themselves,
can be avoided when the quantum nature of the
matter adn/ or the gravitational field is taken into
account has been considered in various contexts. '

Wheeler' suggested that quantization of the grav-
itational field could effectively bypass the cosmo-
logical singularity. Calculations of Misner and
others, ' based on quantized models with restricted
degrees of freedom, have left the situation incon-
clusive.

Others have considered quantum effects asso-
ciated with the matter in the universe. Nariai and
Tomita' have studied modified Lagrangians for the
gravitational field, containing terms quadratic in
the Ricci tensor and the scalar curvature. Their
starting point is a modification of a treatment by
Utiyama and DeWitt' of divergences in the energy-
momentum tensor of quantized matter fields. For
certain choices of parameters in their modified
Einstein equations Nariai and Tomita obtained iso-
tropic, homogeneous cosmological solutions in
which the cosmological singularity is replaced by
a finite minimum in the radius function. Their

solutions asymptotically approach Friedmann
universes in one time direction, but apparently
not in both. Analogous modifications of the Ein-
stein equations were suggested by Sakharov, ' and
similar calculations have been carried out on this
basis.

From a different point of view, Bahcall and
Frautschi' have discussed a possible hadron bar-
rier to gravitational collapse. Basing their rea-
soning on the physics of strongly interacting par-
ticles, they suggested that collapse toward a sin-
gularity may be reversed when the dimensions of
the system become comparable to the Compton
wavelength of the pion (10 "cm}.

The present work argues for a connection be-
tween quantum matter and avoidance of collapse
in still a third way. We study the semiclassical
model of a classical gravitational field coupled to
a quantized scalar (or pseudoscalar} field pos-
sessing mass. Thus the reaction of the particles
created' by the gravitational field back on the ex-
pansion is explicitly taken into account. Nongrav-
itational interactions, other than those implicit in
the mass term, are not taken into account. We
will not be concerned with quadratic terms in the
gravitational Lagrangian; rather, we assume the
usual gravitational field equation. Unlike Nariai
and Tomita, we use as the source of the field the
expectation value of a quantum-field-theoretical
energy-momentum tensor, rather than a classical
matter distribution. The metric under considera-
tion is of the Robertson-Walker type with closed
three-space.

We show that there exist states in which quantum
coherence effects give rise to negative pressure
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terms in (T„„), sufficiently large to violate the
energy conditions of the singularity theorems. "
For a particular class of states such that the ef-
fects of the mode of lowest momentum are domi-
nant, we numerically integrate the coupled equa-
tions for the gravitational and the quantized scalar
field. The resulting isotropic and homogeneous
cosmological solution effectively coincides with a
classical dust-filled Friedmann-Lemaitre universe
when the radius becomes large with respect to the
Compton wavelength, m ', associated with the
scalar field. However, the radius function, a(t),
possesses a minimum at a radius of order m ',
and it is time-symmetric about that minimum, un-
like the models in Ref. 5. (Here t is the cosmic
time appearing in the Robertson-Walker line ele-
ment. ) Taking m to be the pion mass, we obtain
in one case a maximum radius of order 10' cm.
The dimensions of the system under consideration
here are always large with respect to the Planck
length, 10 "cm. The question whether a state
exists for which the above behavior is repeated
periodically for all time remains open. We show
that collapse to the singularity does occur for
some states; that is, the quantum effect does not
eliminate the singularity inevitably, but only for
certain states.

Before turning to the details, we pause to dis-
cuss the theoretical underpinnings of our calcula-
tion. Quantum effects of gravity become very sig-
nificant when the Planck scale of length (10 "cm)
becomes characteristic of the system. " For much
larger dimensions it seems reasonable to employ
a semiclassical description, in which the quan-
tized rnatter fields are coupled to the classical
gravitational field. The most obvious approach of
this type starts from the fundamental equation" "

G„,= 6wG(T„„)-,

where" G is the Newtonian gravitational constant,
G„„ is the Einstein tensor, R„„-—2'„„,formed
from the classical metric, and (T„„)is the ex-
pectation value, with respect to some quantum
state, of an operator representing the energy-mo-
mentum tensor in a quantum theory of the matter
in the universe. The state could be a mixed state
(represented by a density matrix) as well as a
pure state.

This ansatz raises three conceptual problems.
The first is the very meaning of a quantum theory
of the entire universe. Rather than delve into the
quantum theory of measurement, in which context
this question has been considered, we shall as-
sume without further discussion that it is meaning-
ful to talk about the quantum state (pure or mixed)
of the matter in a cosmological model.

One might also hesitate over the legitimacy of

coupling quantum and classical quantities as in Eq.
(1). The treatment employed here of the gravita-
tional field as a classical object is analogous to
the treatment of the electrostatic potential in the
Thomas-Fermi model of a many-electron atom, "
of the nuclei in the Born-Oppenheimer model of a
molecule, "of the electromagnetic field in a vari-
ety of calculations in the electrodynamics of non-
relativistic electrons and atoms, "and of the elec-
tromagnetic field in the now classic calculations
of vacuum polarization effects in quantum electro-
dynamics with external potentials. ' Such a theory
is usually understood as an approximation to a
more fundamental fully quantized theory. " Occa-
sionally, however, semiclassical theories are
presented as "ultimate" descriptions of the phe-
nomena, without deeper quantum levels of reality. "
The authors believe that the present work is con-
sistent with either interpretation. "

The third point is one which requires some sort
of resolution before calculations can be carried
out with Eq. (1). A naive calculation of (T~ „) re-
sults in a divergent expression, and there does
not seem to be a. satisfactory unique analog of
the "vacuum energy subtraction" which is per-
formed at this point in the corresponding special-
relativistic field theory. Utiyama and DeWitt
(Ref. 6) showed that the elimination of divergent
parts of the expectation value of the energy-mo-
mentum tensor, (T„„),evidently could be carried
out, for a weak and asymptotically vanishing grav-
itational field, by the introduction of counterterms
in the gravitational Lagrangian quadratic in the
Ricci tensor R„, and the scalar curvature R.
Those terms were chosen to cancel exactly the
divergent parts of (T„„),so that the usual gravita-
tional field equations resulted, with the Einstein
tensor G„, coupled to the "finite part" of (T„„).
(The modified equations of Ref. 5 arise from the
possibility that this cancellation is not exact, so
that the gravitational Lagrangian has finite terms
quadratic in R„, and R.) DeWitt'4 has given a dif-
ferent renormalization procedure which can be ap-
plied in an arbitrarily strong but asymptotically
vanishing gravitational field. Another prescrip-
tion for extracting a finite part of (T„„)has been
given by Zel'dovich and Starobinsky"; its justifi-
cation, especially with respect to uniqueness, is
not entirely clear. Consequently, we have endeav-
ored to avoid the general problem of vacuum sub-
traction, or renormalization of the energy-momen-
tum tensor, by considering only states for which
we believe the details of renormalization to be ir-
relevant.

Two additional points, which are not discussed
further in the present paper, should be mentioned.
We use in this paper the canonical energy-momen-
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II. ENERGY-MOMENTUM TENSOR

The scalar field is characterized by the Lagran-
gian density

g =-,'(-g)'/'(g""a„ya„y-m' y'), (2)

which leads to the covariant generalization of the
Klein-Gordon equation,

turn tensor, rather than the modified or conformal
energy-momentum tensor. " The latter has some
interesting properties, especially in connection
with renormalization, which make it worthwhile to
explore whether its use could significantly alter
the present conclusions. The second point con-
cerns the definition of (T„„). Utiyama and DeWitt

(Ref. 8), considering a case in which an S matrix
could be defined, inserted S into the expectation
value. The introduction of the S matrix evidently
resulted from an application of Schwinger's meth-
od for obtaining Green's functions of quantized
fields to the fully quantized Einstein equations. In
the present problem of a closed Robertson-Walker
universe it is not clear what is meant by the S ma-
trix. Like the authors of Refs. 13-15, we use the
ordinary expectation value (without the S matrix)
as the source of the gravitational field.

the gravitational field equation, (1), and the sca-
lar wave equation, (3). The Heisenberg picture,
in which the operators carry the full time develop-
ment, will be used throughout.

We consider here only solutions with isotropic,
homogeneous spaces and matter distributions. In
particular, the interval is that of Robertson and
Walker corresponding to a closed universe,

ds =dt —a(t) h,.ndx~dx

(8)

and the scalar wave equation,

where h» is the metric of a three-space of con-
stant positive curvature equal to unity. (In a fre-
quently used system of coordinates, h~&

=a»(1+ —,'r') ', with r =28, /x' x~.} For consisten-
cy with the Einstein equation, the state vector for
the scalar field must be chosen such that (T„') de-
pends only on t. When the energy density is posi-
tive definite, as in the examples which we numeri-
cally integrate below, a minimum in a(t) is pos-
sible only for positive spatial curvature; this is
why we consider the closed Robertson-Walker
model.

The metric of Eq. (7) leads to the canonical mo-
mentum,

n'=a jg'~ & ft),

v„vt'y+ m'y = 0 . (3} 80 (t)+ 3a 80a&olde) - a 6 p+ m /=0,
Here V„denotes the covariant derivative. The en-
ergy-momentum tensor which couples to the grav-
itational field is obtained by variation with respect
to g"':

where h=det(h„J, and

P=h ' a (h h' en/)

gd4x=-,' T„,5g"' -g '~'d'x .

The result is

T„„=,'(e„ya.y+-e „ye„y) g„„L, , —

where

( g)-1/2g

(4)

is the three-dimensional covariant Laplacian op-
erator. The eigenfunctions of 6 ' are the four-
dimensional spherical harmonics. " We denote
them by Y, „, where l cantake the values
0, 1, 2, . . . , and m and n each run in integral steps
between -l/2 and l/2. The eigenvalue of 6~2 cor-
responding to Y, „ is -l(l+2). The eigenfunctions
are normalized so that

We canonically quantize the scalar field in the
classical Riemannian space-time. " The momen-
tum conjugate to (t) is

a(a,y)
'

The canonical commutation relations are (in arbi-
trary coordinates with spacelike constant-time
hypersurfaces)

[@(x),y(x')], = 0,
[v(x), w(x')], =0,
[y(x), v(x')], = te'" (x —x') .

The system under consideration is governed by

where the integration extends over the entire
three-sphere. The phases are chosen in accor-
dance with

Y,* „(x)=Y, „„(x).
These spherical harmonics are the same as those
given explicitly in Eq. (32) of Bander and Itzykson
(Ref. 28), except for a multiplicative factor of t
whenever (m —n) is an odd integer.

The Hermitian scalar field can be written in the
form
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4)(x, t}=g [A, Y, (x)p, (&)+H.c.],

and

[A, n, A, ~ „]=o,

[A,'., A,"...]= o,

[A, , A) ]=5„'6

(14)

It is convenient to define a new timelike variable
r (not proper time) by

It follows from Eqs. (9), (14), and (15) that the
time- separated equation is

(16)s, 'y, (7) + o(7)'~, (7)'y, (7) = o,
with

l(l+ 2)
(gag = p +m

Equations (13}, (6}, and (14}are consistent if and

only if

where H.c. denotes the Hermitian conjugate of the
first term and the index n is an abbreviation for
m and n (similarly, -n will denote -m and -n}.
The A, are time-independent annihilation oper-
ators satisfying the commutation relations

is just a mathematical device to summarize some
given expectation values, and hence the choice of
a particular Hilbert space is a matter of conve-
nience only. In the present work we shall imple-
ment this idea at least partially, by considering
states which are parametrized by expectation val-
ues of certain quantities" appearing in expressions
for the components of the energy-momentum ten-
sor, the primary observable of a system in the
gravitational context. From the standpoint of rig-
orous theory, however, there is much unfinished
business here: One does not have a well-defined
algebra of observables, but only a divergent for-
mal expression for the energy-momentum tensor.
In algebraic terms the problem of renormaliza-
tion of the energy-momentum tensor is the prob-
lem of defining a suitable finite T„,(x) (an un-
bounded operator-valued distribution) in terms of
the elements of a C* algebra of bounded observ-
ables associated with the canonical field algebra
(6). This problem is circumvented in the present
paper by introducing a plausible method of calcu-
lating a finite T„,(x) within a given Fock repre-
sentation for a special category of states.

The diagonal components of T„"are, for a diago-
nal metric,

4)s r4( —4r*s.4( = & ) (18) and (no sum over j)

the form of Eq. (16) guarantees that when this
Wronskian condition is imposed at one time, it
holds at all times. However, Eq. (18) does not
uniquely determine the particular solutions g, to
be used in the expansion (13), nor, consequently,
the A, a.

The main purpose of introducing the A, is to
construct a Fock space" of state vectors, so that
matrix elements of physically relevant quantities
can be defined; an interpretation in terms of phys-
ical particles is not implied. It might be ques-
tioned whether the Fock space of the A, is the
"correct" Hilbert space for the field theory, in
view of the nonuniqueness of these operators.
(Different choices of )I), will yield, in general,
unitarily inequivalent Fock representations of the
field algebra. ) In the abstract algebraic approach
to quantum theory' it is argued that different rep-
resentations of an algebra of observables are
physically equivalent, in the following sense: with
each Hilbert-space representation of the algebra
there is associated some pure or mixed quantum
state which reproduces the results of a given fi-
nite set of observations to any specified degree of
accuracy. From this point of view a state vector

T& =-2 80$ '+2a 'h&&
'

8&$

(2o)

(T, ') = 3 &(T~'&

1 3
d'xh"' g (T,') .

6w j=I

Noting that

(21)

We consider expectation values (T„")having the
symmetry properties required for a source of the
Robertson-Walker metric, namely, that they be
independent of the spatial coordinates x, that the
off-diagonal elements of (T„")vanish, and that
(T,') =(T,') =(T,'). Therefore,
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we obtain from Eq. (20)

(T, ') =-, fd'„e' '((e,p)' ~ —,
' -'pa "p m -p*').

(22)

Now

~4) =
Q 1(I+2)(A) ~y, ~g, +H.c.) .

Hence, using Yr =Fr*, one finds that

(28)

l l+2 gt A, ~At~+ gt, ~At~+AroA, ~ +,* AroAr (24)

Similarly, fd'xh'~'p' and jd'xh'~'(s, 4))' are the same as the right side of Eq. (24), except that the factor
I (I+ 2) is absent in both expressions, and that p, is replaced throughout the latter expression by 8,4), .
Therefore, one obtains from Eq. (22), with (T, ') =-P,

p=(4 ')-'g (A, „A,„) (s,y,)'-, +m' y,
' +c.c.I (I+2)

t f)f

(25)

(26)
ra

where c.c. denotes the complex conjugate of the preceding term. In the same way, one obtains from Eq.
(19), with (T, ) = p,

p=(4v ) 'p f(A, A, „)[(S p, ) +(d, 'y, ']+c.c. +(A,'.A,.+A,.At.&[IS.wt, I'+(d), 'ly, I'1) .

If the expectation values on the right-hand sides
of Eqs. (25) and (26) are taken with respect to a
pure quantum state 4 which is not, in fact, homo-
geneous and isotropic, then these formulas give
the expected pressure and energy density for the
mixed quantum state obtained by averaging the
density matrix of 4 over all positions and orienta-
tions (i.e., averaging over all the images of 4'

under the group of isometrics of the three-sphere)
(It is easy to see that averaging a density matrix
in this way is equivalent inside expectation values
to averaging the operators representing the ob-
servables, as we have done. ) The semiclassical
approximation should still be good in such a situa-
tion, provided (cf. footnote 23) that g is not gross-
ly asymmetric on the cosmological scale. Indeed,
a realistic state allowing for small-scale inhomo-
geneities would be of this type.

The above expressions should give the pressure
and energy density of an isotropic, homogeneous
distribution of scalar particles, except for diver-
gences which remain even for the state annihilated
by the A, . Plausible procedures for dealing with
the divergences are available in the particular
cases we consider. We first discuss the adiabatic
limit, in which simple normal ordering seems jus-
tified, and then turn to a nonadiabatic case in which
the lowest mode is dominant.

III. ADIABATIC LIMIT AND ENERGY CONDITIONS

Suppose that a(f) is slowly varying, so that the
WKB approximation can be applied to Eq. (16}. We

I

call this slow expansion regime the adiabatic limit.
In that limit, one has from Eqs. (16) and (18)

T

P, =(X ', ) 'i'exp(-i a'e, d )
t

(x )=™e 'p(, fx,di- '
(27)

x exp -2i utdt

+c.c.+ (A, „A, ), (28}
I(I+ 2)
3a +r

In the adiabatic limit there is no mixing of the pos-
itive and negative frequency parts of the field, so
that there is no particle creation, and the A, can
be identified at all times with the physical particles
present. " In that case, simple normal ordering
in Eqs. (25) and (26) with respect to the A, seems
justified, in analogy with the special-relativistic
procedure. The resulting renormalized energy-
momentum tensor has vanishing four-divergence
and also leads to the correct classical limit. (By
contrast, when positive and negative frequencies
get mixed by the expansion, there is generally no
preferred time at which to normal order, and a
new method of renormalization is called for).

Substituting Eq. (27) into the expressions for p
and p, and normal ordering, one obtains

p=(ee'a') 'I, -(d, ,d, ), '(, + )ra t -e ta t a2



2362 LEONARD PARKER AND S. A. FULLING

and

p=(2v'a') 'P(At A, ~)(u, . (29)

To check the classical limit of these expres-
sions, consider a state which is a mixture of
eigenstates of the number operators A, A, . Then
the first two terms in Eq. (28) vanish. Identifying

&o, with the energy and M, = [l (l+ 2)/a']'~' with the
magnitude of the momentum of a particle in mode

l, one finds in the low-velocity limit [i.e., when

only modes with l (l+2)/a' «m' are occupied] that

pV=(3m) '(M'), „=kT, (30)

where (M'),„ is the average momentum, V=2»'a'
is the volume of the universe, and we have set
(2m) '(M'),„equal to (3/2)kT in accordance with
the equipartition theorem. Thus, the particles be-
have like an ideal gas. In the high-velocity limit,
when m can be neglected, one obtains the famil-
iar result

P= 3p ~ (31}

We now ask whether there exist states for which
the energy conditions of the classical singularity
theorems are violated. From Eqs. (28) and (29),
it is clear that p is positive definite, while p is
not. Therefore, in the isotropic case under con-
sideration here, the weak energy condition (Ref.
1) can be written as

p+P -0
and the energy condition as

p+3p &0 .

(32)

(33)

In the present context, if Eq. (33) is satisfied, then
Eq. (32}must be satisfied, and if Eq. (32) is vio-
lated, then Eq. (33) must be violated. One or the
other of these conditions (in a more general form
applicable also to anisotropic models) has been
used as a premise in almost all derivations of
singularity theorems.

To show that the energy conditions can be vio-
lated, consider a normalized real function of the
form Z(x) = P C, „Y, (x) (fixed l). The argument
leading to Eqs. (28) and (29}could have been car-
ried out with (Y, ] replaced in Eq. (13) by a basis
containing Z as a member. Let A be the annihila-
tion operator coefficient of Z in the modified Eq.
(13). One would then obtain (as a consequence of
the reality of Z) expressions for p and p just like
Eqs (28) and (2.9), but involving terms in (AA}
and (A~A) (in place of (A, A, ), etc ) Consid. e.r
now a state in which only the Z mode is occupied.
[if l =0, the pure state has the proper symmetry;
if l is large, Z can be chosen to make the true en-
ergy density and pressure expectation values ap-

proximately constant (spatially) on a coarse scale,
so that, as explained at the end of Sec. II, the
semiclassical approach is still valid for the sym-
metrical mixed state described by our formulas. ]
To show that there are times when p becomes suf-
ficiently negative to violate Eq. (32), we use the
following theorem (Appendix A): If A and At are
a pair of annihilation and creation operators, then
the expectation values (AtA) and (AA) with re-
spect to normalized state vectors run through all
pairs of values consistent with the constraints
~(AA) ~' (AtA)((A~A)+ 1) and (A~A) ~ 0. Using
this theorem, we choose a state for which

i(AA) i=(A'A}(1+(A A) ')'~' . (34)

Furthermo. . e, consider a particular time t and a
choice of phase such that

Then Eqs. (28) and (29), modified as just de-
scribed, yield at time t

p (2+(A~A) ')'t [2l(l+2)/3a +m'] —l(l+2)/3a
p [l (l+ 2)/a'+m']

(38)

According to the theorem quoted above, we are
still free to choose as the value of ( A A) any posi-
tive number. By choosing (AtA) sufficiently
small, one can clearly make -p/p larger than any
given finite number. " Therefore, there exist
states for which the energy conditions of the sin-
gularity theorems are violated.

The appearance of negative pressure is a quan-
tum coherence effect among the states with differ-
ent numbers of particles. The same effect should
occur as well for a gas of scalar particles in
Minkowski space, and is therefore not restricted
to the context of general relativity. The term in

p which gives rise to the negative pressure is
rapidly oscillating with a period of +, '. The time
average of the pressure is the nonnegative classi-
cal value (AtA)l(l+2)(3a'(d, ) '. Therefore, one
would expect the most significant effect of the neg-
ative pressure term to occur when the character-
istic times or dimensions of the system are less
than or of the order m '. For the system under
consideration, the adiabatic approximation is no
longer valid when a(t) is less than m ' because
significant gravitationally induced particle crea-
tion occurs. Nevertheless, the present considera-
tions strongly suggest that quantum effects can
also violate the energy conditions when a(t) is
small and rapidly changing. We therefore return
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to the non-adiabatic case, and consider whether
there exist states in which a collapse toward the
cosmological singularity can be reversed.

IV. EQUATIONS OF MOTION

Differentiating Eq. (38) with respect to 7, and
using Eq. (40), we then obtain

T T

(a,e )e p(xif-y'dy ~ (a,p )exp i y d'

(41)

(37)

For the purpose of numerical integration of the
coupled Einstein and scalar wave equations, it is
convenient to reexpress Eq. (16) in the form of
two first-order equations. Let

3/2 x/ay, -a

=y 's y(u+P) . (42)

Differentiation of Eq. (40) with respect to r, and
use of the equation of motion, which requires that
s, (j'=-y (j', give

and

where"
y (c(+8)

y (38)

T T

(e,e )exp( 'y'd-y (a,d")exp '
y'dy)

=-y 's,y(u- p) . (43)
'T

6=a~exp -i y d7'

=u*exp -i ddt (39a)

and

t
a,a =y-'aoyexp -2i +dt P (44a)

From the conjugates of Eqs. (42) and (43) we ob-
tain the first-order equations of motion in the form

P=P*exp i y dz

t
=P exp i (ddt (39b)

&Op =y '8()yexp 2i &dt e, (44b}

where we have returned to the original time vari-
able t=x'. Here

(We suppress the subscript l.) To determine u
and P, which are functions of r (except in the adia-
batic limit}, we impose a second condition, namely

s, )j)=-t2 't'y(u-p) . (40)

From Eqs. (38) and (40) it follows that Eq. (18}is
equivalent to

, l(l+2) m'
&0~ + 3a (45)

Equations (44) are used later in the numerical in-
tegration.

%e will also need the expressions for p and p in
terms of u and P. From Eqs. (38), (40), (25),
and (26), one finds that

and

P=(6w'a') 'Q(d) ' (A) Ap ), u*, P~p-2, +3m' (u)'+Pp') +c.c.
l (l+ 2) 1 2l (l+ 2)

ga

+(ApaA)a+A)uA)e) a (lP)(P+k)-, +3m' Re(uftj, )
l (l+2), , 2l (l+ 2)

p=(2w'a') 'g ru, [(A, A, „} cpu*, c.c+. (A+tA), +A, At )((p, ~'+ w)],

(46)

(47)

[(Soa)'+ 1]a = (8w/3) Ga 'p (48)

where we have used (u, ~'- )P, (*=1, and have not
normal ordered the operators. Finite expressions
for the pressure and energy density will be given
later for the particular state under consideration.

Finally, we note that for the closed Robertson-
alker metric, the Einstein equations can be
written as

s,'a+ (2a) '[(s,a)'+1]+4wGpa =0 . (49)

Equations (44)-(49) are the nonlinear set of equa-
tions which will be numerically integrated once an
appropriate state vector has been chosen and fi-
nite expressions for p and p have been determined.
When Eq. (49) is used to find the time develop-
ment of a(t), Eq. (48) constrains the initial data.
It is automatically satisfied at other times as a
consequence of the vanishing of the four-diver-
gence of T„"[Eq (61) below. ].
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V. CHOICE OF STATE

For our present considerations we are allowing
a to change rapidly, so that the WKB approxima-
tion is not valid. Under those circumstances,
positive and negative frequencies get mixed.
Therefore the A, do not necessarily correspond
to physical particles, as they do in the adiabatic
limit. As we have remarked, the purpose of in-
troducing the A, is to construct a Hilbert space
(Fock representation), so that expectation values
of the energy-momentum tensor can be defined.

For simplicity, we choose a normalized state
vector, I ), such that

A, „I)=0 forall la0. (so)

Aoo =y+B+ 58

where

and hence

[B,B ]=1.

(51)

(52)

(53)

The coefficients y and 5 are complex constants.
Their magnitudes and phases will be chosen later,
in accordance with the constraint equation (52}.
We complete (for a given choice of A, ) the spec-
ification of the state vector by the condition

Furthermore, we make the Bogoliubov transforma-
tion

constant in the vicinity of t=O, the A, could be
interpreted [see Eqs. (37)-(39) and Eq. (13)] as
annihilation operators for physical particles. That
interpretation of the A, would still seem to be ap-
proximately valid for the actual solution at the mo-
ment of time symmetry, since Boa vanishes there.
The state defined above has a structure like that
of an excited state in models of superQuidity and
superconductivity. " The B operators in those
theories correspond to elementary excitations or
quasiparticles relative to the ground state of an
interacting system. (There are N excitations in
our state. ) The ground state (N=0) itself contains
amplitudes for the presence of various numbers
of pairs of the particles associated with the A op-
erators (Cooper pairs in the case of superconduc-
tivity). In our problem the states with definite N
are not eigenstates of a Hamiltonian, but they have
this same structure of correlated pairs of A-quan-
ta." Such a state is by no means the only type
which may lead to reversal of the collapse, but it
is convenient for our present purposes. It is nat-
ural to speculate that some mechanism might be
present, or some interaction added, which would
cause bosons or fermions to make a transition
into such a state when the density becomes suffi-
ciently great, in analogy with the transition to the
BCS ground state in superconductivity. That ques-
tion is beyond the scope of this paper.

As a consequence of Eqs. (51)-(54), one finds
that

(s4)
(AOOAOO) = y+6(2N+ 1) (55)

where N is a positive integer. (The state vector
I } is still in the original Fock space of the A, .)

A word is in order concerning the physical
meaning of this state vector. In the calculation
below, P, will be chosen [Eq. (67)] to vanish at a
moment of time symmetry (t = 0), when a(t) has
its minimum. Therefore, if a(t) were to remain

and

(AOOAOO+A~A~) =(2N+ 1)(1+2 I 5 I ) . (56)

Substituting these results into Eqs. (46) and (47)
yields

p =-(2w'a'} 'm(2N+ 1}(Re[y*S(a,'+ p,')]+ (2 I 5 I'+ 1)Re(nfl, )}
00

+(6v'a'} 'g (l+ I)'&u, ', (Ip, I'+-,')-, +3m' Re(df p, )i=I l g2 g 2 g2

and

p =(v'a') 'm(2N+ 1)[Re(ys'o.,p,)+ (I 5 I'+-,')(Ip, I'+-,'}]

+(2s'a') 'Z ~,(lp, l'+l)(t+ 1)'.

(57)

(56)

The factor (l+ 1)' in the sums from l= 1 to ~
come from the range of o., or mand n, for each I.
Each of those sums diverges, but is independent
of N. %e assume that there exists a valid renor-
malization procedure which results in the replace-

ment of the divergent sums by finite terms, while
leaving unchanged the part of the l =0 term pro-
portional to N." Since N appears only in the l = o
term, we can then choose N large enough that the
renormalized contributions of the remaining terms
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are negligible with respect to the term propor-
tional to N. Thus, for N»1, one obtains the re-
sult

and

p=-(v a ) 'mN(Re[y*6(a'+p')]

+ (216 I'+ I)Re(a*P)} (59)

p=(v a ) '2mN[Re(y6*aP)

+(I& I'+ l)(IPI'+l)}, (6o)

where we have dropped the subscripts 0. Recall
that y and 5 are constants, while a and P are
functions of t, and n and P are defined in Eqs.
(39}.

One can shorn as folloms that p above is positive
definite. The expression in curly brackets in Eq.
(60) is always greater than or equal to

-lyl I&i lal IPI+(l&l'+k)(IPI'+-.') -=Q.

Now ( I n I
—

I P I)' ~ 0 implies that

fal IPI-l(lnl'+ IPI')= IPI'+l.
Similarly,

since particle creation mould make p non-zero at
other times. " However, a different state vector
and method of renormalization would have to be
used in that case.

By convention, we take t =0 as the lower limit
on all integrals of the form J'ru, dt' which have ap-
peared. Furthermore, we let y*5 be real. Sup-
pose that one has a solution of the coupled Einstein
and scalar wave equations [Eqs. (44), (48), and
(49), with p and p given by Eqs. (59) and (60)]
given for t &0 by a, (t}, n, (t), and P, (t) It.then
follows from the reality of y*5 and the lower limit
of t=0 on t ~,dt' that a solution for t &0 is given
by a (t), a (t}, and P (t), where

a (t)=a, (-t)
and

a (t)=a;(-t), P (t)=P,*(-t) .
To join these into one continuous solution for all t,
mith continuous first derivative of a at t=0, we
must require that

s,a(0) = o

and that

iy I I& I ~I&I'+ l a(0} and P(0) are real . (63)
The equality signs only hold when I a I

= IP I and
which would violate Eqs. (41) and (52).

Therefore, Q and consequently p in Eq. (60) are
strictly positive. On the other hand, p in Eq. (59)
oscillates between positive and negative values.

Using the equations (86) and (88), derived in an
appendix, it is easy to show that p and p given by
Eqs. (59) and (60) satisfy the continuity equation

s,(a'p)+p&0(a') =0, (61)

which is well known" to be equivalent in Robert-
son-Walker spaces to the fundamental condition
z ~"..=o.

1

We sha11 numerically integrate the Einstein
equations (48) and (49), with p and p given by Eqs.
(59) and (60}, and n and P obeying Eqs. (44), which
are equivalent to the scalar wave equation. It is
worth noting that with a strictly positive energy
density p, as in Eq. (60), a reversal of isoiropic
collapse toward the cosmological singularity is
only possible for the closed universe. Reversal
of collapse requires a minimum in a(t}. At the
minimum, Eq. (48) becomes 3a ' =&wGp, yielding
a finite positive minimum radius. However, for
the open Robertson-Walker metric, the corre-
sponding condition for a minimum would be -3a '
=8m Gp, which cannot be satisfied for real a. For
the flat case, the corresponding condition would
require p to vanish at the time mhen the minimum
is reached. That possibility cannot be ruled out,

[It then follows from Eqs. (44) and (45) that n and
P will have continuous first derivatives at t =0.]

Therefore, if me can show that there exists a
solution for t ~ 0 such that 8~ vanishes at t= 0 and
o, and P are real at t =0, then the solution for all
t possessing the proper continuity properties has
the symmetries

and

a(-t) =a(t),

n(-t) =a*(t),

P(-t) =P'(t).

(64)

(65a)

(65b)

In particular, if t=o corresponds to a minimum in
a(t), then the radius function is time-symmetric
about the minimum. We nom outline the calcula-
tions which demonstrate the existence of a solu-
tion with a minimum at t=o.

VI. NUMERICAL INTEGRATION

In this section we exhibit numerical solutions
which behave as just described in the neighborhood
of a minimum of a(t) (of elementary-particle di-
mensions) and which elsewhere are macroscopi-
cally indistinguishable from classical Friedmann
solutions (of cosmological dimensions).

The equations mhich are to be solved are Eq.
(49) for a(t) [with p given by Eq. (59) with Eqs.
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(39)] and the equations

eotX = pg ~OQe p

OP = 2Q OQe Q

(66a)

(66b)

for a(t) and P(t). The last pair of equations comes
from Eqs. (44) and (45) with I = 0. We choose the
initial conditions

o'(0)=1, P(0)=0, (6V)

m =10 ~ Q '~ =10' cm '= m . (69)

The results will be presented in terms of m ' as
unit of length and time.

In all the computations described here, the value
6 =0.824 was used. " In this case Eq. (68) becomes

a(0)=GmN=10 'm 'N. (70)

A larger 5 would imply a larger initial negative
pressure, and hence a more rapid expansion away
from a given minimum radius.

We took y = (6'+ 1)'~'. Then, since y*5 is real,
the time symmetry described by Eqs. (64) and (65)
is guaranteed; moreover, the initial value of the
pressure is negative,

p(0) =-[v a(0) ] 'mNy5,

to provide a positive second derivative for a at
t =0.

a(0) ~ 0.2/m

- lo/m

which satisfy Eqs. (63) and (41). We thereby re-
move the arbitrariness in the operators A, . The
initial conditions on a(t) are s,a(0) =0 [Eq. (62)]
and

g(0) =( /837r) Gm N(~ 6
~

+ 2) .

The latter follows from Eqs. (48) and (60). The
parameters which remain to be specified are m,
Ã, 6, and the phase of y [~y~ being determined by
Eq. (52)].

The value of m chosen for the computations is

The various solutions computed are then spec-
ified by the positive parameter N- or, alterna-
tively, a(0).

The differential equations were solved numeri-
cally on an IBM 360/91 computer by means of a
sixth-order Adams- Bashforth-Moulton predictor-
corrector algorithm. " Equations (48) and (41)
were verified as the computation progressed, to
maintain a check on the accuracy of the computa-
tion up to five significant figures.

The most significant result was found for the
initial value a(0) =0.2m ' (i.e. , N=2&10" »1).4'

The corresponding initial density is p(0) =10"m'
= 10 g cm, and c 'p(0) is negative and of the
same order of magnitude. The time-symmetric
passage of a(t) through this minimum value is
shown in Fig. 1. The initial negative pressure
impulse which sets off the expansion lasts for only
a time of the order of m ', but beyond that time
e,a has become so steep that the expansion con-
tinues and is not reversed by gravitational attrac-
tion until t and a(t) have attained cosmological
magnitudes. In Fig. 2 a portion of the solution for
a(t) is plotted on logarithmic a and t scales, with
a classical Friedmann solution superimposed.
Beyond t= 15m ' the curves become practically
indistinguishable. A similar description applies,
of course, to the portion of the curve to the nega-
tive side of 1 =0, where the universe is contract-
ing.

The conclusion is: If the closed universe and
the matter in it find themselves in the state con-
sidered here during the contraction (t &0), then
the geometry of the universe will follow very
closely the standard Friedmann behavior until it
has contracted to a radius comparable to the
Compton wavelength of the scalar particles,
whereupon, instead of collapsing to a singularity,
it will "bounce" into a new expanding Friedmann
stage, which is the time reflection of the contrac-
tion stage.

It was impractical to carry the numerical inte-
gration beyond the point t=t, =2.00&& 10'm ', at
which a(t, ) =3.94x10"m ', P(t, ) = (O.V5+ 2.95i)
x10", and (Ga'p), =8.23x104'm '. One can ex-
trapolate, however, to the Friedmann-like maxi-
mum of the solution. When a(t) attains its maxi-
mum, one has from Eq. (48)

a = (8w/3)Ga'p . (V2)

-0.8/m -0.4'
-I/m

I

0.4hn
I

0.San i

FIG. 1. Solution with u I'0) = 0.2m ~: time-symmetric
expansion from the minimum radius.

One expects that the WKB approximation (i.e., a
and P constant) will be good throughout the entire
period when a(t) is large and slowly varying. It
follows from Eq. (60) that a'p will also be constant
in this approximation. Indeed, inspection of the
numerical solution reveals that a(t), P(f), and
a'p have been practically constant (oscillating
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lO /m—

a(0)

lO}5/m—

e'4/m—
t = I l.75/m

tO'~/m

.Ol/m O. l/m

I

I/m IOhn lOOAn

FIG. 2. Solution with a(0) = 0.2m ~ (solid curve): approach to a Friedmann solution (dashed curve). The horizontal
and vertical scales are logarithmic, and the time origin has been shifted to the initial singularity of the Friedmann
curve, so that the latter becomes a straight line of slope 3. (The deviation of the Friedmann solution from the g ~)~
law due to the three-space curvature of the closed universe is negligible in the range of t plotted. )

around constant mean values) for a considerable
time before t, One c.an therefore use in Eq. (72)
the value G(a'p}, given above, obtaining a

30=10"m '=10' cm. This is a reasonable value for
the size of the actual universe. Smaller initial
values a(0) would yield larger values of a

It is interesting to note that, despite the close
resemblance of the solution to a dust-filled Fried-
mann universe during the period when the radius
is large, the state of the matter within the universe
is not an eigenstate of the number operators as-
sociated with the adiabatic approximation (see Sec.
III). Indeed, in Appendix C we show that eigen-
states of the adiabatic number operators must
lead to a collapse, rather than a time-symmetric
minimum.

Another example, for which the entire solution
was computed, is the case a(0) =0.6m '. The solu-
tion for a(t) is plotted on logarithmic scales in
Fig. 3 with a comparison Friedmann curve. The
Friedmann was fitted on the basis of six points
from the computed solution within a time interval
of length 4m ' about the maximum at t=204m ',
but the two curves agree within one or two percent
as early as t=5m '. The computed solution makes
very small oscillations (not visible in the figure)
of period em ' about the Friedmann solution, under
the influence of the alternating sign of the pres-
sure.

The maximum radius in this case is 129m ', or
about 10 "cm. Thus an increase of a(0) by a fac-
tor of 3 from the previous case (0.2m ') has re-
sulted in a decrease of a by a factor of 10".

Larger values of a(0) yield still smaller values of
a . If a(0) a m ', then a is of the same order
of magnitude as a(0), and hence there is a ciualita-
tive change in the solutions: instead of a modified
Friedmann expansion for t&0, one has small os-
cillations around a Friedmann collapse from a
maximum of magnitude approximately equal to
a(0); the case a(0) = 5m ' is shown in Fig. 4."

Returning to the case a(0) =0.6m ', we discuss
what happens to the solution after it passes the
maximum in Fig. 3. When the solution contracts
again, it apparently does not for a second time
pass through a positive minimum and reexpand.
As a matter of fact, the computed solution col-
lapses to a singularity (at t =400m '}even faster
than the corresponding Friedmann universe, be-
cause as the change of a becomes rapid, P in-
creases (particle production}, and hence the ener-
gy density and, in turn, ~0a rise above their classi-
cal Friedmann values for a given radius [see Eqs.
(6Q} and (48)] . The avoidance of the singularity
depends upon the phase relationship between the
contracting Friedmann-like solution and the oscil-
lating pressure term. If these two things are out
of phase, then collapse will occur. Our solutions
are set up so that negative pressure will reverse
the collapse at t=0; there is no visible reason in
this case to expect that the same thing will happen
at the end of the next contraction. It is probable,
however, that for certain choices of the parame-
ters (N and 6) the second contraction will be timed
relative to the pressure oscillations so that the
final collapse will be avoided aga, in. Note also
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lOO/m—

s(0) ~ 0.

IO/m—

i

O.I/m

l

I

I

I

I
I I

I/m

I

lO/m IOO/m

FIG. 3. Solution with a(0) = 0.6m (solid curve): approach to a Friedmann solution (dashed curve). The scales are
logarithmic as in Fig. 2, but the time origin has not been moved. The approach to the minimum can be seen at the
left. (The steepness of the contraction at the right is, of course, an artifact of the logarithmic plot. )

that, because of the accumulation of numerical
error, one cannot conclude from a numerical solu-
tion that the exact solution for a given N and 5
actually collapses to a singularity at the end of the
second contraction. ~

We believe that by a more general choice of
state one can improve the probability that collapse
is avoided at the end of the second contraction
stage. Whether or not the contraction will be re-
versed depends on the sign of p+ 3p during the
time when a(t) is near the critical value (m ', in
the case investigated) characteristic of the oscil-
lation period of p. If ~p ~

in its fluctuations attains
values which are large compared to p, then the
positive average value of p+ 3p becomes relatively
insignificant and each sign of p+ 3p is equally

5/m

3/m-

2/m-

likely. Thus the probability of stopping and re-
versing the collapse, for a random initial phase
relationship between p(t) and the Friedmann con-
traction, should approach 50%. However, the
values of (A~, A„) and (A~A~) which can be ob-
tained by varying N and 5 in Eqs. (55) and (56) are
not the entire range allowed by the theorem in
Appendix A, especially if N is required to be
large. The very large ~p~/p ratios discussed in
connection with Eq. (36) occur only for more gen-
eral states, to which our treatment of the infinities
may not apply. For this reason we have not in-
vestigated the matter further.

It is possible that for certain states (with definite
phase relations) the collapse will be avoided on
every contraction, so that the solution is literally
free of singularities, in marked contrast to the
situation in classical general relativity described
by the singularity theorems. We have not been
able to prove or disprove the existence of such a
solution within our approximation scheme. More-
over, the effect of particles created in modes
other than the lowest must also be taken into ac-
count before a definite conclusion can be drawn.

Finally, since the time interval during which
nonclassical behavior occurs is of the order m ',
the case m =0 is of importance. Our treatment of
the mode l =0 does not apply in that case. How-
ever, if one sets m = 0 in Eq. (36), one obtains

0-
0

I I I I I

L/m 2/m 5/m 4/m 5/m 6/m 7/m

FIG. 4. Solution with a(0) = Sm ~.

2(l+ (A~A) -x)i(2
p

which can be made arbitrarily large as before.
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The ratio is independent of /. Furthermore, ~,
becomes arbitrarily small for sufficiently large g.
Since , governs the frequency at which p changes
sign, it follows that p can remain negative for a
very long period of time. Therefore, coherence
effects of a massless field, such as the photon,
graviton, or possibly neutrino field, may have sig-
nificant influence on the behavior of a(t) during
the era when such fields are dominant. This prob-
lem is under investigation.

VII. SUMMARY

We have carried out a concrete calculation in
the semiclassical theory of the mutual interaction
of a massive scalar matter field with the geometry
of a closed homogeneous and isotropic universe.
(Neither the quantum nature of the gravitational
field itself nor nongravitational interactions
among the particles of matter have been consid-
ered )We. have circumvented the problem of de-
fining the "finite part" of the energy-momentum
tensor by considering only states for which we be-
lieve the precise form of this renormalization to
be unimportant. This and some other aspects of
the calculation, such as the exploitation of the
anticipated symmetry of the quantum state by
averaging the energy-momentum tensor over
space, should be of methodological interest in
other problems.

Our main goal was to study the impact of the
quantum theory on the classical singularity theo-
rems. The energy-momentum tensor was calcu-
lated for arbitrary quantum states consistent with
the symmetry of the model. On this basis we
showed first that the premises of the singularity
theorems (energy conditions) can be violated in
this theory. Then we exhibited solutions of the
coupled equations for the Robertson-Walker radius
function and the scalar field which violate the con-
clusions of the singularity theorems, in spirit, if
not in letter: A Friedmann-like collapse is ar-
rested at elementary-particle dimensions and
changed to an expansion. Although it appears that,
typically, the solutions do eventually collapse
after completing another Friedmann cycle, the ex-
istence of solutions which are completely free of
singularities is still an open question. The escape
from singularity at the end of a contraction stage
in our solutions is a quantum coherence effect,
which depends on certain phase relationships in
the mathematical specification of the quantum
state. We believe that classes of states exist for
which almost half of the possible phase relation-
ships are favorable.

Our model does not provide evidence that quan-
tum effects will always avert gravitational col-

lapse. It does, however, support the view that
such an effect can occur under certain circum-
stances. It would be of interest to apply similar
considerations to the gravitational collapse of a
localized massive gas cloud of fermions or bo-
sons."
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APPENDIX A: THE RANGE OF THE QUADRATIC
EXPECTATION VALUES OF
CANONICAL OPERATORS

0 ~(A'A) ~~,
0- l&AA)l' ~(A A)((A A) +1),

(Al)

(A2)

and only these.
The rest of the appendix is devoted to the proof.
First we show that Eq. (A2) must hold. The

technical assumption allows us to use the well-
known structure of the harmonic-oscillator repre-
sentation. The spectrum of A A is precisely the
nonnegative integers. Consequently, every nor-

Let A and A~ be the annihilation operator and
creation operator for one mode of a quantum field.
The representation of these algebraic objects which
is encountered in a quantum field theory is highly
reducible. Conditions are nearly always assumed
which ensure that this representation is a direct
sum of copies of the irreducible representation
associated with the one-dimensional harmonic os-
cillator. " Such conditions include": (1) the op-
erators Q=(A+At)/Wand P =-i(A-At)/W gen-
erate unitary groups satisfying the "Weyl rela-
tions"; (2) A~A (or Q'+P') is essentially self-
adjoint on an invariant domain of definition of the
operators.

Theorem. Suppose that a Hilbert-space operator
A and its Hermitian conjugate A satisfy [A, A ]
=1, and that the Weyl relations (or equivalent tech-
nical conditions) hold. Then the expectation values
of (the closures of) AtA and AA with respect to
normalized vectors in the Hilbert space take on
all pairs of values consistent with



2370 LEONARD PARKER AND S. A. FULLING

malized vector is of the form

g= P a„P„,
n=O

with

g la„l'=1,
n=O

(A3}

(A4)

r =x p la t'
lao l'

2p-1 2p- 3
2p 2p~ 2

(1 ) 1/2dp

p! dyP
O ~ (A10)

where A Ag„=ny„and &g„lg„& =1. Moreover,
AApn„ is an eigenvector of A A with eigenvalue g
and norm [(n+ 2)(n +1)] '~'. It follows that

Equations (A4} and (A5) become

p=O

&A'A& =- &qlA'Alp& = Z nla. l'
n=O

(AS)
-=la, I'F(x) (All)

and

l&AA& I
-=I& y IAA lp& I

(A A&=2la, l*g px'r,
p=O

= 2
I a.I'»'(x) . (A12)

For 0 & x &1 the series defining E(x) converges:
~Q [(n+2)(n+1)]' 'la„lla„„l.

n=O
F(x}=(1—x)-". (A13)

Using the Schwarz inequality, one finds that

l&AA& I'- Z nla. l'g (n+1) la. l'
n=2 n=0

~ &AiA&(&A~A&+ 1),

which is the content of Eq. (A2).
Next we wish to exhibit vectors yielding all the

expectation values in the range specified by Eqs.
(Al)-{A2}. It will suffice to deal with vectors
whose normalized e-particle parts are related as
in an irreducible representation. That is, we
write Eq (A3) as.

E'(x) x"
S'(x) (A14)

As x varies in the range 0 & x & I, (A tA) varies
through all numbers in the range 0 & &A A) & ~.

Having shown that the maximum value

l(AA) I'=(A"A)((AtA)+1) (A15)

Thus if
I
X I

& 1 Eqs. (AQ) and (All) determine the
coefficients of a normalized vector, which we de-
note by g{X}. (For definiteness one can take a, & 0.}

Since a power series can be differentiated in-
side its circle of convergence, Eq. (A12) shows
that (A A) is also finite when x & l. In fact, divid-
ing Eq. (A12) by Eq. (All), one obtains

4=+ a„ln&,
n=O

whereA[n)=Wnln-1). Then

(AA) = Q [(n+ 2)(n+ I)]'~'a e g„„.
n=O

{AV)

(AS}

can actually be attained for all finite values of
(AtA), we now verify that all the smaller values
of I&A» I are also allowed. Consider vectors like
the P(X) just described, except that a„ is replaced
by ea„ for n =2, 6, 10, . . . (i.e., for odd p). Then
the normalized expectation values of AA and A~A
become

a n+2 =A.
2 Qn (AQ}

for some complex number A.. It follows that a„=0
for all odd n. Let x= IXI' and

The main task is to show that the second inequal-
ity in Eq. (A2) can become an equality for all val-
ues of (AtA). When Eq. (AS) holds, the inequal-
ities in Eq. (A6) become equalities if and only if
(1) a, =0, and (2) the vectors to which the Schwarz
inequality has been applied are proportional:

(A A);+ a (A A)o
e &I&e+ +&I)0 t

where (A A)f and (A A)', are, respectively, the
contributions from the terms of even p and odd p
in the series (AS), and similarly for (1)f and (1)',
with respect to Eq. (A4). As e varies from 1 to 0,
(AA), goes continuously to 0 and &A~A& goes con-
tinuously to a positive limit, remaining always
greater than &A~A&;. It is easy to see that &A~A&;
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ff odd

Then (AtA) = ~ but (AA), after normalization,
equals one-half of its value for g(X), which is an
arbitrary nonnegative number. Also, there obvi-
ously are normalized vectors for which both (AtA)
and (AA) diverge.

Finally, from Eqs. (A8) and (A9) it is clear that
the phase of (AA) is just that of A. . Hence for each
value of (AtA) and I(AA) I all phases are allowed.

APPENDIX B: EQUATIONS FOR QUADRATIC
FIELD QUANTITIES

From Eqs. (46) and (47) one sees that a and P
(index I suppressed) enter the general expressions
for the density and pressure through the quadratic
con1binations

s= Ipl'= Ipl',
z =ctp =a*p*,

se = e'+P',
and the real part of

v=a*P .

(B1)

(B2)

(B3)

(84)

To obtain a closed set of equations we introduce
also

It follows directly from the equations of motion
for u and P [Eqs. (44)] and their relation to the
careted variables [Eqs. (39)] that these five quan-
tities obey the set of first-order equations

Sos=2y 'B~Rev,

eov =y soy(28+ 1)+2ttd5

~oz =y coy y

ao~ = 4y-'aoyz —2icoq,

(B6}

(B7}

(B6)

(B9)

) «(A~A)oi, and, therefore, as X- I and (AtA),-~ one has (AtA) f-~. Since (AA), and (A~A),
are continuous functions of both e and A. , one sees
that the curve in the (AtA) —I(AA) I plane (see
Fig. 5) defined by Eq. (A15) is dragged down in a
continuous manner toward the entire (A A)-axis
as e varies from 1 to 0. Every point of the region
allowed by Eq. (A2) (except at infinity) is reached
by some choice of e and A., which is what was to
be proved.

It remains to treat the infinite cases. Consider
a vector like p(a) except that a„v0 for n =1, 5, 9, . . .
and

Ia„I'=1,
ft odd

(A'a)

FIG. 5. Range of the quadratic expectation values.
The curve ~= 1, which is defined by Eq. (A15), is
parametrized by A, . As e 0 the point corresponding
to each A moves down to the (A~A) axis, and thus the
image of the curve sweeps through the entire allowed
region. (The shapes indicated for the A, &, A2, and e & 1
curves are purely schematic. )

~op = —2$40lo (alo)

APPENDIX C: INEVITABILITY OF COLLAPSE WHEN
PARTICLE NUMBERS ARE DEFINITE

Here we show that if the quantum state is an
eigenstate of the number operators N, =Ai~ Af
in a range of time when the adiabatic approxima-
tion of Sec. III is applicable (e.g. , during the
"macroscopic" period of the history of a Fried-
mann universe), and if a finite number of modes
can be assumed to dominate, then a minimum of
the radius like those exhibited in Sec. VI cannot
occur in our model. It follows that for the solu-
tions in Sec. VI the state is a coherent superposi-
tion of states with different numbers of particles
in the various modes (during the epochs when the
expansion is sufficiently slow for the particle no-
tion to make clear sense), to the extent that the
neglect of the higher modes in the energy density
is justified.

W'e introduce coefficients n, and P, as in Eqs.
(37)-(41), but require that a(t,) = 1, p(to) = 0 for
some to in the adiabatic range, rather than at a
minimum of a(t) as in Secs. V-VI. Thus g, is the
solution which is approximated near t, by Eq (27). .

where y is defined in Eq. (37). Equations equiva-
lent to Eqs. (B6) and (B7) were given in Ref. 25.

Equations (B6)-(B10)may have an advantage over
Eqs. (44) in numerical integrations, in general,
since they do not require evaluation of J'~, (t')dt'.
This quantity reduced to mt, however, in the corn-
putations reported in this paper. Consequently,
the only use made here of the above equations is
the verification that the pressure and energy den-
sity used in the computations satisfy the continuity
equation (61).
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(Throughout the adiabatic period we have P =0.)
For a state of definite particle numbers N, we
have (A, A, ) =0, (A~~ A, ) =N, . Thus from
Eq. (47) we have

p=(»'u') 'Q~, (»(a+1)(IPil'+k) . (C1)

Let us assume as in Sec. V that only a few terms
contribute significantly to this sum, and that for
them N, „»1. Then

p=(v'a'} 'Q Ng„(u, (Ip, I'+-,'),
ga

(C2)

where the sum is finite. There is a similar ex-
pression for the pressure, which is positive at

tPe

The behavior of a(t) can now be studied qualita-
tively by inspection of the initial-value Einstein
equation (48). Suppose that a(t) has a minimum at
some point t, . (This is not to, since the pressure
is positive at t,.) Since a(t, ) &a(to), &u, (t,)
= [t (1+2)/a(t, )'+ I']'~' is greater than ~,(to).

Since s~(t, ) =0, (s,a)'+ 1 is not greater at t, than
at t, . Finally, the value of IP I'+-,' at t, is greater
than or equal to that at to (viz. , —,'}. Thus, from
Eq. (48), one has

a(t, ) = [(s,a)'+ 1],' (8/2v)t"

& Q&, ~,(t,)(IP,(t,)l'+ l)

~ (same expression, t, —t,) =a(t,) .

This is a contradiction.
ln physical terms: When the particle numbers

are definite initially, the effect of particle crea-
tion can only be to increase the energy, and hence
to accelerate the collapse relative to its classical
course. What has been shown in the body of the
paper is that for a coherent superposition of par-
ticle numbers, particle creation contributions can
cause cancellations in the energy, and hence a
slowing of the contraction and an escape from the
singularity.
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using a wave number cutoff as large as (Ghc )

and dropping manifest vacuum terms (i.e. , those
independent of P as well as N), then one Gnds that the

present value of N is just on the borderline of being
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results.

+%hen 5 is not of the order of magnitude unity, the
division between expansion and collapse behavior as a
function of. a (0) might occur considerably away from the
point a(0) = m-'.
+The point is that, because of amplification of

numerical error, it is very difQcult to reproduce a solu-
tion of the type of Fig. 3 or Figs. 1 and 2 by starting
with the computed values of a, boa, a, and P at a point
high on the curve and integrating backwards. %hen a
becomes small, the new approximate solution will
deviate significantly from the original one, and a
"collapse" will usually (at least for the states we have
studied) be observed in the numerical output, even
though the exact solution does not collapse.

SAfter this paper was completed, E. P. Liang pointed
out to us (private communication) the following. From
Eqs. (19) and (20) one has

P+ 3p —2(QO~) —m p2.

This quantity can become negative even when p is
regarded as a real function or c-number. It therefore
seems likely that one can find "bouncing" solutions of
the coupled Einstein and Klein-Gordon equations with a
c-number scalar field. The question then arises as to
how essential a role quantization plays in the effect
we have studied. Furthermore, will the effect occur
for fields of nonzero spinV

Several remarks can be made which help clarify the
relevance of quantization to our results. First, it is
important to note that expectation values of the formal
expression above for p+ 3p diverge for the quantized
field, so that renormalization is necessary. As is
well known from the Minkowski-space theory, renormal-
ization can alter properties such as positive definite-
ness of an operator. This is well illustrated for the
above operator in the case when m = 0. Then

P+ 3P = (~04')

is positive definite (p is a real function corresponding
to the Hermitian quantized field used in this paper).
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