
PHYSICAL REVIE% D VOLUME 7, NUMBER 8 15 A PRIL 1973
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The dominant-range perturbations of the lunar orbit are calculated in relativistic gravitational theory,
the results being applicable to all metric theories of gravity (a class of theories which includes general

relativity). By searching for the various effects calculated in this paper using lunar laser ranging, the

several parametrized post-Newtonian coefficients of the metrical gravitational field can be determined,
thus pointing toward specific relativistic, post-Newtonian theories of gravity and empirically ruling out
other theories.

I. INTRODUCTION

Efforts to understand the orbital motion of the
moon around the earth have historically played a
central role in the development of gravitational
theory, starting with Newton's success in show-
ing that the moon's motion was a long-range
manifestation of the earth's gravity. Precise fit-
ting of the lunar motion later became a testing
ground for perturbation-theory techniques and
the gravitational many-body problem. In more
recent times, since the revolution in gravitational
theory brought by Einstein's relativity theories,
several calculations have been made to determine
whether post-Newtonian (relativistic) gravitational
effects might be detectable in the lunar orbit.
Concentrating on secular effects such as node and
perigee motion, workers concluded that it would
not be possible to detect relativistic effects.

In the h,st few years U.S. Apollo astronauts have
positioned several (three at the time of this writ-
ing) laser corner reflectors at separate positions
on the lunar surface. This permits ranging be-
tween earth stations and the lunar surface reflec-
tors by timing the round trips for laser pulses.
Accumulation of several years' range data will
allow for the detection and elimination of range
terms produced by wobble of the earth and the
moon, leaving earth-moon range data with an ac-
curacy of about 10 cm or better in measuring the
oscillatory contributions to the interbody distance
(the mean earth-moon range can be known only to
the precision of the knowledge of the speed of
light) 2 Baierlein' calculated oscillatory contri-
butions to the earth-moon range using Einstein's
general relativity theory of gravity; he found at
least one term which could possibly be detected
by laser ranging: a 100-cm amplitude oscillation
with frequency 2&v —2Q (&u is the moon's mean mo-
tion about the earth; 0 is the earth's mean motion
about the sun). Nordtvedt3 showed that if Ein-
stein's equivalence principle failed for massive

celestial bodies because of the internal gravita-
tional energy of the bodies, the lunar orbit wouM
possess an anomalous range oscillation of about
1000-cm amplitude and frequency ~ —Q. This
perturbation is predicted to vanish in general
relativity but not in most other gravitational the-
ories, ' so this can be considered a test of one of
general relativity 's null predictions.

There now exists a general method for analyzing
gravitational solar-system experimental effects
within the framework of all possible metric the-
ories of gravity (general relativity is in this
class). The foundation for this approach to ex-
perimenial solar-system gravity is the para-
metrized post-Newtonian (PPN) metric, which is
given in its most complete form byWiO and
Nordtvedt 'For .weak gravitational field (solar-
system environment) purposes any metric theory
of gravity can be summarized by specifying seven
dimensionless coefficients which multiply various
gravitational potentials, one theory differing from
the other only in the value of these PPN coef-
ficients.

Within this framework the various range oscil-
lations which might result in the lunar orbit will
be calculated, and the PPN coefficients which are
determinable by measuring the various oscillatory
range contributions will be exhibited. A few ef-
fects which perhaps can be enahnced by ranging
to low earth-orbital satellites will be discussed in
a later section.

For simplicity of preseniation, we will neglect
lunar node (out-of-plane) motion, and a circular
lunar orbit will be assumed whenever possible
[the results of this paper can be considered ihe
(eccentricity) e —0 and (inclination) i - 0 limit of
the completely general expression for the relati-
vistic range perturbations]. Since ~e ( «1 and
)f)«1, our results give the most measurable ef-
fects. Table I lists the dominant-range oscilla-
tions found in this paper's analysis.

Our results disagree with those of Baierlein 2 on
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TABLE I. Summary of largest lunar range oscillations.

Range oscillations (in centimeters) Equation No.
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TABLE II. Definition of symbols used.
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Mean angular frequency of the moon around the earth
Natural frequency for radial perturbations of the lunar orbit; also angular frequency of lunar orbit

with respect to perigee
Mean angular frequency of the earth around the sun
Eccentricity of an orbit
Inclination of an orbit
Mass of sun
Mass of earth
Snn-moon distance (also can be vector %)
Sun-earth distance (also can be vector Rp)
Earth-moon distance (also can be vector r)
Newton's gravitational constant
Speed of light

Coefficients (dimensionless) which appear in the most general gravitational metric potential
expression. Observational effects are proportional to some linear combination of these
seven PPN coefficients.

A parameter indicating a breakdown of Einstein's equivalence principle
@f0/M i=-1+6)

Velocity of sun through universe
Part of w lying in moon orbital plane
Spin angular velocity of earth
Sun's gravitational acceleration at earth
Internal gravitational energy of a celestial body
Time coordinate measured from occurrence of a new moon
Time coordinate measured from occurrence of earth-orbit perigee
Longitude of ay' from new moon deGning t
Longitude of (au &w') from new moon defining t
Velocity of moon relative to earth
Velocity of earth relative to sun
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the presence of the 100-cm amplitude, 2 (~ -0)-
frequency term he found in general relativity; we
here find this term to be a Lorentz contraction of
the lunar orbit when viewed from the heliocentric
coordinate system (the earth-moon system moves
relative to the sun at 30 km/sec); however, this
contraction is unobservable from the inertial
frame of the earth, in which the laser ranging ex-
periments are performed.

Table II defines the various symbols used in
this paper; also see Fig. 1 for a view of the prob-
lexn's geometry.

Earth, mass m

on

II. THE LUNAR EQUATION OF MOTION

The moon's equation of motion is determined by
the gravitational environment produced jointly by
the sun and the earth. For our purpose of obtain-
ing relativistic corrections to the classical mo-
tion, the moon is treated as a massless test body.
The earth is assumed to move in the gravitational
environment of the sun and the earth itself. (We
incorporate two possible effects in which the
earth's own gravitational self-energy alters its
own equation of motion in the sun's gravitational
fieM. The first such effect is the possibility that
the earth 's gravitational-to-inertial mass ratio
differs from unity by an amount proportional to
the earth's internal gravitational energy. 4

Another effect is the possibility that the spinning
earth self-accelerates due to "preferred inertial
frame" gravitational potentials '; see Appendix A.)

Assuming a metric field g„„(r,t) jointly produced
by the sun and the earth, the moon's equation of
motion is obtained by requiring the action integral

dx dx"A= g„„(r,t) dt

to be an extremum for the moon's trajectory r(t).
This is the geodesic hypothesis for test particles
in metrical theories of gravity. The metric field
indices p and v separately sum over 0, 1, 2, and
3, equal to ct, x, y, and z, respectively. The
various metric field components have the forms

g~= I -2/+8

g'Ogy gpss agog=-h y

and

(2a)

(2b)

(2c)

Sun, mass M

g,„, etc. =0.

g is the Newtonian potential of the sun plus the
earth divided by the square of the speed of light;

—+—

FIG. 1. The sun is at rest and the earth is at position
Ro relative to the sun and moves at velocity vs, while
the moon at position R =Ro+r moves at velocity vs+v,
i,e. , v relative to earth. w' is the component of the
sun's velocity through the universe lying in the plane of
the earth and moon orbits; w' makes angle &0 with the
earth-moon line (r) at some particular new moon used
as a time reference. cu is the earth's spin angular
velocity; (~ xw') is the part of this vector cross product
lying in the orbital plane; 8& is its longitude angle with
respect to the same new-moon event.

(See Fig. 1 for definitions of M, I, R, r, etc.)
8~2' are additional potentials proportional to 1/c4;
h is a 3 vector pote-ntial proportional to 1/c',
while y is a dimensionless PPN coefficient which
varies from one gravitational theory to another
and has value unity in general relativity.

The oQ'-diagonal space-space components of
g„„(r,t) are made zero [Eq. (2d)] to the necessary
approximation by choosing an appropriate "gauge"
or coordinate system, a freedom available to us
in metrical gravitational theories. AQ four space-
time coordinates can be transformed to new co-
ordinates,
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X'" = f"(X"),

which then generate changes in the metric field
components,

(4) Eqs. (2c) and (2d). A remaining gauge freedom
is at our disposal,

X&0 f0(Xv) (6)

aX' eX~
g'PP=~~iP ~~rl gyy ~

Use of three of the coordinate transformations
produces the "isotropic coordinate" properties of

to put the metrical field components h~ and h into
a standard or convenient form.

Variation of the action integral given by Eq. (1)
generates the equation of motion

a=Vc2$+~Vc (gm-hg')+ (y+~)(v+v, )2V) —(v+v)&& (V &&ch)

1 (v+v, ) (v+v, ) a(v+v, ) ah, , da-c' c'

with v+v, being the velocity of the moon, and a being the acceleration.
The general form of g„,(r, f) in metrical theories has been found in previous work'; here we specialize

to the case of two sources, the sun and the earth, with the sun at rest and the earth moving at velocity v,
relative to the sun, while the earth accelerates at rate (1 +6)g, (6 e 0 is discussed in Appendix A). g, is the
sun ' s gravitational acceleration,

GMRO
(6)gs= —

SBo

(See Fig. 1.)
Using our final gauge freedom given in Eq. (6), the general metric field expansion can be put into the

form

g~=1 —2g+2P/2+(4P —2 —2p2) 4
—+ — —(2y+1+ p~ +a~) 4 v, 2+ p~ ~+ (v, r)~

G'Mm 1 1 Gm Gm
s C4r s 1 C4rs

G m M S' Gm-+a,—4
—~(W r)'+ —,(W R)' +(a, —a, —a )g —,+(a, -2a, )—~

—W. v, , (9a)

Gm -Gm
& W G — mr MRh=(2y+2+-,'a, ) ~ v, --,'(1+a, -p, )V s r v, +&a,g ——a, —,V + W,1 csr s c r c c (9b)

and

gxx = g yy
= ggc = -~ —2A y (9c)

with g given by Eq. (3). W is the velocity of the
coordinate frame with respect to a "preferred
universe rest frame;" in this case % is the sun' s
velocity through the universe. y, P, p, , p„
a» and as are dimensionless PPN coefficients
which are specified when choosing a particular
gravitational theory. (See Refs. 6 and 6 for com-
pilation of the PPN coefficients for several rep-
resentative theories of gravity, and for discus-
sion of various experimental determinations of
the coefficients' values. }

The coefficients can be given physical interpre-
tations: y determines the degree to which mass
distorts the spatial geometry of nearby physical
objects; P is a measure of the nonlinearity of the
gravitational fields; e„e„and +s measure the
extent and manner in which the universe rest
frame may enter local gravitational physics,
while p, and p, signal breahdown of one of the
energy-momentum conservation laws usually

present in physical theory. ' In general relativity
the parameter values are

y=P=&,

Q~ —+ —Qs —p~ —p2 —0 .
(10a)

(10b)

In the next several sections the various oscil-
latory earth-moon range contributions are calcu-
lated, which should be measurable by lunar laser
ranging experiments.

III. "LORENTZ CONTRACTION" OF LUNAR ORBIT

Simply from considerations of special relativity
the orbit of the moon ought to be flattened or con-
tracted in one dimension when viewed from the
heliocentric coordinate system in which the earth-
moon system travels at speed v, . However,
when viewed from the inertial frame of the earth,
this contraction is not "seen" or measured. The
calculation of this section verifies this, although
additional observable flattening of the lunar orbit
exists if the PPN parameters n, are nonzero.
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Gm V,
'

X y2 c2 (11a)

and

Using the equation of motion given by Eq. (7) and
the metric field given by Eqs. (9a)-(9c) we find
acceleration terms of order Gmv, '/c'r' acting on
the moon:

a&„) =[z~+-,' (n, —a, —n, ) + (-,
' +-,' o.,) cos2((u -Q)t]

= +35a, cos2(&v-Q)t cm (13b}

when evaluated for the lunar orbit. The nonoscil-
latory part of the radial perturbation in Eq.
(1la) alters the orbital radius-frequency relation-
ship for the orbit. The ~~ term properly adjusts
according to special relativity the moon-as-a-
clock rate when viewed from the heliocentric co-
ordinate frame. The observable part of the orbital
readjustment is

Gal Vs
a«) =-, c&» ', sin2(co-Q)t,'y' c (1lb) V 2

(&u'r'), b, = Gm 1 —;—,'(2a, +2o., —a, ) . (14)

where the subscripts (r) and (t) refer to radial
and tangential components. ~ is the moon's angu-
lar frequency around the earth; Q is the earth' s
angular frequency around the sun. A circular
Newtonian lunar orbit lying in the earth's orbital
plane is assumed as a first approximation. Time
is measured from a new-moon lunar phase.
Using the basic range perturbation equation of
Appendix 8, Eqs. (1la) and (1 lb) lead to an os-
cillation of the earth-moon range:

X(t)= 1+-—+ —,'a — ' rcos2(&d -Q)t. (12)
SQ 1 iv2
3~ ' '4c'

The Q/~ term in the bracket is canceled by
another term in Eq. (26). A Lorentz transforma-
tion to the earth's rest frame leaves an observable
Qattening of

IV. NONLINEAR GRAVITY EFFECTS

The moon's equation of motion includes some
accelerations nonlinear in the source masses, in
particular terms proportional to mM. We collect
in this section all perturbations proportional to
(Gm/c'r)g„ terms functionally proportional to
(v'/c')g, (v is the moon's velocity relative to
earth) will be included also as v /c' =Gm/c'r for
the lunar orbit. Also included are accelerations
of the moon relative to the earth proportional to
-5g„as discussed in Appendix A. The resulting
perturbing acceleration components of the above
form are

Gm
a&„, =. (3y+2+-, a,), -5 g, cos(&d -Q)t (15a)

v 2

X (ta)= ~)2+am '2 rcos2(&d -Q)t (13a) and

1 1 Gm
a&, )

= [y+-, +2P --, (n, + p, —a,)], +5 g, sin((u —Q)t. (15b)

Use of Appendix 8 yields the range perturbation

X(t}= (y+1-4P+-, nz+ p, —n,), —35 ' cos(&L)-Q)t .Gm g,' e'r 2~0 (16)

An additional term with the same frequency and functional dependence on physical parameters as in Eq.
(16} is obtained in Sec. VI. The combined range perturbation of this form then becomes

X(t}= (y+3 —4tt +-,a, + p, —n,}, —35 ' cos(&d -Q)t.

Evaluating this for the lunar orbit and estimating the earth's internal gravitational energy in order to give
5 a value (see Appendix A) yields

X(t) ={6(y+3-4p+ —,a, + p, —u, ) +10 [(4p —3 —y- n, + a, —p, ) + 3(a, + p, —p,)]jcos(~ —Q)t cm.

V. RENORMALIZATION OF G
BY PROXIMITY OF MATTER

Collecting all acceleration terms of the moon
proportional to (GM/c'R, )(Gm r/r'), terms which
incidently are also nonlinear in the source masses,
the frequency-radius relationship for the moon

becomes

ver =Gm 1 —(4P —1+2y —~p )2 cd
However, after correcting clock rates and ruler
calibrations due to the solar gravitational poten-
tial in the earth's vicinity, the above relationship
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when quoted in earth measurements becomes

GM(sPr'), =Gm 1 —(4P -3-y--,'p ), . (19)'2 csR

The result of Eq. (19) agrees with previous calcu-
lations on the renormalization of Newton's grav-
itational constant due to proximity of matter, only
here the result is quoted in the new PPN language.
As the earth orbits the sun in a slightly eccentric
orbit, Ro changes with a twelve-xnonth period,
producing a perturbation on the lunar orbit. If

R,(t) = Ro(1 -e cosQt')

(t' is measured from earth-orbit perigee), then
e is the eccentricity of earth's orbit, and the
range perturbation on the moon is

The static part of Eq. (24a) alters the angular fre-
quency of the moon's orbit:

6&v =-,'(2y+1), Q .GM
c Ro

(25)

VVsX(f)= ——,'g, ,' ~ cos2(&o —Q)t;
C (d

(26)

This effect is the "geodetic precession, " which
results from orbiting a massive body M at distance
Ro at angular frequency Q. Equation (25), for ex-
ample, would give the precession rate of a, gyro-
scope in orbit around the sun." (If the moon's
orbit were reversed, «v would change sign). The
oscillatory parts of Eqs. (24a) and (24b) give a
range perturbation

X(t) = (4P -3 -y-~p, )e, rcosQt'GM

cRo
= V(4P -3 -y--,'p, ) cosAt' cm

when evaluated for the lunar orbit.

(20b)

however, this term exactly cancels a term in Eq.
(12).

VII. MACHIAN EFFECTS PROPORTIONAL TO w v

VI. MOTIONAL EFFECT PROPORTIONAL TO vv

and

Gm vvs
a&„& =-(2+-, a,)»' cos(&d -Q)trR c2 (21a)

Collecting the acceleration terms of the moon
proportional to (Gm/r')vv, /c~ leads to perturbations
of frequencies &u —A, 2(&u -Q), and a secular
term. The & -0 perturbation comes from accel-
eration components

The general metric field given by Eqs. (9a)-(9c)
include potentials dependent on the velocity of the
sun relative to the universe —w. Such potentials
are called "Machian, " because they produce solar-
system gravitational effects dependent on the
earth's relationship to the universe's mass, in
line with ideas first presented by Mach in the late
19th century. In making quantitative estimates in
this paper we use for w the sun's velocity in our
galaxy. This velocity has magnitude of about 200
km/sec and direction given by

Gm vv,
a«& = — »' sin(&d —A)t,r c (21b) L~ —-60

~ 0o
which yroduces a range perturbation0, Gm vv, 1

X(t) = —--,'a, , +' cos(&v-A)t .
co ' r' c' (oQ

(22)

The first part of Eq. (22) combines with the re-
sults of Sec. IV to give a perturbation combination
that vanishes in general relativity [Eq. (1V)].
That leaves here the new effect

Gm vv, IX(t) —-4 Q& g p cos(&&& —A)tc eQ

= -40a, cos(&v Q)t cm-
(23a)

(23b)

when evaluated for lunar orbit. Additional pertur-
bations have the comyonents

Vs VVsa&„=-(2y+1)g, ~' +g, ,' cos2(«& -Q)t (24a)c c

where L is the latitude of w with respect to the
ecliptic plane, and Q is the longitude of w mea-
sured from the vernal equinox.

Perturbations proportional to «& v/c' either mul-
tiply m/r~ or I/R'. The first type produces only
a radial acceleration,

Gm vw'
a&„& = --, a. . . sin(&dt —80), (2V)

where 8, is the longitude angle of w (w' is the part
of w in the lunar orbital plane) at some new-moon
phase, and t is measured from that particular
new-moon phase. Equation (2V) produces a range
oscillation,

X(t) =+4 &&&&, , sin(&vt —8,), (28)
Gm vw' 1

and

V Vs
a«& = -g»' sin2 (&v —Q)t . (24b)

where &o is a natural frequency for radial yertur-
bations (in astronomical language 2&&/&d, is the
period between perigee passages for the actual
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lunar orbit). ~ —~0 is the rate of precession of
lunar perigee with respect to inertial sPace; this
period is about 1V years E. valuations of Eq (.26)
for lunar orbit gives approximately

GM w'v
a«& =-, a, 2 2 sin(At —80),

RQ c

which gives a range oscillation

(30)

X(t)= +4400a, sin(&ut —80) cm. (29) X(t) =
& a», —f sin(At -80),

GM me'

AQ C (d
(31a)

The perturbations proportional to g, u vjc' pro
duce a radial acceleration,

= 90a, sin(At —80)

when evaluated for lunar orbit.

(31b)

VIII. MACHIAN EFFECTS PROPORTIONAL TO w~

Collecting perturbations proportional to (Gm/r ')wv Jc' yields the acceleration components

0( )
=

~ 2 {(a~—2 a2 a~) sin(At —80) —g a2 sin[(2~ —Q)t —8,])
Gpl w 5 1 ~

r c

and

a(,) = a. . . ' cos[(2(u —A)t —8,],Gm w'v,
r c (32b)

which produces a range oscillation

Gm w'v, 1
X(t) =, , ' ~{(a,——,

' a, —a, ) sin(At —&0) —&a, sin[(2(u —A)t —8,])c' (33a)

= 2700(a, --,' a —a~) sin(At —80}—450a, sin[(2+ -A)t —80)] cm

when evaluated for lunar orbit.

(33b)

IX. MACHIAN EFFECTS PROPORTIONAL TO w2

The perturbations proportional to (Gm jr')w'/c' give acceleration components

Gm w' 2
0&

&

= g a2 2 [1+cos (2(lit 28&&}] (34a)

and

Gm w
a«& =-,' a» — sin(2&A —28,) .r c (34b)

These accelerations produce a range oscillation

Gm w'2 I
X(t) =~»a» —~ cos(2+t —28,) (35a)

= 1500a, cos(2&et —280) (35b)

when evaluated for lunar orbit. The time-independent part of q„ in Eq. (34a) rescales the magnitude of G
(Newton's gravitational constant) in an unobservable manner.

X. MACHIAN TIDAL EFFECTS

The ma)or Newtonian perturbation on the lunar orbit is the tidal force of the sun. In the PPN metric the
sun has an additional gravitational potential acting on the earth and the moon of the form GM(w ~ R)~/R',
which yields a contribution to the acceleration of the moon relative to the earth:

a = a2, g g(w Ro) r +3RD wr ' wR0-
2

'
R g Row' wry 0+3 RawR~ r w5c 0

Q

which has acceleration components

(36)
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«„& = a, , r — (~~ +-', cos(2Qt —28,) --", cos(2&ut -28,) +~8 cos(2&u-2Q)t —Icos[(2&u+2Q}t -48,]} (3ga)C

and

I 2

a«& = a ~ r — +sin(2&u-2Q)t -~6 sin(2&ut -280) + PI sin[(2&u-4Q)t+28$];
0

these acceleration components give a range oscillation of

GM m'2 1
X(t) = a, , r — —,(Icos (2Q t —28,) + Icos (2&ut -28,)

0

+ ~6 cos[(2&u —4Q}t+280] -h cos(2&u -2Q)t+ ~~~ cos[(2&u+2Q)t —480]j

= a,(33cos(2Qt - 28,) + 24cos(2&ut —28,) —6cos(2&u -2Q)t

+ 28 cos[(2&u -4Q)t +28J + 26 cos[(2&u+2Q)t -48,]j cm

when evaluated for the lunar orbit.

(37b)

(36a)

(38b)

M. MACHIAN SELF-ACCELERATION EFFECT

In Appendix A it is mentioned that a spinning
celestial body will self-accelerate at the rate

I

particularly interesting in terms of searching for
their effect on low earth-orbiting satellites.
Equations (23a) and (28) expressed in terms of
their dependence on orbital radius are

2 XW, (39) X(t}= —,
' a» w' sin(&ut —8,)

Gm, 1
~ c~r

«& &= Sa, ', l&uxw'Icos(&ut-8, ),(y) s ~ (40a}

a& &
= —a ~&uxw ~sin(&ut —8 ),Mc

where (&ux w') is the component of &uxw lying in
the orbital plane of the moon, and 8, is the longi-
tude angle of (&ux w') from new-moon phase.
The accelerations in Eqs. (40a) and (40b) produce
a range oscillation of approximately

where U~ is the body's internal gravitational en-
ergy, M its mass, and & its spin angular velocity.
Applying Eq. (39) to the earth-moon system, the
moon acquires an acceleration relative to earth
which is the negative of Eq. (39) evaluated for
earth parameters. The components of a are

~a a Ro cos ~-0 t. 42
Gm Q

'c~r 0 0+~0-(u

For low earth orbit the second term in Eq. (42)
has an approximate magnitude

X(t)= -2000a, cos(&u -Q)t. (43)

The first term in Eq. (42) requires special con-
sideration. The 1/&u —&u, factor does not affect
the accuracy with which we can estimate the n,
in that term (see Appendix C). However, Appen-
dix C indicates that nmrimum estimation ac-
curacy occurs for experiments in which (&uo- w)T
«1, T being the total time of a ranging experi-
ment. The 1/r factor improves the accuracy of
estimating n, for low orbits.

X(t)=-,'a, e, e cos(&ut-8, )Mc' &u(&u, -&u

= 5 x 10'a, cos(&ut —8,)

(41a)

(41b)

APPENDIX A: SELF-GRAVITATIONAL EFFECTS
ON THE EQUATIONS OF MOTION

OF MASSIVE BODIES

when evaluated for lunar orbit.

XII. RANGING TO LOW EARTH-ORBITING SATELLITES

Most of the oscillatory range effects calculated
in this payer become smaller in amylitude for
satellite orbits close to earth, but a few effects
grow with decreasing orbital radius. This can be
seen by examining the functional dependence on
the physical parameters of each of the range ef-
fects calculated. Two range oscillations look

Usually one obtains the equation of motion of a
celestial body by assuming it moves in the grav-
itational potentials of aQ other bodies of the sys-
tem. But in the typical metric theory of gravity,
internal gravitational fields have been found to
produce anomalous accelerations of massive
bodies. Two such effects are discussed here and
used in this paper to produce contributions to the
lunar range.

There is a coupling of the internal gravitational
fields of massive bodies to the external fieMs,
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which leads in general to a breakdown of Einstein's
equivalence principle for massive bodies. The
gravitational-to-inertial mass ratio of a spherical,
nonspinning celestial body becomes ~' and

h2r =-V'(r)+ —,+a&,)(t)

h =ra«&(L) .

(81)

(B2)
a =1+[(4P —2 —y —&r, + n, —p, )

Ms
U~+3(&r2+ Pm

—P&)]M ~Mc
=-1 +5, (AI)

Subscripts (r) and (L) refer to radial and tangential
components; the prime denotes radial derivatives
and the dot denotes time derivative. Linearizing
Eqs. (Bl) and (B2) about a circular orbit by as-
suming

where Ug is the internal gravitational energy of
the body, and Mc' is its total mass energy. A
5w0 for earth is used in Sec. IV to obtain a rela-
tive earth-moon acceleration. 6 =0 in general
relativity but not in most other theories of gravity.

One of the potentials in the metric expansion of
Eq. (9a) is

r =r, +X(t),

h =ho+5h(t)

results in

Sh 2A 5hX = -V"X— X+a(„) +
p rp

C~ mt
5g —(&l~ —2&r~) —4~&~

)

w' v& ~pp 1 s (A2)
and

5h = r,a«) (t) .
where many mass sources m, moving at velocities
v, are assumed. Considering a massive celestial
body in rotation at angular velocity & and summing
the body's interparticle forces resulting from the
potential in Eq. (A2) results in a net seLf ac--
celeration of the rotating massive body, '

Defining

V" (r, ) + 3&u' =- &u,', (B2)

where ~ is the circular orbit angular frequency
and ~p is the natural frequency for radial pertur-
bations, the radial equation of motion becomes

Uc
a, = 3cv3 2 coxw,' Mc'

(The a, part of the coefficient in Eq. (A2) has its
effects canceled by another e, term in the total
equation of motion of the body's mass elements. )
The acceleration in Eq. (AS) is used in Sec. XI to
produce a lunar range oscillation.

t
X+&u,'X =

a&„& (t) +2&u a«& (t')dt' .
If the perturbation is oscillatory,

a&„)(t)=Ae'~',

a (t) =~Be'~'

then Eq. (B4) has the inhomogeneous solution

(B4)

(B5)

APPENDIX B: BASIC RANGE-PERTURBATION
EQUATION

Consider a body in near-circular orbit around
a central body. The complete secular potential is
V(r); V(r) is not necessarily 1/r, since a quad-
rupole moment of the centra, l body or secular per-
turbations by other solar system bodies contribute
to V(r). The basic equation of motion of the body
experiencing a time-dependent perturbation a(t)
is then

p
(B7)

except for the case of resonance (&u' = &u,).
tion (B7) is used throughout this paper to calcu-
late the various range oscillations. Equation (B4)
also has the homogeneous solution

X(L) = -r,e cos(&u, t —
&L),), (BS)

which represents the eccentric motion of precess-
ing elliptical orbits. Perigee occurs at time
P~/&u, and recure with period 2w/&u„ the perigee
precession rate being ~ —~p.

APPENDIX C: MEASUREMENT OF NEARLY RESONANT FOURIER SIGNALS

Assume there is a time-dependent physical signal (eg., the range data in laser ranging) of the form

S(L) =A sin&ut+B sin&u't+ C cost&u. (CI )

The frequencies ~ and ~' are assumed to be known and close together. The goal is to estimate A. from a
series of measurements S; made at times t, . A least-squares estimation procedure gives the algebraic



2356 KENNE TH NORD TVE DT, JR ~

equations (written here in matrix form)

+sin'(ut,
C

Q stuart, sin&a't, Q sin&et, cos&u't, A
i

QS, sin&et,

Q shl&dtg slll&d t( icos (d t( +sin~'t, cos~'t, B QS, sin~'t, (C2}

Qsin~t, co s~' t, Psinsr't, costs't,
i

icos (al t(
f

C QS, cos&u't,

Assuming an approximately regular observational schedule, the sums in the matrix of Eq. (C2) can be
weQ estimated by integrals:

+sin'&ut, = g sin'&u't, = Q cos'(u't, = ~ rT,

Q signet, sin&a't, = —sinQT2a (C4}

Q sin&ut, cos~'t, =—(1 —cosOT),2g

and

(Cs)

Q sin&o't, cos~'t, = 0, (C6)

g 5$, sin&et,.

with T the measurement interval, 0-=&a-&o', and r the measurement rate. An error analysis of the es-
timation procedure then gives

ysas

smQT 1 —cosQT
Q 0

1 -cosQT
0

25B = — Q 5S, sin&u't,
f

Q 5$, costa't,
f

(cv)

where 5A is the error produced in estimating A due to measurement errors 5$, . We now solve Eq. (CV)
for 5A, square this result, and take a statistical average value. The measurement errors are assumed
uncorrelated;

(5$,5$)),„=a 5(q,

0 being the r.m, s. measurement error. The r.m.s. error in A is then given by

0'1 x
Q f'QQ 5

2r T' x'-sin~@ ' (CQ)

where x= ,AT. (Since -A in the cases of interest is proportional to 1/0, we quote A5A in Eq. (C9), as it
is some PPN coefficient in A, not A itself, which we are estimating in each case. ) Equation (C9) indicates
that for fixed r and T, optimum estimation is vixen x-0, although little loss in estimation accuracy re-
sults as long as x -=-,'QT & 1.
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